
11

Computational Thinking

Enoch Hunsaker

Image by skeeze on Pixabay.com. CC0 Licence

Learning Objectives

Define computational thinking (CT);
Explain the rationale for including CT as part of core curriculum;
Understand research-based best practices for integrating CT with other core
content at your grade level;
Access a wide variety of resources designed to enable you to integrate CT at
your grade level.

In today's high-tech and ever-changing world, it is increasingly clear that students need to
be able to think critically and resolve complex and ill-defined problems in order to truly
thrive in the environment where they are one day expected to live and work (Schön, 1987;
Ventura, Lai, and DiCerbo, 2017). But while few would argue the utility of teaching critical
thinking and problem solving skills in schools, there is less consensus about how to do it,
when to start, or what terms to use when teaching these important competencies.

One approach to teaching these skills is to teach computational thinking (CT). CT is
particularly useful for the computer age, because it not only teaches critical thinking but

The K-12 Educational Technology Handbook

2

also focuses on helping students "develop and employ strategies for understanding and
solving problems in ways that leverage the power of technological methods to develop and
test solutions" (ISTE, n.d., emphasis added). CT is the bread and butter of computer
scientists, but it is also widely applicable for solving many other academic and non-academic
problems.

CT is essentially a framework to describe a set of critical thinking and problem-solving
skills, and it has gained significant traction as a viable and useful way of thinking about how
to teach these skills in formal educational settings. While CT is not the only way to approach
these skills, it provides a way of looking at problems so as to produce an automated or semi-
automated solution that takes advantage of the unique affordances of computer
technologies. It can also be beneficial in providing a common vocabulary, a wealth of
resources, and a vibrant community of practice for teachers seeking to focus, coordinate,
and improve efforts to guide rising generations in developing problem solving skills.

Watch on YouTube: http://edtechbooks.org/-vY

https://www.youtube.com/embed/mUXo-S7gzds?autoplay=1&rel=0&showinfo=0&modestbranding=1

The K-12 Educational Technology Handbook

3

Key Terms

Coding

a language that a computer can use to complete a task or a set of instructions

Computational Thinking

a problem solving process; typically broken down into decomposition, pattern
recognition, abstraction, and algorithm design

Unplugged

a coding lesson that does not require a computer

Why Integrate Computational Thinking?
More than ever, we live in a world that is informed and inundated by computer technology.
This fact may conjure thoughts of smartphones and personal computers, but increasingly,
many everyday and traditionally non-digital objects are being designed to operate via a
computer program. Some of these objects include streetlights, car engines, watches, roads,
car tires, shoes, and even cereal boxes (Hartigan, 2013).

As computer programs become more widespread, computer programming becomes an
increasingly relevant skill, and many political bodies are recognizing this fact. Support for
teaching computing in K-12 schools is growing in the U.S. and abroad. Several countries,
including England, Finland, South Korea, and Australia, require that children learn
computing or computational thinking (Rich, Jones, Belikov, Yoshikawa, and Perkins, 2017).
Several U.S. states and districts have similar requirements (Partovi, 2017; EdSurge, 2016).
The United States has not yet officially adopted such measures, but appears to be moving in
that direction. For example, in 2017 the Trump administration announced a yearly
investment of $200 million dollars into STEM education, noting that "the nature of our
workforce has increasingly shifted to jobs requiring a different skill set, specifically in
coding and computer science" (CNN Wire, 2017, emphasis added). Amazon, Facebook, and
other major tech companies have committed a sum of over $300 million (over the period of
five years) to the new initiative (Romm, 2017). Thus, increasing attention, interest, and
enthusiasm are paid to the role that computer science education should have in our schools
(Bers, Flannery, Kazakoff, and Sullivan, 2014; Rich et al., 2017; Sullivan and Bers, 2016;
Yadav et al., 2016; Yadav et al., 2017).

http://edtechbooks.org/k12handbook/glossary#coding
http://edtechbooks.org/k12handbook/glossary#computational_thinking
http://edtechbooks.org/k12handbook/glossary#unplugged
https://www.youtube.com/watch?v=M0R5LPhLz_U&feature=player_embedded

The K-12 Educational Technology Handbook

4

But before computer programming - or coding, as it is sometimes called - many believe that
today's youth (and adults) need computational thinking (CT) to better solve the problems of
the 21st century. CT may be considered a precursor to learning actual coding or computer
programming skills. And while this is certainly true, it can also have a much broader
application. The skills, attitudes, and approaches that make up CT are fundamental,
universal, transferrable, and particularly appropriate and useful for the computer age. So,
while a future computer programmer certainly needs CT, it is not necessarily true that
everyone who learns CT should go on to learn coding. Rather, as computer technology
becomes more embedded into the fabric of every industry, professionals in every industry
need to be able to think in ways that leverage those computers to solve the problems of the
future.

Learning computational thinking can benefit students both economically and academically.
Each year there are far more computing jobs added than there are computer science
graduates, with significant job growth projected for the foreseeable future (Bureau of Labor
Statistics, 2018). Furthermore, studies have linked a host of academic benefits to learning
CT, including improvement in student engagement, motivation, confidence, problem-solving,
communication, and STEM learning and performance (Rich et al., 2017; Yadav et al., 2017).

What Is Computational Thinking?
Stephen Wolfram (2016) stated that the "intellectual core" of computational thinking "is
about formulating things with enough clarity, and in a systematic enough way, that one can
tell a computer how to do them." After gathering input from over 700 computer science
educators, researchers, and practitioners, the International Society for Technology in
Education (ISTE) and the Computer Science Teachers Association (CSTA) (2011) issued a
joint statement in which they provided an operational definition of computational thinking,
which involves both a problem-solving process and a series of dispositions and attitudes.

Computational thinking may imply a certain degree of facility and familiarity with
computers, but it is much more than mere tech savviness. It is a combination of disciplined
mental habits, attitudes of endurance, and essential soft skills. CT allows us to not merely
consume technology, but to create with technology (Yadav, Hong, and Stephenson, 2016). It
is not a way of making humans more like computers, but rather of empowering humans to
use computers more effectively to solve the problems of the Computer Age (Wing, 2006).

The ISTE/CSTA (2011) definition is thorough, but it may also be useful for teachers to have
a few key words to keep in mind when planning lessons, guiding discussions, commenting
on student work, etc. The following table is derived from the documentation of various
organizations that seek to define and categorize CT in a useful way for educators (CAS
Barefoot, 2014; Google, n.d.b; ISTE, 2014). This is not intended to be comprehensive, but it
does provide a reasonably complete snapshot of the most crucial components of CT.

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

The K-12 Educational Technology Handbook

5

Components of CT (CAS Barefoot, 2014; Google, n.d.b;
ISTE, 2014)

Skills

Decomposition: Breaking down data, processes, or problems into smaller,
manageable parts
Pattern Recognition: Observing patterns, trends, and regularities in data
Abstraction: Making a problem more understandable by reducing
unnecessary detail.
Algorithm Design: Developing the step by step instructions for solving this
and similar problems
Evaluation: Ensuring that your solution is a good one.

Attitudes

Confident: believing in one's own ability to solve problems
Communicative: willing and able to communicate effectively with others.
Flexible: able to deal with change and open-ended problems

Approaches

Tinkering: experimenting and playing
Creating: designing and making
Debugging: finding and fixing errors
Persevering: keeping going
Collaborating: working together.

Review These Terms on Quizlet

Thought Exercise: Problem-Solving Models

Computational Thinking is an effective model of problem solving, but it is only one
model. Others include scientific thinking or the scientific method (which is used by
scientists to answer questions about how and why the world works) and design
thinking (which is used by designers and engineers to design objects and
experiences). Consider the steps of each of these widely-used problem-solving
models:

The K-12 Educational Technology Handbook

6

Computational Thinking Scientific Thinking Design Thinking

1. Decomposition
2. Pattern Recognition
3. Abstraction
4. Algorithm Design
5. Evaluation

1. Ask a Question
2. Conduct Research
3. Form a Hypothesis
4. Test the Hypothesis
5. Record & Analyze Data
6. Draw a Conclusion
7. Communicate Results

1. Empathize
2. Define
3. Ideate
4. Prototype
5. Test

Watch this video to better understand these processes:

Questions to Ponder:

What might be the advantages and disadvantages of each problem-solving
model?
Could any model be applied to any problem? How might the types of results
expected from each model differ?
Are some problems better suited to one method than another?

Why Integrate CT in Early Childhood and Elementary Education

Establishing a way of thinking takes time, so if CT is to be truly grasped by the professionals
of the future, they need to be familiarized with these concepts early and often throughout
their academic career (Yadav, Mayfield, Zhou, Hambrusch, and Korb, 2014). Computational

The K-12 Educational Technology Handbook

7

thinking is "cross-disciplinary" in nature (Yadav et al., 2017), so it makes sense to start
teaching it in elementary or even preschool, where all the subjects are naturally blended
together for the students within the same environment.

Studies have shown that children as young as preschool-age (approximately 4) have been
able to successfully learn basic CT concepts (Sullivan and Bers, 2016; Bers et al., 2014).
Studies also show that learning this can be "an engaging and rewarding" experience for the
students (Bers et al., 2014).

Technology permeates our world and experience. Bers, Seddighin, and Sullivan (2013) have
argued that because technology is an integral part of children's experience, early childhood
education should include the study of technology. Teaching computational thinking is one
way to do just that. In early childhood education, we often focus on understanding the
natural world, which is certainly worth studying, but the man-made world is also worth
studying. Most children are more familiar with cell phones than with polar bears, yet
teachers are more likely to teach a unit on polar bears than on cell phones. We can and
should study both (Bers et al., 2013).

Some early childhood practitioners may question the appropriateness of teaching
computational thinking to very young students, due to prevalent and well-founded concerns
about giving too much screen time to young children (NAEYC and Fred Rogers, 2012).
However, these concerns can be reduced by understanding that (1) there is a wide variety of
CT activities that do not require the use of a screen (e.g., unplugged activities, screenless
robots) and (2) that even activities that do involve screen time can--and should--be
constructed as interactive, rather than non-interactive uses of technology (NAEYC and Fred
Rogers, 2012).

Why Integrate CT in Secondary Education

Some secondary educators may understandably feel that, unless they are planning to get an
endorsement in information technology education, computational thinking has little to do
with them. However, teaching CT concepts in English, history, math, science, second
languages, and other core and elective subjects is actually a great way to "support problem
solving across all disciplines" (Google, n.d.a) Grover (2018) argues, "Like any skill, CT is
best taught and learned in context, and embedded into class subjects."

If CT education is embedded across multiple subject areas at the same school, it has
additional advantages, such as helping students to "make powerful connections between
their classes and beyond" and "have a rich toolkit to draw from that crosses traditional
subject borders" when faced with problems that are difficult to categorize within a
traditional subject area (Sheldon, 2017).

The K-12 Educational Technology Handbook

8

Thought Exercise: CT - A 21st Century Literacy?

Many claim that computational thinking is an essential 21st Century Literacy which
ought to be taught alongside reading, writing, and arithmetic in our schools. While
you don't necessarily have to agree with this assessment, it is important to
understand the rationale behind it.

Consider the following statements from CT education proponents, then consider
the questions listed below:

Just as basic literacy in math and science are considered essential for
all children to understand how the world works, education must also
address the development of knowledge and skills pertaining to
computing, which is now so integrally intertwined with every
profession (Grover, 2018).

Computational thinking is a fundamental skill for everyone, not just for
computer scientists. To reading, writing, and arithmetic, we should add
computational thinking to every child's analytical ability. Just as the
printing press facilitated the spread of the three Rs, what is
appropriately incestuous about this vision is that computing and
computers facilitate the spread of computational thinking (Wing, 2006).

Questions to Ponder:

What is a "literacy"?
Do you agree that computational thinking is a literacy?
Do you agree that it is as fundamental as reading, writing, and math in the
21st Century? Why or why not?

How to Effectively Integrate CT into Your Classroom
This section is intended as a reference. Feel free to focus on reading the parts that are most
relevant to you.

Research-Based Effective Practice for CT Integration

Teaching computational thinking has traditionally been viewed as a primarily
constructionist endeavor (Bers et al., 2014; Buss and Gamboa, 2017). Constructionism
posits that "children can learn deeply when they build their own meaningful projects in a
community of learners and reflect carefully on the process" (Bers et al., 2014). In particular,

The K-12 Educational Technology Handbook

9

the constructionist approach described by Seymour Papert "provides children the freedom
to explore their own interests through technologies (Bers, 2008) while investigating domain-
specific content learning and also exercising metacognitive, problem-solving, and reasoning
skills" (Bers et al., 2014).

Within this broadly constructionist framework, a variety of instructional principles and
methods have been identified as effective practices for teaching computational thinking.
These practices can be adapted to most grade levels and subject areas.

Modeling. Teachers should set an example of learning by modeling their own
understanding, learning, and progress in computational thinking. Especially in the
early stages, they should also model the computational thinking process for students
so they understand what the learning, reflection, and revision look like (Highfield,
2015).
Integrating. Teachers should collaborate with other teachers to facilitate the
completion of interdisciplinary culminating projects (Bers et al., 2014).
Releasing Responsibility Gradually. When teaching CT, educators should start with
direct instruction, move to a simple guided activity, then issue an open-ended
challenge or problem (Buss and Gamboa, 2017). Teachers should then continue to
guide behavior, even while working/playing as a team (Highfield, 2015).
Encouraging. Insofar as possible, teachers should provide "encouragement and
problem-solving hints and tips," rather than outright answers (Buss and Gamboa,
2017).
Questioning. Rather than providing answers directly, teachers should ask "probing
questions" before, during, and after learning activities (Buss and Gamboa, 2017; See
also Highfield, 2015) These questions should encourage students to reflect on their
learning and might begin with phrases like the following (Buss and Gamboa, 2017):

"What if you were to..."
"How would you..."
"Have you considered..."

Fostering alternative problem-solving. Teachers should promote alternative ways
of modeling a problem (Buss and Gamboa, 2017), such as

Drawing out solutions on paper.
Discussing alternative solutions as teams.
Relating challenges to more familiar circumstances.

Using CT vocabulary across the curriculum (Yadav et al., 2014). This can
reinforce students' understanding of the terms and help them see their applicability
across the curriculum and in daily life. For example, a teacher might refer to a set of
rules or procedures as an "algorithm"; invite students to create an "abstraction" of
how they feel; or emphasize that you are practicing "pattern recognition" skills.

How and When to Use Technology in CT Education

Teachers won't be utilizing technology every time they want to teach CT: they may be

The K-12 Educational Technology Handbook

10

simply referencing CT vocabulary, helping students learn perseverance, or engaging
students in an unplugged coding activity. However, since CT does involve "leverag[ing] the
power of technological methods" (ISTE, 2014), a progressive program of CT instruction will
inevitably lead to some integration of technological devices.

Just as PIC-RAT can be a valuable heuristic for evaluating classroom technology integration
and designing technological learning experiences, it can also help guide educators in
making decisions about how and when to use technology in the CT education process. In
general, teachers should strive to provide learning experiences that guide students toward
the creative and transformative ends of the PIC and RAT spectrums.

For example, an elementary teacher wanting to integrate CT into her curriculum might
begin by explaining some key CT concepts to her students, such as decomposition and
abstraction. She might then introduce a mathematical word problem that requires the
students to break the problem into component parts and filter out unnecessary detail. So
far, it has not been necessary to use technology, and most uses (e.g., an online worksheet)
would likely have been passive or interactive replacements of traditional practice.

However, as the teacher helps her students to learn additional aspects of math and CT, she
may see organic ways to integrate technology in creative and transformative ways. For
instance, she may feel that the best way to teach shape properties and algorithm design is
to bring some codable robots into the classroom and have the students program them to
draw regular polygonal shapes. At first, the students may have some interactive time with
the robots, simply so they can learn how they function. Eventually, however, their use will
become creative as they design an algorithm to meet the teacher's challenge. Such an
experience may transform the learning in several ways, such as

helping the students make connections between math and computer science that they
would not have made with mere worksheets;
deepening the students' perception of the relevance of both math and coding;
engaging students in content they might otherwise have found routine and boring.

CT in Early Childhood and Elementary Education

In addition to other research-based effective practices, the following ideas, examples and
resources may be useful in an early childhood teaching context.

Ideas

Teach CT through Coding. While learning CT does not require learning code,
coding can be a particularly effective vehicle to introduce CT to young students, as it
can help students to visualize and experience the concepts in a more concrete way. In
particular, using "unplugged" activities and codable robots has been particularly
effective for this age group.

Unplugged Activities. Unplugged activities are activities that teach coding

The K-12 Educational Technology Handbook

11

concepts without involving a computer. Students may use a paper and pencil,
manipulatives, or even their own bodies to experience coding principles in a
deeper way. These activities naturally allow for conversations about and
connections with CT skills, attitudes, and approaches.
Codable Robots. Codable robots can extend the coding and CT experience of
young students. Robots provide lots of opportunities to integrate mathematical
and engineering concepts into their coding and CT knowledge, and the
connections students make can actually support their learning in traditional
core subjects.

Examples

Students learn about algorithms when the teacher explains what they are using the
simple example of the routine students follow when they get up and come to school in
the morning. Students then write their own algorithms for planting a seed and test it
out with real seeds and soil (Randles, 2017).
A teacher uses Ozobots (small robots programmable with paper and a marker) to
teach her students about states of matter, geography, and coding. The ozobot moves
across a map and the students must program it to move slower in cold regions and
faster in warm regions. They need to practice communication, debugging, and
algorithm design in order to make this work (Randles, 2017).
Students create a math game with engineering toys and test every circuit before
moving on to the next activity. If something doesn't work, they "debug" it. Students
learn perseverance and communication skills in working together (Berdik, 2015).
Students stuck in a difficult problem look toward a teacher for help, but the teacher
directs them to "use prior knowledge, explore and work through it." Deep learning
occurs as the students learn to persevere, collaborate, and rely on the CT process
(Berdik, 2015).
Students and the teacher together create an "algorithm" for the procedure of leaving
the classroom.

Secondary Education

In addition to other research-based effective practices, consider the following
ideas/examples for teaching CT in your specific subject area.

Language Arts & Foreign Language

Students completing a short story unit are learning literary elements (e.g., plot, point
of view, irony, etc.). Their assignment is to write a literary analysis in which they
explore how a particular literary element influences a work. They utilize many CT
skills throughout this unit, such as

Representing plot structure through abstraction (i.e., a plot diagram)
Logical organization and analysis of data in order to support their thesis.
Communicating and collaborating with others in class discussions

The K-12 Educational Technology Handbook

12

Th students also relate these skills to what they are learning in other subject
areas (Barr, Harrison, and Conery, 2011).

Students use logic to put together a jumbled story in correct sequence (Grover, 2018).
Students identify patterns for different sentence types and rules for grammar (Grover,
2018).
Students use first-order logic to arrive at conclusion based on given facts (Grover,
2018).
Student construct social networks to analyze stories (Grover, 2018).
Students program a story with alternative pathways ("Choose your own adventure")
(Grover, 2018).
Students analyze how algorithms affect dialogue and news feeds in social media
(Angevine, 2018).
Student collaborate to build a story, identify any "bugs" in the story, and fix those
bugs to give the story a more logical flow. (Google, n.d.c)

Social Studies

Students compare their modern lifestyle with the lifestyles of children from another
era. They simulate the experience of children from the other era by writing about it in
a blog. The teacher calls attention to the fact that they are practicing skills relevant to
computational thinking, such as organizing and analyzing data logically, and
representing data through an abstraction (Barr et al., 2011).
Students review data and identify patterns and trends in wars and other historical
events. The teacher helps the students recognize that they are practicing the CT skill
of "pattern recognition." Students also create visualizations of these patterns and
trends, and the teacher refers to them as "abstractions" (Grover, 2018).
Students "create a simulation to study relationships in social science phenomena such
as women's education and health." This is an abstraction (Grover, 2018).
Students create models or "abstractions" for social systems, social networks, or social
choice (Grover, 2018).
Students use primary source data to study patterns of voting rights in the nation
(Angevine, 2018).

Engineering

Students look at a map of escape routes for the school. They recognize that the map is
an "abstraction" and discuss how they could create an algorithm that would define the
fastest way out of the school in the event of an emergency (Barr et al., 2011).
Students compare and contrast the design thinking problem solving process and the
computational thinking problem solving process and explore how each method can
give them unique insights and solutions for engineering problems. They also discuss
how the methods can be melded to provide more complete and better solutions.
Students use engineering computer software to design structures.
Students engage in a real-world construction simulation task as teams. They need to

The K-12 Educational Technology Handbook

13

practice the skills of abstraction (drawing a design for the project), decomposition
(breaking down the tasks that need to be completed). They also utilize CT approaches
such as collaborating, creating, and (possibly) tinkering and debugging.

Music

Students studying the diatonic scale and the concept of pitch use Scratch (a
programming language) to create an "abstraction" of a xylophone. They also develop
persistence as they work through a difficult problem (Barr et al., 2011).
Students use algorithms to study intervals, rhythm, and composition (Angevine, 2018)
Students explore musical patterns and create algorithms that can write a song
(Google, n.d.c)

Mathematics

Students model functions in algebra through programs (compare them to functions in
programs) (Grover, 2018).
Students write an algorithm (or precise sequence of steps) on how to do matrix
multiplication or how to solve a quadratic equation (Grover, 2018).
Students use decomposition to solve word problems (Grover, 2018).
Students express generalizations (as algebraic representations) by identifying
patterns (Grover, 2018).
Students interpret and visualize statistics of an athlete's performance (Angevine,
2018).
Students use robots to create a program that can draw any regular polygon of any
regular size. They also explore how slight variations in the program can create fractal
shapes.
Students use basic patterns to label key points on the unit circle in terms of degrees,
and then follows a similar process to relabel these points in terms of radians. Students
can then develop an algorithm to convert between degrees and radians based on the
patterns they used to count their way around the unit circle. (Google, n.d.c)
Students use CT concepts to explore the linear association between variables using
two sets of data. Students will read data in a spreadsheet and in a graph and identify
positive and negative linear association based on the shape of the graph. (Google,
n.d.c)

Sciences

Do a species classification with explicit "If-Then" logic (younger grades) (Grover,
2018).
Build a computational model of a physical phenomenon (Grover, 2018).
Instead of playing with or manipulating pre-developed software simulations of
scientific phenomenon, create (program) computational models and simulations to
study and interrogate phenomena (Grover, 2018).
Students use computational models and processes to predict the effects of removing a

The K-12 Educational Technology Handbook

14

species from the ecosystem (Angevine, 2018).
Students create simulations and abstractions that model safe and unsafe roller coaster
designs (Angevine, 2018).
STudents model (i.e., abstract) different scientific laws and phenomena using CT
concepts and approaches (Google, n.d.c).

Family and Consumer Science

In a child development course, students engage in metacognition about the
computational thinking process, and how it can help them to solve problems and make
decisions in their own lives.
In a sewing class, students observe common patterns in certain types of clothing.
Later on, they create a pattern (i.e., an algorithm) for sewing a shirt. They also include
diagrams (abstractions) within their pattern instructions.
In a foods class, students explore and discuss patterns across cake recipes (e.g.,
classes of ingredients included, order of steps, baking times and temperatures).
Students may also create their own cake recipe (algorithm) and test (evaluate) it
based on a set of criteria of their choosing.
In a personal finance class, students use computer software to track their spending
over several months. They then use that data to find patterns and create graphs (i.e.,
abstractions) of spending patterns that can inform their future decisions.

Dance & Physical Education

Students learning a variety of dance moves create their own dance (algorithm) by
stringing them together.
Students in P.E. learn about the wide variety of computational resources (e.g., apps,
wearables) that can help them monitor and improve their physical wellbeing and
personal health habits. They use data they collect from some of these sources to
create reports (abstractions) to help them make decisions about what habits they will
seek to develop.

CT Learning and Lesson Planning Resources Resources
The following table provides a number of resources for learning more about computational
thinking and planning lessons that integrate its components.

Resource Format
Grade Recommendation

PreK-2 3-6 7-12
CT Learning & Leadership

Computational Thinking Leadership Toolkit (ISTE) PDF

Digital Promise's 10 CT-related micro-credentials Web

BYU's Understanding Computational Thinking and
Teaching Computational Thinking badges Web

http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4
https://bloomboard.com/microcredential/provider/ac2f23c8-274d-449d-ac3f-6ad29e399737#computational_thinking:_key_elements

The K-12 Educational Technology Handbook

15

Resource Format
Grade Recommendation

PreK-2 3-6 7-12
Google for Education - Computational Thinking for
Educators free online course. E- Course

Integration Activities Across the Curriculum

CAS Barefoot's Computational Thinking page Web

Google for Education - Exploring Computational
Thinking: CT Materials Web

Wonder Workshop's Code to Learn Lesson Library Web

Computational Thinking Teacher Resources, 2nd
Edition (ISTE) PDF

CT Vocabulary and Progression Chart (ISTE) PDF

Understanding Developmentally-Appropriate Integration

NAEYC's Technology & Media website Web

Fred Rogers Center Website Web

Erikson Institute Web

Unplugged Activities

Code.org's CS Fundamentals Unplugged Web

CS Unplugged Web

Robotic Coding Activities
Coding as a Playground : Programming and
Computational Thinking in the Early Childhood
Classroom by Marina Bers

Book

Robotics for Young Children: STEM Activities and
Simple Coding by An Gadzikowski Book

Ozobot Lesson Library Web

CAS Barefoot's Bee-bot Activity Guide PDF

Wonder Workshop's Learn to Code Curriculum Web

Ontario Math curriculum, Grades 1-8 Sphero Lesson
Plans PDF

Block-Based Coding Activities & Tools
Code.org's Pre-Reader Express Course and courses A-
F Web Games

BootUp Curriculum for Scratch and Scratch Jr. Web

Scratch Web Tool

Kodable Web Games

Conclusion
Computational thinking is a method of solving problems that is both widely applicable
throughout the K-12 curriculum and increasingly relevant in the 21st Century. Integrating
CT into traditional core and elective subject areas can help students to make important
cross-curricular connections, improve their academic performance, and develop important

https://computationalthinkingcourse.withgoogle.com/course?use_last_location=true
https://computationalthinkingcourse.withgoogle.com/course?use_last_location=true
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-materials
https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-materials
https://education.makewonder.com/curriculum/code-to-learn
http://www.iste.org/docs/ct-documents/ct-teacher-resources_2ed-pdf.pdf?sfvrsn=2%5C
http://www.iste.org/docs/ct-documents/ct-vocabulary-and-progression-chart.pdf?sfvrsn=2
https://www.naeyc.org/resources/topics/technology-and-media
http://www.fredrogerscenter.org
http://www.teccenter.erikson.edu
https://csunplugged.org/
https://portal.ozobot.com/lessons
https://barefootcas.org.uk/wp-content/uploads/2014/09/Bee-Bots-1-2-3-Activity-Barefoot-Computing2.pdf
https://education.makewonder.com/curriculum/learn-to-code
https://drive.google.com/file/d/0ByFjCFgSeq2HNzIwYjdFa0UwOGs/view
https://drive.google.com/file/d/0ByFjCFgSeq2HNzIwYjdFa0UwOGs/view
https://studio.code.org/s/pre-express
https://code.org/student/elementary
https://code.org/student/elementary
https://bootuppd.org/curriculum
https://scratch.mit.edu/
https://www.kodable.com/

The K-12 Educational Technology Handbook

16

skills for creating solutions in the wide variety of vocations in which they will one day
engage. As the popularity and relevance of CT becomes more apparent, many countries,
states, and institutions are adopting it into their curriculum, so teachers should be aware of
how this affects them, how it may affect them in the future, and the variety of resources
they can access as needed. They are also encouraged to become as familiar as they can with
CT skills, attitudes, and approaches, and to develop these competencies in their personal
and professional lives.

References

Angevine, C. (2018, February 22). Advancing computational thinking across K-12 education.
Retrieved from http://edtechbooks.org/-YY

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for
everyone. Learning & Leading with Technology, 38(6), 20-23. Retrieved from
http://edtechbooks.org/-HQ

Berdik, C. (2015, November 23). How one school district works computational thinking into
every grade and class. Retrieved from http://edtechbooks.org/-Cj

Bers, M.U. (2008). Blocks to robots: Learning with technology in the early childhood
classroom. New York, NY: Teachers College Press.

Bers, M.U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T
and E of STEM in early childhood teacher education. Journal of Technology and Teacher
Education, 21(3), 355-377.

Bers, M.U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering?: Exploration of an early childhood robotics curriculum. Computers & Education,
72, 145-157. http://edtechbooks.org/-HN.

Bureau of Labor Statistics (2018). Occupational outlook handbook. Retrieved from
http://edtechbooks.org/-yr

Buss, A., & Gamboa, R. (2017). Teacher transformations in developing computational
thinking: Gaming and robotics use in after-school settings. In P.J. Rich & C.B. Hodges (Eds.),
Emerging research, practice, and policy on computational thinking (pp. 189-203). Cham,
Switzerland: Springer. Retrieved from http://edtechbooks.org/-UN

CAS Barefoot (2014). Computational thinking. Retrieved from http://edtechbooks.org/-Wy.

CNN Wire. (2017, September 25). President Trump announces yearly investment of $200M
for STEM expansion. Retrieved from Fox News: http://edtechbooks.org/-tB

http://www.gettingsmart.com/2018/02/advancing-computational-thinking-across-k-12-education/
https://files.eric.ed.gov/fulltext/EJ918910.pdf
http://hechingerreport.org/how-one-school-district-works-computational-thinking-into-every-grade-and-class/
https://doi.org/10.1016/j.compedu.2013.10.020
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
http://sci-hub.cc/downloads/1d8d/10.1007@978-3-319-52691-1.pdf
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://fox59.com/2017/09/25/president-trump-makes-jobs-announcement/

The K-12 Educational Technology Handbook

17

EdSurge. (2016). Computer science for all. Retrieved from
https://www.edsurge.com/research/special-reports/state-of-edtech-2016/k12_edtech_trends/
computer_science

Google (n.d.a). Exploring computational thinking? Retrieved from
http://edtechbooks.org/-PU

Google (n.d.b). What is computational thinking? Retrieved from http://edtechbooks.org/-gU

Google (n.d.c). CT materials. Retrieved from http://edtechbooks.org/-tP

Grover, S. (2018, March 13). The 5th 'C' of 21st century skills? Try computational thinking
(not coding. Retrieved from EdSurge News: http://edtechbooks.org/-Pz

Hartigan, M. (2013, August 27). 10 everyday objects that can be programmed to run code.
Retrieved from http://edtechbooks.org/-cK

Highfield, K. (2015). Stepping into STEM with young children: Simple robotics and
programming as catalysts for early learning. In C. Donohue (Ed.), Technology and digital
media in the early years: Tools for teaching and learning (pp. 150-161). New York, NY:
Routledge.

ISTE (2014, September 11). Computational thinking for all. Retrieved from
http://edtechbooks.org/-yE ISTE. (n.d.). Standards for students. Retrieved from
http://edtechbooks.org/-XB.

ISTE, & CSTA. (2011). Operational definition of computational thinking for K-12 education.
Retrieved from http://edtechbooks.org/-cV

NAEYC, & Fred Rogers Center for early Learning and Children's Media. (2012). Technology
and interactive media as tools in early childhood programs serving children from birth
through age 8. Retrieved from http://edtechbooks.org/-zJ

Partovi, H. (2017). Should computer science be a mandatory class in U.S. high schools?
Retrieved from
https://www.quora.com/Should-Computer-Science-be-a-mandatory-part-of-a-high-school-curr
iculum/answer/Hadi-Partovi

Randles, J. (2017, January 27). 3 easy lessons that teach coding and computational thinking.
Retrieved from http://edtechbooks.org/-Lc

Rich, P. J., Jones, B., Belikov, O., Yoshikawa, E., & Perkins, M. (2017). Computing and
engineering in elementary school: The effect of year-long training on elementary teacher
self-efficacy and beliefs about teaching computing and engineering. International Journal of
Computer Science Education in Schools, 1 (1), 1-20.

https://www.edsurge.com/research/special-reports/state-of-edtech-2016/k12_edtech_trends/computer_science
https://www.edsurge.com/research/special-reports/state-of-edtech-2016/k12_edtech_trends/computer_science
https://edu.google.com/resources/programs/exploring-computational-thinking/
https://computationalthinkingcourse.withgoogle.com/unit?lesson=8&unit=1
https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-materials
https://www.edsurge.com/news/2018-02-25-the-5th-c-of-21st-century-skills-try-computational-thinking-not-coding
https://www.fastcompany.com/3016427/10-everyday-objects-that-can-be-programmed-to-run-code
https://www.iste.org/explore/articledetail?articleid=152
https://www.iste.org/standards/for-students
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources/topics/PS_technology_WEB.pdf
https://www.quora.com/Should-Computer-Science-be-a-mandatory-part-of-a-high-school-curriculum/answer/Hadi-Partovi
https://www.quora.com/Should-Computer-Science-be-a-mandatory-part-of-a-high-school-curriculum/answer/Hadi-Partovi
https://www.iste.org/explore/articleDetail?articleid=894&category=In-the-classroom&article=

The K-12 Educational Technology Handbook

18

Romm, T. (2017, September 26). Amazon, Facebook and others in tech will commit $300
million to the White House's new computer science push. Retrieved from
http://edtechbooks.org/-Uu

Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for teaching
and learning in the professions. Ann Arbor, MI: Wiley.

Sheldon, E. (2017) Computational thinking across the curriculum. Retrieved from
http://edtechbooks.org/-Qt

Sullivan, A., & Bers, M.U. (2016). Robotics in the early childhood classroom: Learning
outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade.
International Journal of Technology and Design Education, 26(1), 3-20.
http://edtechbooks.org/-LK

Ventura, M., Lai, E., & DiCerbo, K. (2017). Skills for today: What we know about teaching
and assessing critical thinking [White paper]. Retrieved March 29, 2018, from Partnership
for 21st Century Learning: http://edtechbooks.org/-hH

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
http://edtechbooks.org/-jB

Wolfram, S. (2017, June 16). How to teach computational thinking. Retrieved from
http://edtechbooks.org/-jZ

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
thinking in elementary and secondary teacher education. ACM Transactions on Computing
Education (TOCE), 14(1), 5.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical
approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends,
60(6), 565-568. http://edtechbooks.org/-vq

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher
education. Communications of the ACM, 60(4), 55-62. http://edtechbooks.org/-TN

https://www.recode.net/2017/9/26/16364662/amazon-facebook-google-tech-300-million-donald-trump-ivanka-computer-science
https://www.edutopia.org/blog/computational-thinking-across-the-curriculum-eli-sheldon
https://doi.org/10.1007/s10798-015-9304-5
http://www.p21.org/storage/documents/Skills_For_Today_Series-Pearson/White_Paper_-_P21_-_Skills_for_Today-What_We_Know_about_Teaching_and_Assessing_Critical_Thinking_v5.pdf
https://doi.org/10.1145/1118178.1118215
https://www.wired.com/2016/09/how-to-teach-computational-thinking/
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1145/2994591

The K-12 Educational Technology Handbook

19

Suggested Citation

Hunsaker, E. (2018). Computational Thinking. In A. Ottenbreit-Leftwich & R.
Kimmons, The K-12 Educational Technology Handbook. EdTechBooks.org.
Retrieved from http://edtechbooks.org/k12handbook/computational_thinking

Enoch Hunsaker

Enoch Hunsaker is a Master's student at Brigham Young University, where he is
pursuing a degree in Instructional Psychology and Technology and a career as
an Instructional Designer. He has done substantial research and design work to
help K-12 teachers integrate coding and computational thinking into their
classrooms. His professional interests include purpose-centered design, agency
in learning, and learning by doing.

Ottenbreit-Leftwich, A. & Kimmons, R. (2018). The K-12 Educational Technology
Handbook. EdTech Books. Retrieved from http://edtechbooks.org/k12handbook

CC BY: This book is released under a CC BY license, which means that you
are free to do with it as you please as long as you properly attribute it.

