General College Chemistry

Volume 1

Table of Contents

Foreword 1
Unit I. Atoms 3

1. Introduction 5
2. Matter 11
3. Measurement 39
4. The Atom 73
5. Periodic Table 95
6. Moles \& Mass 107
7. Light 127
8. Blackbody Radiation, Photoelectric Effect 141
9. Atomic Spectra, Bohr Model 149
10. Orbitals \& Quantum Numbers 163
11. Electron Configurations 183
12. Periodic Trends 197
Unit II. Molecules 209
13. Bonding 211
14. Nomenclature 237
15. Lewis Structures Part 1 249
16. Lewis Structures Part 2 269
17. Molecular Shape 279
18. Polarity 299
19. Organic Molecules 307
20. Isomers 319
21. Valence Bond Theory 353
22. Molecular Orbital Theory 381
Unit III. Interactions 403
23. Pressure \& Gas Laws 405
24. Combined \& Ideal Gas Laws 437
25. Dalton's Law, Graham's Law, Henry's Law 453
26. Kinetic Molecular Theory, Real Gases 489
27. Intermolecular Forces 503
28. Properties of Water 523
29. Applications of IMF 535
30. Phase Diagrams 549
Unit IV. Reactions 563
31. Stoichiometry 565
32. Limiting Reactants, \% Yield 587
33. \% Composition, Empirical Formulas 597
34. Energy, Heat, and Work 617
35. Calorimetry Part 1 635
36. Calorimetry Part 2 651
37. Enthalpy Part 1 659
38. Enthalpy Part 2 685
39. Entropy 697
40. Gibb's Free Energy 715
41. Climate and Human Impacts 731

BYU Open Learning Network

CC BY: This work is released under a CC BY license, which means that you are free to do with it as you please as long as you properly attribute it.

The publisher BYU Open Learning Network does not have a physical location, but its primary support staff operate out of Provo, UT, USA.

The publisher BYU Open Learning Network makes no copyright claim to any information in this publication and makes no claim as to the veracity of content. All content remains exclusively the intellectual property of its authors. Inquiries regarding use of content should be directed to the authors themselves.

URL: https://open.byu.edu/general_college_chemistry

(2023). General College Chemistry. BYU Open Learning Network. https://open.byu.edu/general_college_chemistry

Like this? Endorse it and let others know.

Foreword

Rebecca Sansom

General College Chemistry was created to serve as the textbook for the first semester general chemistry course at Brigham Young University (BYU). The contents are derived from open education resources including OpenStax, LibreTexts, and content created by the author and released into the public domain. Any content that does not come directly from OpenStax and LibreTexts (which have specific licensing and attribution statements) is licensed under the CC-BY-SA license.

The chapters are organized by the day of class that they correspond to; a standard semester at BYU has 42 class days, so there are 41 chapters, reserving one day for a holiday or review. At the end of each chapter, there are additional resources housed on google drive that contain pdf files of lecture slides for use by the instructor, participation worksheets for use by students working in groups during class, and problem sets of practice problems and exercises for students to complete after class or after reading the textbook chapter.

The author, Dr. Rebecca Sansom, is an Associate Professor of Chemistry and Biochemistry at BYU. She has taught at BYU since 2014. Dr. Sansom was the recipient of the Oustanding Teaching Award from the BYU College of Physical and Mathematical Sciences in 2022. This award provided funding to develop the ancillaries and support several undergraduate students, including Mikaela Anderson, Andrea Augustus, Amanda Carlson, and Elia Hafen, who assisted in that process. Many of the practice problems were derived from earlier versions created by other faculty members at BYU. The online General College Chemistry book was built and constructed by Abby Boekweg, a graduate student in the Instructional Psychology and Technology department at BYU as part of her Master's project. We gratefully acknowledge her effort, care, and diligence in preparing this text for use by students.

Instructors who wish to adopt and use this text in their classrooms may contact the author, Dr. Rebecca Sansom, at rsansom@chem.byu.edu to get access to instructor PowerPoint files, word document versions of participation and problem sets, and answer keys for the problem sets. Be sure to use your institutional email and include a link to the institution's website showing that you are an instructor there. If there are errors that you would like to report, please contact Dr. Sansom at the email given above with sufficient detail to explain where the error is located in the book, and what content you find problematic.

Thank you for your interest in using General College Chemistry. We hope that it will help you on your chemistry learning journey.

Rebecca Sansom

Brigham Young University
Dr. Rebecca Sansom is an associate professor of chemistry at Brigham Young University. Prior to her work at BYU, she served as an Albert Einstein Distinguished Educator Fellow at the National Science Foundation in the Division of Undergraduate Education, after teaching high school chemistry and biology for several years. Dr. Sansom earned her PhD in Educational Inquiry, Measurement, and Evaluation at Brigham Young University. She also completed an MEd in Educational Leadership at Southern Utah University after her AM in Chemistry and Chemical Biology from Harvard University and BA in Chemistry from Boston University.

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/foreword.

Unit I

Atoms

Introduction
Matter
Measurement
The Atom
Periodic Table
Moles \& Mass
Light
Blackbody Radiation, Photoelectric Effect
Atomic Spectra, Bohr Model
Orbitals \& Quantum Numbers
Electron Configurations
Periodic Trends

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/unit_i.

Introduction

Laws

Historical Development of Chemistry
Scientific Method
Macroscopic
Microscopic

Chemistry deals with the composition, structure, and properties of matter, and the ways by which various forms of matter may be interconverted. Thus, it occupies a central place in the study and practice of science and technology. Chemists use the scientific method to perform experiments, pose hypotheses, and formulate laws and develop theories, so that they can better understand the behavior of the natural world. To do so, they operate in the macroscopic, microscopic, and symbolic domains. Chemists measure, analyze, purify, and synthesize a wide variety of substances that are important to our lives.

1.1 Chemistry in Context

Learning Objectives

By the end of this section, you will be able to:

- Outline the historical development of chemistry
- Provide examples of the importance of chemistry in everyday life
- Describe the scientific method
- Differentiate among hypotheses, theories, and laws
- Provide examples illustrating macroscopic, microscopic, and symbolic domains

Throughout human history, people have tried to convert matter into more useful forms. Our Stone Age ancestors chipped pieces of flint into useful tools and carved wood into statues and toys. These endeavors involved changing the shape of a substance without changing the substance itself. But as our knowledge increased, humans began to change the composition of the substances as well-clay was converted into pottery, hides were cured to make garments, copper ores were transformed into copper tools and weapons, and grain was made into bread.

Humans began to practice chemistry when they learned to control fire and use it to cook, make pottery, and smelt metals. Subsequently, they began to separate and use specific components of matter. A variety of drugs such as aloe, myrrh, and opium were isolated from plants. Dyes, such as indigo and Tyrian purple, were extracted from plant and animal matter. Metals were combined to form alloys-for example, copper and tin were mixed together to make bronze
-and more elaborate smelting techniques produced iron. Alkalis were extracted from ashes, and soaps were prepared by combining these alkalis with fats. Alcohol was produced by fermentation and purified by distillation.

Attempts to understand the behavior of matter extend back for more than 2500 years. As early as the sixth century BC, Greek philosophers discussed a system in which water was the basis of all things. You may have heard of the Greek postulate that matter consists of four elements: earth, air, fire, and water. Subsequently, an amalgamation of chemical technologies and philosophical speculations was spread from Egypt, China, and the eastern Mediterranean by alchemists, who endeavored to transform "base metals" such as lead into "noble metals" like gold, and to create elixirs to cure disease and extend life (Figure 1.2).

Figure 1.2
(a) This portrayal shows an alchemist's workshop circa 1580. Although alchemy made some useful contributions to how to manipulate matter, it was not scientific by modern standards. (b) While the equipment used by Alma Levant Hayden in this 1952 picture might not seem as sleek as you might find in a lab today, her approach was highly methodical and carefully recorded. A department head at the FDA, Hayden is most famous for exposing an aggressively marketed anti-cancer drug as nothing more than an unhelpful solution of common substances. (credit a: Chemical Heritage Foundation; b: NIH History Office)

From alchemy came the historical progressions that led to modern chemistry: the isolation of drugs from natural sources, such as plants and animals. But while many of the substances extracted or processed from those natural sources were critical in the treatment of diseases, many were scarce. For example, progesterone, which is critical to women's health, became available as a medicine in 1935, but its animal sources produced extremely small quantities, limiting its availability and increasing its expense. Likewise, in the 1940s, cortisone came into use to treat arthritis and other disorders and injuries, but it took a 36-step process to synthesize. Chemist Percy Lavon Julian turned to a more plentiful source: soybeans. Previously, Julian had developed a lab to isolate soy protein, which was used in firefighting among other applications. He focused on using the soy sterols-substances mostly used in plant membranes-and was able to quickly produce progesterone and later testosterone and other hormones. He later developed a process to do the same for cortisone, and laid the groundwork for modern drug design. Since soybeans and similar plant sources were extremely plentiful, the drugs soon became widely available, saving many lives.

Chemistry: The Central Science

Chemistry is sometimes referred to as "the central science" due to its interconnectedness with a vast array of other STEM disciplines (STEM stands for areas of study in the science, technology, engineering, and math fields). Chemistry and the language of chemists play vital roles in biology, medicine, materials science, forensics, environmental science, and many other fields (Figure 1.3). The basic principles of physics are essential for understanding many aspects of chemistry, and there is extensive overlap between many subdisciplines within the two fields, such as chemical physics
and nuclear chemistry. Mathematics, computer science, and information theory provide important tools that help us calculate, interpret, describe, and generally make sense of the chemical world. Biology and chemistry converge in biochemistry, which is crucial to understanding the many complex factors and processes that keep living organisms (such as us) alive. Chemical engineering, materials science, and nanotechnology combine chemical principles and empirical findings to produce useful substances, ranging from gasoline to fabrics to electronics. Agriculture, food science, veterinary science, and brewing and wine making help provide sustenance in the form of food and drink to the world's population. Medicine, pharmacology, biotechnology, and botany identify and produce substances that help keep us healthy. Environmental science, geology, oceanography, and atmospheric science incorporate many chemical ideas to help us better understand and protect our physical world. Chemical ideas are used to help understand the universe in astronomy and cosmology.

Figure 1.3
Knowledge of chemistry is central to understanding a wide range of scientific disciplines. This diagram shows just some of the interrelationships between chemistry and other fields.

What are some changes in matter that are essential to daily life? Digesting and assimilating food, synthesizing polymers that are used to make clothing, containers, cookware, and credit cards, and refining crude oil into gasoline and other products are just a few examples. As you proceed through this course, you will discover many different examples of changes in the composition and structure of matter, how to classify these changes and how they occurred, their causes, the changes in energy that accompany them, and the principles and laws involved. As you learn about these things, you will be learning chemistry, the study of the composition, properties, and interactions of matter. The practice of chemistry is not limited to chemistry books or laboratories: It happens whenever someone is involved in changes in matter or in conditions that may lead to such changes.

The Scientific Method

Chemistry is a science based on observation and experimentation. Doing chemistry involves attempting to answer questions and explain observations in terms of the laws and theories of chemistry, using procedures that are accepted by the scientific community. There is no single route to answering a question or explaining an observation, but there is an aspect common to every approach: Each uses knowledge based on experiments that can be reproduced to verify the results. Some routes involve a hypothesis, a tentative explanation of observations that acts as a guide for gathering and checking information. A hypothesis is tested by experimentation, calculation, and/or comparison with the experiments of others and then refined as needed.

Some hypotheses are attempts to explain the behavior that is summarized in laws. The laws of science summarize a vast number of experimental observations, and describe or predict some facet of the natural world. If such a hypothesis turns out to be capable of explaining a large body of experimental data, it can reach the status of a theory. Scientific theories are well-substantiated, comprehensive, testable explanations of particular aspects of nature. Theories are accepted because they provide satisfactory explanations, but they can be modified if new data become available. The path of discovery that leads from question and observation to law or hypothesis to theory, combined with experimental verification of the hypothesis and any necessary modification of the theory, is called the scientific method (Figure 1.4).

Figure 1.4
The scientific method follows a process similar to the one shown in this diagram. All the key components are shown, in roughly the right order. Scientific progress is seldom neat and clean: It requires open inquiry and the reworking of questions and ideas in response to findings.

The Domains of Chemistry

Chemists study and describe the behavior of matter and energy in three different domains: macroscopic, microscopic, and symbolic. These domains provide different ways of considering and describing chemical behavior.

Macro is a Greek word that means "large." The macroscopic domain is familiar to us: It is the realm of everyday things that are large enough to be sensed directly by human sight or touch. In daily life, this includes the food you eat and the breeze you feel on your face. The macroscopic domain includes everyday and laboratory chemistry, where we observe and measure physical and chemical properties such as density, solubility, and flammability.

Micro comes from Greek and means "small." The microscopic domain of chemistry is often visited in the imagination. Some aspects of the microscopic domain are visible through standard optical microscopes, for example, many biological cells. More sophisticated instruments are capable of imaging even smaller entities such as molecules and atoms (see Figure 1.5 (b)).

However, most of the subjects in the microscopic domain of chemistry are too small to be seen even with the most advanced microscopes and may only be pictured in the mind. Other components of the microscopic domain include
ions and electrons, protons and neutrons, and chemical bonds, each of which is far too small to see.
The symbolic domain contains the specialized language used to represent components of the macroscopic and microscopic domains. Chemical symbols (such as those used in the periodic table), chemical formulas, and chemical equations are part of the symbolic domain, as are graphs, drawings, and calculations. These symbols play an important role in chemistry because they help interpret the behavior of the macroscopic domain in terms of the components of the microscopic domain. One of the challenges for students learning chemistry is recognizing that the same symbols can represent different things in the macroscopic and microscopic domains, and one of the features that makes chemistry fascinating is the use of a domain that must be imagined to explain behavior in a domain that can be observed.

A helpful way to understand the three domains is via the essential and ubiquitous substance of water. That water is a liquid at moderate temperatures, will freeze to form a solid at lower temperatures, and boil to form a gas at higher temperatures (Figure 1.5) are macroscopic observations. But some properties of water fall into the microscopic domain -what cannot be observed with the naked eye. The description of water as comprising two hydrogen atoms and one oxygen atom, and the explanation of freezing and boiling in terms of attractions between these molecules, is within the microscopic arena. The formula $\mathrm{H}_{2} \mathrm{O}$, which can describe water at either the macroscopic or microscopic levels, is an example of the symbolic domain. The abbreviations (g) for gas, (s) for solid, and ($/$) for liquid are also symbolic.

Figure 1.5
(a) Moisture in the air, icebergs, and the ocean represent water in the macroscopic domain. (b) At the molecular level (microscopic domain), gas molecules are far apart and disorganized, solid water molecules are close together and organized, and liquid molecules are close together and disorganized. (c) The formula $\mathrm{H}_{2} \mathrm{O}$ symbolizes water, and (g), (s), and (I) symbolize its phases. Note that clouds are actually comprised of either very small liquid water droplets or solid water crystals; gaseous water in our atmosphere is not visible to the naked eye, although it may be sensed as humidity. (credit a: modification of work by "Gorkaazk"/Wikimedia Commons)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

```
Open in Google Drive
```


Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/1-1-chemistry-in-context

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/module_1_introduction.

Matter

Atom
Isomers

Matter is anything that occupies space and has mass. The basic building block of matter is the atom, the smallest unit of an element that can enter into combinations with atoms of the same or other elements. In many substances, atoms are combined into molecules. On earth, matter commonly exists in three states: solids, of fixed shape and volume; liquids, of variable shape but fixed volume; and gases, of variable shape and volume. Under high-temperature conditions, matter also can exist as a plasma. Most matter is a mixture: It is composed of two or more types of matter that can be present in varying amounts and can be separated by physical means. Heterogeneous mixtures vary in composition from point to point; homogeneous mixtures have the same composition from point to point. Pure substances consist of only one type of matter. A pure substance can be an element, which consists of only one type of atom and cannot be broken down by a chemical change, or a compound, which consists of two or more types of atoms. All substances have distinct physical and chemical properties, and may undergo physical or chemical changes. Physical properties, such as hardness and boiling point, and physical changes, such as melting or freezing, do not involve a change in the composition of matter. Chemical properties, such flammability and acidity, and chemical changes, such as rusting, involve production of matter that differs from that present beforehand. Measurable properties fall into one of two categories. Extensive properties depend on the amount of matter present, for example, the mass of gold. Intensive properties do not depend on the amount of matter present, for example, the density of gold. Heat is an example of an extensive property, and temperature is an example of an intensive property. A molecular formula uses chemical symbols and subscripts to indicate the exact numbers of different atoms in a molecule or compound. An empirical formula gives the simplest, whole-number ratio of atoms in a compound. A structural formula indicates the bonding arrangement of the atoms in the molecule. Ball-and-stick and space-filling models show the geometric arrangement of atoms in a molecule. Isomers are compounds with the same molecular formula but different arrangements of atoms.

2.1 Phases and Classifications of Matter

Learning Objectives

By the end of this section, you will be able to:

- Describe the basic properties of each physical state of matter: solid, liquid, and gas
- Distinguish between mass and weight
- Apply the law of conservation of matter
- Classify matter as an element, compound, homogeneous mixture, or heterogeneous mixture with regard to its physical state and composition
- Define and give examples of atoms and molecules

Matter is defined as anything that occupies space and has mass, and it is all around us. Solids and liquids are more obviously matter: We can see that they take up space, and their weight tells us that they have mass. Gases are also matter; if gases did not take up space, a balloon would not inflate (increase its volume) when filled with gas.

Solids, liquids, and gases are the three states of matter commonly found on earth (Figure 2.1). A solid is rigid and possesses a definite shape. A liquid flows and takes the shape of its container, except that it forms a flat or slightly curved upper surface when acted upon by gravity. (In zero gravity, liquids assume a spherical shape.) Both liquid and solid samples have volumes that are very nearly independent of pressure. A gas takes both the shape and volume of its container.

Figure 2.1
The three most common states or phases of matter are solid, liquid, and gas.

A fourth state of matter, plasma, occurs naturally in the interiors of stars. A plasma is a gaseous state of matter that contains appreciable numbers of electrically charged particles (Figure 2.2). The presence of these charged particles
imparts unique properties to plasmas that justify their classification as a state of matter distinct from gases. In addition to stars, plasmas are found in some other high-temperature environments (both natural and man-made), such as lightning strikes, certain television screens, and specialized analytical instruments used to detect trace amounts of metals.

Figure 2.2

A plasma torch can be used to cut metal. (credit: "Hypertherm"/Wikimedia Commons)

Link to Learning

In a tiny cell in a plasma television, the plasma emits ultraviolet light, which in turn causes the display at that location to appear a specific color. The composite of these tiny dots of color makes up the image that you see. Watch the video to learn more about plasma and the places you encounter it.

Watch on YouTube

Some samples of matter appear to have properties of solids, liquids, and/or gases at the same time. This can occur when the sample is composed of many small pieces. For example, we can pour sand as if it were a liquid because it is composed of many small grains of solid sand. Matter can also have properties of more than one state when it is a mixture, such as with clouds. Clouds appear to behave somewhat like gases, but they are actually mixtures of air (gas) and tiny particles of water (liquid or solid).

The mass of an object is a measure of the amount of matter in it. One way to measure an object's mass is to measure the force it takes to accelerate the object. It takes much more force to accelerate a car than a bicycle because the car has much more mass. A more common way to determine the mass of an object is to use a balance to compare its mass with a standard mass.

Although weight is related to mass, it is not the same thing. Weight refers to the force that gravity exerts on an object. This force is directly proportional to the mass of the object. The weight of an object changes as the force of gravity changes, but its mass does not. An astronaut's mass does not change just because she goes to the moon. But her weight on the moon is only one-sixth her earth-bound weight because the moon's gravity is only one-sixth that of the earth's. She may feel "weightless" during her trip when she experiences negligible external forces (gravitational or any other), although she is, of course, never "massless."

The law of conservation of matter summarizes many scientific observations about matter: It states that there is no detectable change in the total quantity of matter present when matter converts from one type to another (a chemical change) or changes among solid, liquid, or gaseous states (a physical change). Brewing beer and the operation of batteries provide examples of the conservation of matter (Figure 2.3). During the brewing of beer, the ingredients (water, yeast, grains, malt, hops, and sugar) are converted into beer (water, alcohol, carbonation, and flavoring substances) with no actual loss of substance. This is most clearly seen during the bottling process, when glucose turns into ethanol and carbon dioxide, and the total mass of the substances does not change. This can also be seen in a lead-acid car battery: The original substances (lead, lead oxide, and sulfuric acid), which are capable of producing electricity, are changed into other substances (lead sulfate and water) that do not produce electricity, with no change in the actual amount of matter.

Figure 2.3
(a) The mass of beer precursor materials is the same as the mass of beer produced: Sugar has become alcohol and carbon dioxide. (b) The mass of the lead, lead oxide, and sulfuric acid consumed by the production of electricity is exactly equal to the mass of lead sulfate and water that is formed.

Although this conservation law holds true for all conversions of matter, convincing examples are few and far between because, outside of the controlled conditions in a laboratory, we seldom collect all of the material that is produced during a particular conversion. For example, when you eat, digest, and assimilate food, all of the matter in the original food is preserved. But because some of the matter is incorporated into your body, and much is excreted as various types of waste, it is challenging to verify by measurement.

Classifying Matter

Matter can be classified into several categories. Two broad categories are mixtures and pure substances. A pure substance has a constant composition. All specimens of a pure substance have exactly the same makeup and properties. Any sample of sucrose (table sugar) consists of 42.1% carbon, 6.5% hydrogen, and 51.4% oxygen by mass. Any sample of sucrose also has the same physical properties, such as melting point, color, and sweetness, regardless of the source from which it is isolated.

Pure substances may be divided into two classes: elements and compounds. Pure substances that cannot be broken down into simpler substances by chemical changes are called elements. Iron, silver, gold, aluminum, sulfur, oxygen, and copper are familiar examples of the more than 100 known elements, of which about 90 occur naturally on the earth, and two dozen or so have been created in laboratories.

Pure substances that are comprised of two or more elements are called compounds. Compounds may be broken down by chemical changes to yield either elements or other compounds, or both. Mercury(II) oxide, an orange, crystalline solid, can be broken down by heat into the elements mercury and oxygen (Figure 2.4). When heated in the absence of air, the compound sucrose is broken down into the element carbon and the compound water. (The initial stage of this process, when the sugar is turning brown, is known as caramelization-this is what imparts the characteristic sweet and nutty flavor to caramel apples, caramelized onions, and caramel). Silver(I) chloride is a white solid that can be broken down into its elements, silver and chlorine, by absorption of light. This property is the basis for the use of this compound in photographic films and photochromic eyeglasses (those with lenses that darken when exposed to light).

Figure 2.4
(a) The compound mercury(II) oxide, (b) when heated, (c) decomposes into silvery droplets of liquid mercury and invisible oxygen gas. (credit: modification of work by Paul Flowers)

Link to Learning

Many compounds break down when heated. Watch the video to see the breakdown of mercury oxide, HgO .

Watch on YouTube

You can also view an example of the photochemical decomposition of silver chloride (AgCl), the basis of early photography:

The properties of combined elements are different from those in the free, or uncombined, state. For example, white crystalline sugar (sucrose) is a compound resulting from the chemical combination of the element carbon, which is a black solid in one of its uncombined forms, and the two elements hydrogen and oxygen, which are colorless gases when uncombined. Free sodium, an element that is a soft, shiny, metallic solid, and free chlorine, an element that is a yellow-green gas, combine to form sodium chloride (table salt), a compound that is a white, crystalline solid.

A mixture is composed of two or more types of matter that can be present in varying amounts and can be separated by physical changes, such as evaporation (you will learn more about this later). A mixture with a composition that varies from point to point is called a heterogeneous mixture. Italian dressing is an example of a heterogeneous mixture (Figure 2.5). Its composition can vary because it may be prepared from varying amounts of oil, vinegar, and herbs. It is not the same from point to point throughout the mixture-one drop may be mostly vinegar, whereas a different drop may be mostly oil or herbs because the oil and vinegar separate and the herbs settle. Other examples of heterogeneous mixtures are chocolate chip cookies (we can see the separate bits of chocolate, nuts, and cookie dough) and granite (we can see the quartz, mica, feldspar, and more).

A homogeneous mixture, also called a solution, exhibits a uniform composition and appears visually the same throughout. An example of a solution is a sports drink, consisting of water, sugar, coloring, flavoring, and electrolytes mixed together uniformly (Figure 2.5). Each drop of a sports drink tastes the same because each drop contains the same amounts of water, sugar, and other components. Note that the composition of a sports drink can vary-it could be made with somewhat more or less sugar, flavoring, or other components, and still be a sports drink. Other examples of homogeneous mixtures include air, maple syrup, gasoline, and a solution of salt in water.

Figure 2.5
(a) Oil and vinegar salad dressing is a heterogeneous mixture because its composition is not uniform throughout. (b) A commercial sports drink is a homogeneous mixture because its composition is uniform throughout. (credit a "left":
modification of work by John Mayer; credit a "right": modification of work by Umberto Salvagnin; credit b "left: modification of work by Jeff Bedford)

Although there are just over 100 elements, tens of millions of chemical compounds result from different combinations of these elements. Each compound has a specific composition and possesses definite chemical and physical properties that distinguish it from all other compounds. And, of course, there are innumerable ways to combine elements and compounds to form different mixtures. A summary of how to distinguish between the various major classifications of matter is shown in (Figure 2.6).

Figure 2.6
Depending on its properties, a given substance can be classified as a homogeneous mixture, a heterogeneous mixture, a compound, or an element.

Eleven elements make up about 99% of the earth's crust and atmosphere (Table 2.1). Oxygen constitutes nearly onehalf and silicon about one-quarter of the total quantity of these elements. A majority of elements on earth are found in chemical combinations with other elements; about one-quarter of the elements are also found in the free state.

Table 2.1
Elemental Composition of Earth

Element	Symbol	Percent Mass	Element	Symbol	Percent Mass
oxygen	O	49.20	chlorine	Cl	0.19
silicon	Si	25.67	phosphorus	P	0.11
aluminum	Al	7.50	manganese	Mn	0.09
iron	Fe	4.71	carbon	C	0.08

Element	Symbol	Percent Mass	Element	Symbol	Percent Mass
calcium	Ca	3.39	sulfur	S	0.06
sodium	Na	2.63	barium	Ba	0.04
potassium	K	2.40	nitrogen	N	0.03
magnesium	Mg	1.93	fluorine	F	0.03
hydrogen	H	0.87	strontium	Sr	0.02
titanium	Ti	0.58	all others	-	0.47

Atoms and Molecules

An atom is the smallest particle of an element that has the properties of that element and can enter into a chemical combination. Consider the element gold, for example. Imagine cutting a gold nugget in half, then cutting one of the halves in half, and repeating this process until a piece of gold remained that was so small that it could not be cut in half (regardless of how tiny your knife may be). This minimally sized piece of gold is an atom (from the Greek atomos, meaning "indivisible") (Figure 2.7). This atom would no longer be gold if it were divided any further.

Figure 2.7
(a) This photograph shows a gold nugget. (b) A scanning-tunneling microscope (STM) can generate views of the surfaces of solids, such as this image of a gold crystal. Each sphere represents one gold atom. (credit a: modification of work by United States Geological Survey; credit b: modification of work by "Erwinrossen"/Wikimedia Commons)

The first suggestion that matter is composed of atoms is attributed to the Greek philosophers Leucippus and Democritus, who developed their ideas in the 5th century BCE. However, it was not until the early nineteenth century that John Dalton (1766-1844), a British schoolteacher with a keen interest in science, supported this hypothesis with quantitative measurements. Since that time, repeated experiments have confirmed many aspects of this hypothesis, and it has become one of the central theories of chemistry. Other aspects of Dalton's atomic theory are still used but with minor revisions (details of Dalton's theory are provided in the chapter on atoms and molecules).

An atom is so small that its size is difficult to imagine. One of the smallest things we can see with our unaided eye is a single thread of a spider web: These strands are about 1/10,000 of a centimeter (0.0001 cm) in diameter. Although the cross-section of one strand is almost impossible to see without a microscope, it is huge on an atomic scale. A single carbon atom in the web has a diameter of about 0.000000015 centimeter, and it would take about 7000 carbon atoms to span the diameter of the strand. To put this in perspective, if a carbon atom were the size of a dime, the cross-section
of one strand would be larger than a football field, which would require about 150 million carbon atom "dimes" to cover it. (Figure 2.8) shows increasingly close microscopic and atomic-level views of ordinary cotton.

Figure 2.8
These images provide an increasingly closer view: (a) a cotton boll, (b) a single cotton fiber viewed under an optical microscope (magnified 40 times), (c) an image of a cotton fiber obtained with an electron microscope (much higher magnification than with the optical microscope); and (d and e) atomic-level models of the fiber (spheres of different colors represent atoms of different elements). (credit c: modification of work by "Featheredtar"/Wikimedia Commons)

An atom is so light that its mass is also difficult to imagine. A billion lead atoms (1,000,000,000 atoms) weigh about 3×10^{-13} grams, a mass that is far too light to be weighed on even the world's most sensitive balances. It would require over $300,000,000,000,000$ lead atoms (300 trillion, or 3×10^{14}) to be weighed, and they would weigh only 0.0000001 gram.

It is rare to find collections of individual atoms. Only a few elements, such as the gases helium, neon, and argon, consist of a collection of individual atoms that move about independently of one another. Other elements, such as the gases hydrogen, nitrogen, oxygen, and chlorine, are composed of units that consist of pairs of atoms (Figure 2.9). One form of the element phosphorus consists of units composed of four phosphorus atoms. The element sulfur exists in various forms, one of which consists of units composed of eight sulfur atoms. These units are called molecules. A molecule consists of two or more atoms joined by strong forces called chemical bonds. The atoms in a molecule move around as a unit, much like the cans of soda in a six-pack or a bunch of keys joined together on a single key ring. A molecule may consist of two or more identical atoms, as in the molecules found in the elements hydrogen, oxygen, and sulfur, or it may consist of two or more different atoms, as in the molecules found in water. Each water molecule is a unit that contains two hydrogen atoms and one oxygen atom. Each glucose molecule is a unit that contains 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. Like atoms, molecules are incredibly small and light. If an ordinary glass of water were enlarged to the size of the earth, the water molecules inside it would be about the size of golf balls.

Figure 2.9
The elements hydrogen, oxygen, phosphorus, and sulfur form molecules consisting of two or more atoms of the same element. The compounds water, carbon dioxide, and glucose consist of combinations of atoms of different elements.

Chemistry in Everyday Life Part 1

Decomposition of Water / Production of Hydrogen

Water consists of the elements hydrogen and oxygen combined in a 2 to 1 ratio. Water can be broken down into hydrogen and oxygen gases by the addition of energy. One way to do this is with a battery or power supply, as shown in (Figure 2.10).

Figure 2.10
The decomposition of water is shown at the macroscopic, microscopic, and symbolic levels. The battery provides an electric current (microscopic) that decomposes water. At the macroscopic level, the liquid separates into the gases hydrogen (on the left) and oxygen (on the right). Symbolically, this change is presented by showing how liquid $\mathrm{H}_{2} \mathrm{O}$ separates into H_{2} and O_{2} gases.

The breakdown of water involves a rearrangement of the atoms in water molecules into different molecules, each composed of two hydrogen atoms and two oxygen atoms, respectively. Two water molecules form one oxygen molecule and two hydrogen molecules. The representation for what occurs,
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$,
will be explored in more depth in later chapters.

The two gases produced have distinctly different properties. Oxygen is not flammable but is required for combustion of a fuel, and hydrogen is highly flammable and a potent energy source. How might this knowledge be applied in our world? One application involves research into more fuel-efficient transportation. Fuel-cell vehicles (FCV) run on hydrogen instead of gasoline (Figure 2.11). They are more efficient than vehicles with internal combustion engines, are nonpolluting, and reduce greenhouse gas emissions, making us less
dependent on fossil fuels. FCVs are not yet economically viable, however, and current hydrogen production depends on natural gas. If we can develop a process to economically decompose water, or produce hydrogen in another environmentally sound way, FCVs may be the way of the future.

Figure 2.11
A fuel cell generates electrical energy from hydrogen and oxygen via an electrochemical process and produces only water as the waste product.

Chemistry in Everyday Life Part 2

Chemistry of Cell Phones

Imagine how different your life would be without cell phones (Figure 2.12) and other smart devices. Cell phones are made from numerous chemical substances, which are extracted, refined, purified, and assembled using an extensive and in-depth understanding of chemical principles. About 30% of the elements that are found in nature are found within a typical smart phone. The case/body/frame consists of a combination of sturdy, durable polymers composed primarily of carbon, hydrogen, oxygen, and nitrogen [acrylonitrile butadiene styrene (ABS) and polycarbonate thermoplastics], and light, strong, structural metals, such as aluminum, magnesium, and iron. The display screen is made from a specially toughened glass (silica glass strengthened by the addition of aluminum, sodium, and potassium) and coated with a material to make it conductive (such as indium tin oxide). The circuit board uses a semiconductor material (usually silicon); commonly used metals like copper, tin, silver, and gold; and more unfamiliar elements such as yttrium, praseodymium, and gadolinium. The battery relies upon lithium ions and a variety of other materials, including iron, cobalt, copper, polyethylene oxide, and polyacrylonitrile.

Figure 2.12
Almost one-third of naturally occurring elements are used to make a cell phone. (credit: modification of work by John Taylor)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

2.2 Physical and Chemical Properties

Learning Objectives

By the end of this section, you will be able to:

- Identify properties of and changes in matter as physical or chemical
- Identify properties of matter as extensive or intensive

The characteristics that distinguish one substance from another are called properties. A physical property is a characteristic of matter that is not associated with a change in its chemical composition. Familiar examples of physical properties include density, color, hardness, melting and boiling points, and electrical conductivity. Some physical properties, such as density and color, may be observed without changing the physical state of the matter. Other physical properties, such as the melting temperature of iron or the freezing temperature of water, can only be observed as matter undergoes a physical change. A physical change is a change in the state or properties of matter without any accompanying change in the chemical identities of the substances contained in the matter. Physical changes are observed when wax melts, when sugar dissolves in coffee, and when steam condenses into liquid water (Figure 2.13). Other examples of physical changes include magnetizing and demagnetizing metals (as is done with common antitheft security tags) and grinding solids into powders (which can sometimes yield noticeable changes in color). In each of these examples, there is a change in the physical state, form, or properties of the substance, but no change in its chemical composition.

Figure 2.13
(a) Wax undergoes a physical change when solid wax is heated and forms liquid wax. (b) Steam condensing inside a cooking pot is a physical change, as water vapor is changed into liquid water. (credit a: modification of work by "95jb14"/Wikimedia Commons; credit b: modification of work by "mjneuby"/Flickr)

The change of one type of matter into another type (or the inability to change) is a chemical property. Examples of chemical properties include flammability, toxicity, acidity, and many other types of reactivity. Iron, for example, combines with oxygen in the presence of water to form rust; chromium does not oxidize (Figure 2.14). Nitroglycerin is very dangerous because it explodes easily; neon poses almost no hazard because it is very unreactive.

Figure 2.14
(a) One of the chemical properties of iron is that it rusts; (b) one of the chemical properties of chromium is that it does not. (credit a: modification of work by Tony Hisgett; credit b: modification of work by "Atoma"/Wikimedia Commons)

A chemical change always produces one or more types of matter that differ from the matter present before the change. The formation of rust is a chemical change because rust is a different kind of matter than the iron, oxygen, and water present before the rust formed. The explosion of nitroglycerin is a chemical change because the gases produced are very different kinds of matter from the original substance. Other examples of chemical changes include reactions that are performed in a lab (such as copper reacting with nitric acid), all forms of combustion (burning), and food being cooked, digested, or rotting (Figure 2.15).

Figure 2.15
(a) Copper and nitric acid undergo a chemical change to form copper nitrate and brown, gaseous nitrogen dioxide. (b) During the combustion of a match, cellulose in the match and oxygen from the air undergo a chemical change to form carbon dioxide and water vapor. (c) Cooking red meat causes a number of chemical changes, including the oxidation of iron in myoglobin that results in the familiar red-to-brown color change. (d) A banana turning brown is a chemical change as new, darker (and less tasty) substances form. (credit b: modification of work by Jeff Turner; credit c: modification of work by Gloria Cabada-Leman; credit d: modification of work by Roberto Verzo)

Properties of matter fall into one of two categories. If the property depends on the amount of matter present, it is an extensive property. The mass and volume of a substance are examples of extensive properties; for instance, a gallon of milk has a larger mass than a cup of milk. The value of an extensive property is directly proportional to the amount of matter in question. If the property of a sample of matter does not depend on the amount of matter present, it is an intensive property. Temperature is an example of an intensive property. If the gallon and cup of milk are each at $20^{\circ} \mathrm{C}$ (room temperature), when they are combined, the temperature remains at $20^{\circ} \mathrm{C}$. As another example, consider the distinct but related properties of heat and temperature. A drop of hot cooking oil spattered on your arm causes brief, minor discomfort, whereas a pot of hot oil yields severe burns. Both the drop and the pot of oil are at the same temperature (an intensive property), but the pot clearly contains much more heat (extensive property).

Chemistry in Everyday Life Part 3

Hazard Diamond

You may have seen the symbol shown in Figure 2.16 on containers of chemicals in a laboratory or workplace. Sometimes called a "fire diamond" or "hazard diamond," this chemical hazard diamond provides valuable information that briefly summarizes the various dangers of which to be aware when working with a particular substance.

Figure 2.16
The National Fire Protection Agency (NFPA) hazard diamond summarizes the major hazards of a chemical substance.

The National Fire Protection Agency (NFPA) 704 Hazard Identification System was developed by NFPA to provide safety information about certain substances. The system details flammability, reactivity, health, and other hazards. Within the overall diamond symbol, the top (red) diamond specifies the level of fire hazard (temperature range for flash point). The blue (left) diamond indicates the level of health hazard. The yellow (right) diamond describes reactivity hazards, such as how readily the substance will undergo detonation or a violent chemical change. The white (bottom) diamond points out special hazards, such as if it is an oxidizer (which allows the substance to burn in the absence of air/oxygen), undergoes an unusual or dangerous reaction with water, is corrosive, acidic, alkaline, a biological hazard, radioactive, and so on. Each hazard is rated on a scale from 0 to 4 , with 0 being no hazard and 4 being extremely hazardous.

While many elements differ dramatically in their chemical and physical properties, some elements have similar properties. For example, many elements conduct heat and electricity well, whereas others are poor conductors. These properties can be used to sort the elements into three classes: metals (elements that conduct well), nonmetals (elements that conduct poorly), and metalloids (elements that have intermediate conductivities).

The periodic table is a table of elements that places elements with similar properties close together (Figure 2.17). You will learn more about the periodic table as you continue your study of chemistry.

Figure 2.17
The periodic table shows how elements may be grouped according to certain similar properties. Note the background color denotes whether an element is a metal, metalloid, or nonmetal, whereas the element symbol color indicates whether it is a solid, liquid, or gas.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

2.3 Chemical Formulas

Learning Objectives

By the end of this section, you will be able to:

- Symbolize the composition of molecules using molecular formulas and empirical formulas
- Represent the bonding arrangement of atoms within molecules using structural formulas

Molecular and Empirical Formulas

A molecular formula is a representation of a molecule that uses chemical symbols to indicate the types of atoms followed by subscripts to show the number of atoms of each type in the molecule. (A subscript is used only when more than one atom of a given type is present.) Molecular formulas are also used as abbreviations for the names of compounds.

The structural formula for a compound gives the same information as its molecular formula (the types and numbers of atoms in the molecule) but also shows how the atoms are connected in the molecule. The structural formula for methane contains symbols for one C atom and four H atoms, indicating the number of atoms in the molecule (Figure 2.18). The lines represent bonds that hold the atoms together. (A chemical bond is an attraction between atoms or ions that holds them together in a molecule or a crystal.) We will discuss chemical bonds and see how to predict the arrangement of atoms in a molecule later. For now, simply know that the lines are an indication of how the atoms are connected in a molecule. A ball-and-stick model shows the geometric arrangement of the atoms with atomic sizes not to scale, and a space-filling model shows the relative sizes of the atoms.

Figure 2.18

A methane molecule can be represented as (a) a molecular formula, (b) a structural formula, (c) a ball-and-stick model, and (d) a space-filling model. Carbon and hydrogen atoms are represented by black and white spheres, respectively.

(a)

(b)

(c)

(d)

Although many elements consist of discrete, individual atoms, some exist as molecules made up of two or more atoms of the element chemically bonded together. For example, most samples of the elements hydrogen, oxygen, and nitrogen are composed of molecules that contain two atoms each (called diatomic molecules) and thus have the molecular formulas $\mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2}, respectively. Other elements commonly found as diatomic molecules are fluorine (F_{2}), chlorine $\left(\mathrm{Cl}_{2}\right)$, bromine $\left(\mathrm{Br}_{2}\right)$, and iodine $\left(\mathrm{I}_{2}\right)$. The most common form of the element sulfur is composed of molecules that consist of eight atoms of sulfur; its molecular formula is S_{8} (Figure 2.19).

Figure 2.19

A molecule of sulfur is composed of eight sulfur atoms and is therefore written as S_{8}. It can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. Sulfur atoms are represented by yellow spheres.

It is important to note that a subscript following a symbol and a number in front of a symbol do not represent the same thing; for example, H_{2} and 2 H represent distinctly different species. H_{2} is a molecular formula; it represents a diatomic molecule of hydrogen, consisting of two atoms of the element that are chemically bonded together. The expression 2 H , on the other hand, indicates two separate hydrogen atoms that are not combined as a unit. The expression $2 \mathrm{H}_{2}$ represents two molecules of diatomic hydrogen (Figure 2.20).

Figure 2.20
The symbols $\mathrm{H}, 2 \mathrm{H}, \mathrm{H}_{2}$, and $2 \mathrm{H}_{2}$ represent very different entities.
H
2 H
H_{2}
$2 \mathrm{H}_{2}$

One H_{2} molecule
Two H atoms
One H atom

Compounds are formed when two or more elements chemically combine, resulting in the formation of bonds. For example, hydrogen and oxygen can react to form water, and sodium and chlorine can react to form table salt. We sometimes describe the composition of these compounds with an empirical formula, which indicates the types of atoms present and the simplest whole-number ratio of the number of atoms (or ions) in the compound. For example, titanium dioxide (used as pigment in white paint and in the thick, white, blocking type of sunscreen) has an empirical formula of TiO_{2}. This identifies the elements titanium (Ti) and oxygen (0) as the constituents of titanium dioxide, and indicates the presence of twice as many atoms of the element oxygen as atoms of the element titanium (Figure 2.21).

Figure 2.21
(a) The white compound titanium dioxide provides effective protection from the sun. (b) A crystal of titanium dioxide, TiO_{2}, contains titanium and oxygen in a ratio of 1 to 2 . The titanium atoms are gray and the oxygen atoms are red. (credit a: modification of work by "osseous"/Flickr)

As discussed previously, we can describe a compound with a molecular formula, in which the subscripts indicate the actual numbers of atoms of each element in a molecule of the compound. In many cases, the molecular formula of a substance is derived from experimental determination of both its empirical formula and its molecular mass (the sum of atomic masses for all atoms composing the molecule). For example, it can be determined experimentally that benzene contains two elements, carbon (C) and hydrogen (H), and that for every carbon atom in benzene, there is one hydrogen atom. Thus, the empirical formula is CH . An experimental determination of the molecular mass reveals that a molecule of benzene contains six carbon atoms and six hydrogen atoms, so the molecular formula for benzene is $\mathrm{C}_{6} \mathrm{H}_{6}$ (Figure 2.22).

Figure 2.22
Benzene, $C_{6} H_{6}$, is produced during oil refining and has many industrial uses. A benzene molecule can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. (d) Benzene is a clear liquid. (credit d: modification of work by Sahar Atwa)

(a)

(b)

(c)

(d)

If we know a compound's formula, we can easily determine the empirical formula. (This is somewhat of an academic exercise; the reverse chronology is generally followed in actual practice.) For example, the molecular formula for acetic acid, the component that gives vinegar its sharp taste, is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. This formula indicates that a molecule of acetic acid (Figure 2.23) contains two carbon atoms, four hydrogen atoms, and two oxygen atoms. The ratio of atoms is 2:4:2. Dividing by the lowest common denominator (2) gives the simplest, whole-number ratio of atoms, 1:2:1, so the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$. Note that a molecular formula is always a whole-number multiple of an empirical formula.

Figure 2.23
(a) Vinegar contains acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, which has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$. It can be represented as (b) a structural formula and (c) as a ball-and-stick model. (credit a: modification of work by "HomeSpot HQ"/Flickr)

(a)

(b)

(c)

Example 2.1

Empirical and Molecular Formulas

Molecules of glucose (blood sugar) contain 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. What are the molecular and empirical formulas of glucose?

Solution

The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ because one molecule actually contains $6 \mathrm{C}, 12 \mathrm{H}$, and 60 atoms. The simplest whole-number ratio of C to H to O atoms in glucose is $1: 2: 1$, so the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$.
Check Your Learning
A molecule of metaldehyde (a pesticide used for snails and slugs) contains 8 carbon atoms, 16 hydrogen atoms, and 4 oxygen atoms. What are the molecular and empirical formulas of metaldehyde?

Answer

Molecular formula, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}$; empirical formula, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Link to Learning

Explore molecule building in this simulation:

Portrait of a Chemist

Lee Cronin

What is it that chemists do? According to Lee Cronin (Figure 2.24), chemists make very complicated molecules by "chopping up" small molecules and "reverse engineering" them. He wonders if we could "make a really cool universal chemistry set" by what he calls "app-ing" chemistry. Could we "app" chemistry?

In a 2012 TED talk, Lee describes one fascinating possibility: combining a collection of chemical "inks" with a 3D printer capable of fabricating a reaction apparatus (tiny test tubes, beakers, and the like) to fashion a "universal toolkit of chemistry." This toolkit could be used to create custom-tailored drugs to fight a new superbug or to "print" medicine personally configured to your genetic makeup, environment, and health situation. Says Cronin, "What Apple did for music, I'd like to do for the discovery and distribution of prescription drugs. ${ }^{11}$ View his full talk at the TED website.

Figure 2.24
Chemist Lee Cronin has been named one of the UK's 10 most inspirational scientists. The youngest chair at the University of Glasgow, Lee runs a large research group, collaborates with many scientists worldwide, has published over 250 papers in top scientific journals, and has given more than 150 invited talks. His research focuses on complex chemical systems and their potential to transform technology, but also branches into nanoscience, solar fuels, synthetic biology, and even artificial life and evolution. (credit: image courtesy of Lee Cronin)

It is important to be aware that it may be possible for the same atoms to be arranged in different ways: Compounds with the same molecular formula may have different atom-to-atom bonding and therefore different structures. For example, could there be another compound with the same formula as acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$? And if so, what would be the structure of its molecules?

If you predict that another compound with the formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ could exist, then you demonstrated good chemical insight and are correct. Two C atoms, four H atoms, and two O atoms can also be arranged to form a methyl formate, which is used in manufacturing, as an insecticide, and for quick-drying finishes. Methyl formate molecules have one of the oxygen atoms between the two carbon atoms, differing from the arrangement in acetic acid molecules. Acetic acid and methyl formate are examples of isomers-compounds with the same chemical formula but different molecular structures (Figure 2.25). Note that this small difference in the arrangement of the atoms has a major effect on their respective chemical properties. You would certainly not want to use a solution of methyl formate as a substitute for a solution of acetic acid (vinegar) when you make salad dressing.

Figure 2.25

Molecules of (a) acetic acid and methyl formate (b) are structural isomers; they have the same formula $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ but different structures (and therefore different chemical properties).

Many types of isomers exist (Figure 2.26). Acetic acid and methyl formate are structural isomers, compounds in which the molecules differ in how the atoms are connected to each other. There are also various types of spatial isomers, in which the relative orientations of the atoms in space can be different. For example, the compound carvone (found in caraway seeds, spearmint, and mandarin orange peels) consists of two isomers that are mirror images of each other. S -$(+)$-carvone smells like caraway, and $R-(-)$-carvone smells like spearmint.

Figure 2.26
Molecules of carvone are spatial isomers; they only differ in the relative orientations of the atoms in space. (credit bottom left: modification of work by "Miansari66"/Wikimedia Commons; credit bottom right: modification of work by Forest \& Kim Starr)

(+)-Carvone $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$

(-)-Carvone
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$

Link to Learning

Watch an explanation of isomers, spatial isomers, and why they have different smells (select the video titled "Mirror Molecule: Carvone").

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. Lee Cronin, "Print Your Own Medicine," Talk presented at TED Global 2012, Edinburgh, Scotland, June 2012.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/phases_and_classifications_of_matter.

Measurement

Measurement

Measurements provide quantitative information that is critical in studying and practicing chemistry. Each measurement has an amount, a unit for comparison, and an uncertainty. Measurements can be represented in either decimal or scientific notation. Scientists primarily use SI (International System) units such as meters, seconds, and kilograms, as well as derived units, such as liters (for volume) and g/cm ${ }^{3}$ (for density). In many cases, it is convenient to use prefixes that yield fractional and multiple units, such as microseconds (10 ${ }^{6}$ seconds) and megahertz (106 hertz), respectively. Quantities can be defined or measured. Measured quantities have an associated uncertainty that is represented by the number of significant figures in the quantity's number. The uncertainty of a calculated quantity depends on the uncertainties in the quantities used in the calculation and is reflected in how the value is rounded. Quantities are characterized with regard to accuracy (closeness to a true or accepted value) and precision (variation among replicate measurement results). Measurements are made using a variety of units. It is often useful or necessary to convert a measured quantity from one unit into another. These conversions are accomplished using unit conversion factors, which are derived by simple applications of a mathematical approach called the factor-label method or dimensional analysis. This strategy is also employed to calculate sought quantities using measured quantities and appropriate mathematical relations.

3.1 Measurements

Learning Objectives

By the end of this section, you will be able to:

- Explain the process of measurement
- Identify the three basic parts of a quantity
- Describe the properties and units of length, mass, volume, density, temperature, and time
- Perform basic unit calculations and conversions in the metric and other unit systems

Measurements provide much of the information that informs the hypotheses, theories, and laws describing the behavior of matter and energy in both the macroscopic and microscopic domains of chemistry. Every measurement provides three kinds of information: the size or magnitude of the measurement (a number); a standard of comparison for the
measurement (a unit); and an indication of the uncertainty of the measurement. While the number and unit are explicitly represented when a quantity is written, the uncertainty is an aspect of the measurement result that is more implicitly represented and will be discussed later.

The number in the measurement can be represented in different ways, including decimal form and scientific notation. For example, the maximum takeoff weight of a Boeing 777-200ER airliner is 298,000 kilograms, which can also be written as $2.98 \times 10^{5} \mathrm{~kg}$. The mass of the average mosquito is about 0.0000025 kilograms, which can be written as $2.5 \times 10^{-6} \mathrm{~kg}$.

Units, such as liters, pounds, and centimeters, are standards of comparison for measurements. A 2-liter bottle of a soft drink contains a volume of beverage that is twice that of the accepted volume of 1 liter. The meat used to prepare a 0.25 -pound hamburger weighs one-fourth as much as the accepted weight of 1 pound. Without units, a number can be meaningless, confusing, or possibly life threatening. Suppose a doctor prescribes phenobarbital to control a patient's seizures and states a dosage of " 100 " without specifying units. Not only will this be confusing to the medical professional giving the dose, but the consequences can be dire: 100 mg given three times per day can be effective as an anticonvulsant, but a single dose of 100 g is more than 10 times the lethal amount.

The measurement units for seven fundamental properties ("base units") are listed in Table 3.1. The standards for these units are fixed by international agreement, and they are called the International System of Units or SI Units (from the French, Le Système International d'Unités). SI units have been used by the United States National Institute of Standards and Technology (NIST) since 1964. Units for other properties may be derived from these seven base units.

Table 3.1

Base Units of the SI System

Property Measured	Name of Unit	Symbol of Unit
length	meter	m
mass	kilogram	kg
time	second	s
temperature	kelvin	K
electric current	ampere	A
amount of substance	mole	mol
luminous intensity	candela	cd

Everyday measurement units are often defined as fractions or multiples of other units. Milk is commonly packaged in containers of 1 gallon (4 quarts), 1 quart (0.25 gallon), and one pint (0.5 quart). This same approach is used with SI units, but these fractions or multiples are always powers of 10. Fractional or multiple SI units are named using a prefix and the name of the base unit. For example, a length of 1000 meters is also called a kilometer because the prefix kilo means "one thousand," which in scientific notation is 10^{3} (1 kilometer $=1000 \mathrm{~m}=10^{3} \mathrm{~m}$). The prefixes used and the powers to which 10 are raised are listed in Table 3.2

Table 3.2

Common Unit Prefixes

Prefix	Symbol	Factor	Example
femto	f	10^{-15}	1 femtosecond $(\mathrm{fs})=1 \times 10^{-15} \mathrm{~s}(0.000000000000001 \mathrm{~s})$
pico	p	10^{-12}	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}(0.000000000001 \mathrm{~m})$

Prefix	Symbol	Factor	Example
nano	n	10^{-9}	4 nanograms $(\mathrm{ng})=4 \times 10^{-9} \mathrm{~g}(0.000000004 \mathrm{~g})$
micro	μ	10^{-6}	1 microliter $(\mu \mathrm{L})=1 \times 10^{-6} \mathrm{~L}(0.000001 \mathrm{~L})$
milli	m	10^{-3}	2 millimoles $(\mathrm{mmol})=2 \times 10^{-3} \mathrm{~mol}(0.002 \mathrm{~mol})$
centi	c	10^{-2}	7 centimeters $(\mathrm{cm})=7 \times 10^{-2} \mathrm{~m}(0.07 \mathrm{~m})$
deci	d	10^{-1}	1 deciliter $(\mathrm{dL})=1 \times 10^{-1} \mathrm{~L}(0.1 \mathrm{~L})$
kilo	k	10^{3}	1 kilometer $(\mathrm{km})=1 \times 10^{3} \mathrm{~m}(1000 \mathrm{~m})$
mega	M	10^{6}	3 megahertz $(\mathrm{MHz})=3 \times 10^{6} \mathrm{~Hz}(3,000,000 \mathrm{~Hz})$
giga	G	10^{9}	8 gigayears $(\mathrm{Gyr})=8 \times 10^{9} \mathrm{yr}(8,000,000,000 \mathrm{yr})$
tera	T	10^{12}	5 terawatts $(\mathrm{TW})=5 \times 10^{12} \mathrm{~W}(5,000,000,000,000 \mathrm{~W})$

Link to Learning

You may want to review the basics of scientific notation.

SI Base Units

The initial units of the metric system, which eventually evolved into the SI system, were established in France during the French Revolution. The original standards for the meter and the kilogram were adopted there in 1799 and eventually by other countries. This section introduces four of the SI base units commonly used in chemistry. Other SI units will be introduced in subsequent chapters.

Length

The standard unit of length in both the SI and original metric systems is the meter (m). A meter was originally specified as $1 / 10,000,000$ of the distance from the North Pole to the equator. It is now defined as the distance light in a vacuum travels in 1/299,792,458 of a second. A meter is about 3 inches longer than a yard (Figure 3.1); one meter is about 39.37 inches or 1.094 yards. Longer distances are often reported in kilometers ($1 \mathrm{~km}=1000 \mathrm{~m}=10^{3} \mathrm{~m}$), whereas shorter distances can be reported in centimeters $\left(1 \mathrm{~cm}=0.01 \mathrm{~m}=10^{-2} \mathrm{~m}\right)$ or millimeters ($1 \mathrm{~mm}=0.001 \mathrm{~m}=10^{-3} \mathrm{~m}$).

Figure 3.1
The relative lengths of $1 \mathrm{~m}, 1 \mathrm{yd}, 1 \mathrm{~cm}$, and 1 in . are shown (not actual size), as well as comparisons of 2.54 cm and 1 in., and of 1 m and 1.094 yd .

Mass

The standard unit of mass in the SI system is the kilogram (kg). The kilogram was previously defined by the International Union of Pure and Applied Chemistry (IUPAC) as the mass of a specific reference object. This object was originally one liter of pure water, and more recently it was a metal cylinder made from a platinum-iridium alloy with a height and diameter of 39 mm (Figure 3.2). In May 2019, this definition was changed to one that is based instead on precisely measured values of several fundamental physical constants ${ }^{1}$. One kilogram is about 2.2 pounds. The gram (g) is exactly equal to $1 / 1000$ of the mass of the kilogram $\left(10^{-3} \mathrm{~kg}\right)$.

Figure 3.2
This replica prototype kilogram as previously defined is housed at the National Institute of Standards and Technology (NIST) in Maryland. (credit: National Institutes of Standards and Technology)

Temperature

Temperature is an intensive property. The SI unit of temperature is the kelvin (K). The IUPAC convention is to use kelvin (all lowercase) for the word, K (uppercase) for the unit symbol, and neither the word "degree" nor the degree symbol $\left({ }^{\circ}\right)$. The degree Celsius (${ }^{\circ} \mathrm{C}$) is also allowed in the SI system, with both the word "degree" and the degree symbol used for Celsius measurements. Celsius degrees are the same magnitude as those of kelvin, but the two scales place their zeros in different places. Water freezes at $273.15 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ and boils at $373.15 \mathrm{~K}\left(100^{\circ} \mathrm{C}\right)$ by definition, and normal human body temperature is approximately $310 \mathrm{~K}\left(37^{\circ} \mathrm{C}\right)$. The conversion between these two units and the Fahrenheit scale will be discussed later in this chapter.

Time

The SI base unit of time is the second (s). Small and large time intervals can be expressed with the appropriate prefixes; for example, 3 microseconds $=0.000003 \mathrm{~s}=3 \times 10^{-6}$ and 5 megaseconds $=5,000,000 \mathrm{~s}=5 \times 10^{6} \mathrm{~s}$. Alternatively, hours, days, and years can be used.

Derived SI Units

We can derive many units from the seven SI base units. For example, we can use the base unit of length to define a unit of volume, and the base units of mass and length to define a unit of density.

Volume

Volume is the measure of the amount of space occupied by an object. The standard SI unit of volume is defined by the base unit of length (Figure 3.3). The standard volume is a cubic meter $\left(\mathrm{m}^{3}\right)$, a cube with an edge length of exactly one meter. To dispense a cubic meter of water, we could build a cubic box with edge lengths of exactly one meter. This box would hold a cubic meter of water or any other substance.

A more commonly used unit of volume is derived from the decimeter (0.1 m , or 10 cm). A cube with edge lengths of exactly one decimeter contains a volume of one cubic decimeter $\left(\mathrm{dm}^{3}\right)$. A liter (L) is the more common name for the cubic decimeter. One liter is about 1.06 quarts.

A cubic centimeter $\left(\mathrm{cm}^{3}\right)$ is the volume of a cube with an edge length of exactly one centimeter. The abbreviation cc (for cubic centimeter) is often used by health professionals. A cubic centimeter is equivalent to a milliliter (mL) and is $1 / 1000$ of a liter.

Figure 3.3
(a) The relative volumes are shown for cubes of $1 \mathrm{~m}^{3}, 1 \mathrm{dm} \mathrm{m}^{3}(1 \mathrm{~L})$, and $1 \mathrm{~cm}^{3}$ (1 mL) (not to scale). (b) The diameter of a dime is compared relative to the edge length of a $1-\mathrm{cm}^{3}(1-\mathrm{mL})$ cube.

Density

We use the mass and volume of a substance to determine its density. Thus, the units of density are defined by the base units of mass and length.

The density of a substance is the ratio of the mass of a sample of the substance to its volume. The SI unit for density is the kilogram per cubic meter $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$. For many situations, however, this is an inconvenient unit, and we often use grams per cubic centimeter ($\mathrm{g} / \mathrm{cm}^{3}$) for the densities of solids and liquids, and grams per liter (g / L) for gases. Although there are exceptions, most liquids and solids have densities that range from about $0.7 \mathrm{~g} / \mathrm{cm}^{3}$ (the density of gasoline) to $19 \mathrm{~g} / \mathrm{cm}^{3}$ (the density of gold). The density of air is about $1.2 \mathrm{~g} / \mathrm{L}$. Table 3.3 shows the densities of some common substances.

Table 3.3
Densities of Common Substances

Solids
ice (at $0^{\circ} \mathrm{C}$) $0.92 \mathrm{~g} / \mathrm{cm}^{3}$
oak (wood) $0.60-0.90 \mathrm{~g} / \mathrm{cm}^{3}$

Liquids
water $1.0 \mathrm{~g} / \mathrm{cm}^{3}$
ethanol $0.79 \mathrm{~g} / \mathrm{cm}^{3}$

Gases (at $25^{\circ} \mathrm{C}$ and $\left.1 \mathbf{~ a t m}\right)$
dry air $1.20 \mathrm{~g} / \mathrm{L}$
oxygen $1.31 \mathrm{~g} / \mathrm{L}$

Solids	Liquids	Gases (at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ and $\mathbf{1 ~ a t m}$)
iron $7.9 \mathrm{~g} / \mathrm{cm}^{3}$	acetone $0.79 \mathrm{~g} / \mathrm{cm}^{3}$	nitrogen $1.14 \mathrm{~g} / \mathrm{L}$
copper $9.0 \mathrm{~g} / \mathrm{cm}^{3}$	glycerin $1.26 \mathrm{~g} / \mathrm{cm}^{3}$	carbon dioxide $1.80 \mathrm{~g} / \mathrm{L}$
lead $11.3 \mathrm{~g} / \mathrm{cm}^{3}$	olive oil $0.92 \mathrm{~g} / \mathrm{cm}^{3}$	helium $0.16 \mathrm{~g} / \mathrm{L}$
silver $10.5 \mathrm{~g} / \mathrm{cm}^{3}$	gasoline $0.70-0.77 \mathrm{~g} / \mathrm{cm}^{3}$	neon $0.83 \mathrm{~g} / \mathrm{L}$
gold $19.3 \mathrm{~g} / \mathrm{cm}^{3}$	mercury $13.6 \mathrm{~g} / \mathrm{cm}^{3}$	radon $9.1 \mathrm{~g} / \mathrm{L}$

While there are many ways to determine the density of an object, perhaps the most straightforward method involves separately finding the mass and volume of the object, and then dividing the mass of the sample by its volume. In the following example, the mass is found directly by weighing, but the volume is found indirectly through length measurements.

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Example 3.1

Calculation of Density

Gold-in bricks, bars, and coins-has been a form of currency for centuries. In order to swindle people into paying for a brick of gold without actually investing in a brick of gold, people have considered filling the centers of hollow gold bricks with lead to fool buyers into thinking that the entire brick is gold. It does not work: Lead is a dense substance, but its density is not as great as that of gold, $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. What is the density of lead if a cube of lead has an edge length of 2.00 cm and a mass of 90.7 g ?

Solution

The density of a substance can be calculated by dividing its mass by its volume. The volume of a cube is calculated by cubing the edge length.

$$
\begin{aligned}
& \text { volume of lead cube }=2.00 \mathrm{~cm} \times 2.00 \mathrm{~cm} \times 2.00 \mathrm{~cm}=8.00 \mathrm{~cm}^{3} \\
& \qquad \text { density }=\frac{\text { mass }}{\text { volume }}=\frac{90.7 \mathrm{~g}}{8.00 \mathrm{~cm}^{3}}=11.3 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

(We will discuss the reason for rounding to the first decimal place in the next section.)

Check Your Learning

(a) To three decimal places, what is the volume of a cube $\left(\mathrm{cm}^{3}\right)$ with an edge length of 0.843 cm ?
(b) If the cube in part (a) is copper and has a mass of 5.34 g , what is the density of copper to two decimal places?

Answer:

(a) $0.599 \mathrm{~cm}^{3}$; (b) $8.91 \mathrm{~g} / \mathrm{cm}^{3}$

Link to Learning

To learn more about the relationship between mass, volume, and density, use this interactive simulation to explore the density of different materials.

Example 3.2

Using Displacement of Water to Determine Density

This exercise uses a simulation to illustrate an alternative approach to the determination of density that involves measuring the object's volume via displacement of water. Use the simulator to determine the densities iron and wood.

Solution

Click the "turn fluid into water" button in the simulator to adjust the density of liquid in the beaker to $1.00 \mathrm{~g} / \mathrm{mL}$. Remove the red block from the beaker and note the volume of water is 25.5 mL . Select the iron sample by clicking "iron" in the table of materials at the bottom of the screen, place the iron block on the balance pan, and observe its mass is 31.48 g . Transfer the iron block to the beaker and notice that it sinks, displacing a volume of water equal to its own volume and causing the water level to rise to 29.5 mL . The volume of the iron block is therefore:

$$
v_{\text {iron }}=29.5 \mathrm{~mL}-25.5 \mathrm{~mL}=4.0 \mathrm{~mL}
$$

The density of the iron is then calculated to be:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{31.48 \mathrm{~g}}{4.0 \mathrm{~mL}}=7.9 \mathrm{~g} / \mathrm{mL}
$$

Remove the iron block from the beaker, change the block material to wood, and then repeat the mass and volume measurements. Unlike iron, the wood block does not sink in the water but instead floats on the water's surface. To measure its volume, drag it beneath the water's surface so that it is fully submerged.

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{1.95 \mathrm{~g}}{3.0 \mathrm{~mL}}=0.65 \mathrm{~g} / \mathrm{mL}
$$

Note: The sink versus float behavior illustrated in this example demonstrates the property of "buoyancy" (see Supplemental Exercise 42 and Supplemental Exercise 43).

Check Your Learning

Following the water displacement approach, use the simulator to measure the density of the foam sample.

Answer:

$0.230 \mathrm{~g} / \mathrm{mL}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

3.2 Measurement Uncertainty, Accuracy, and Precision

Learning Objectives

By the end of this section, you will be able to:

- Define accuracy and precision
- Distinguish exact and uncertain numbers
- Correctly represent uncertainty in quantities using significant figures
- Apply proper rounding rules to computed quantities

Counting is the only type of measurement that is free from uncertainty, provided the number of objects being counted does not change while the counting process is underway. The result of such a counting measurement is an example of an exact number. By counting the eggs in a carton, one can determine exactly how many eggs the carton contains. The numbers of defined quantities are also exact. By definition, 1 foot is exactly 12 inches, 1 inch is exactly 2.54 centimeters, and 1 gram is exactly 0.001 kilogram. Quantities derived from measurements other than counting, however, are uncertain to varying extents due to practical limitations of the measurement process used.

Significant Figures in Measurement

The numbers of measured quantities, unlike defined or directly counted quantities, are not exact. To measure the volume of liquid in a graduated cylinder, you should make a reading at the bottom of the meniscus, the lowest point on the curved surface of the liquid.

Figure 3.4
To measure the volume of liquid in this graduated cylinder, you must mentally subdivide the distance between the 21 and 22 mL marks into tenths of a milliliter, and then make a reading (estimate) at the bottom of the meniscus.

Refer to the illustration in Figure 3.4. The bottom of the meniscus in this case clearly lies between the 21 and 22 markings, meaning the liquid volume is certainly greater than 21 mL but less than 22 mL . The meniscus appears to be a bit closer to the $22-\mathrm{mL}$ mark than to the $21-\mathrm{mL}$ mark, and so a reasonable estimate of the liquid's volume would be 21.6 mL . In the number 21.6, then, the digits 2 and 1 are certain, but the 6 is an estimate. Some people might estimate the meniscus position to be equally distant from each of the markings and estimate the tenth-place digit as 5 , while others may think it to be even closer to the 22-mL mark and estimate this digit to be 7. Note that it would be pointless to attempt to estimate a digit for the hundredths place, given that the tenths-place digit is uncertain. In general, numerical scales such as the one on this graduated cylinder will permit measurements to one-tenth of the smallest scale division. The scale in this case has 1-mL divisions, and so volumes may be measured to the nearest 0.1 mL .

This concept holds true for all measurements, even if you do not actively make an estimate. If you place a quarter on a standard electronic balance, you may obtain a reading of 6.72 g . The digits 6 and 7 are certain, and the 2 indicates that the mass of the quarter is likely between 6.71 and 6.73 grams. The quarter weighs about 6.72 grams, with a nominal uncertainty in the measurement of ± 0.01 gram. If the coin is weighed on a more sensitive balance, the mass might be 6.723 g . This means its mass lies between 6.722 and 6.724 grams, an uncertainty of 0.001 gram. Every measurement has some uncertainty, which depends on the device used (and the user's ability). All of the digits in a measurement, including the uncertain last digit, are called significant figures or significant digits. Note that zero may be a measured value; for example, if you stand on a scale that shows weight to the nearest pound and it shows " 120 ," then the 1 (hundreds), 2 (tens) and 0 (ones) are all significant (measured) values.

A measurement result is properly reported when its significant digits accurately represent the certainty of the measurement process. But what if you were analyzing a reported value and trying to determine what is significant and what is not? Well, for starters, all nonzero digits are significant, and it is only zeros that require some thought. We will use the terms "leading," "trailing," and "captive" for the zeros and will consider how to deal with them.

Starting with the first nonzero digit on the left, count this digit and all remaining digits to the right. This is the number of significant figures in the measurement unless the last digit is a trailing zero lying to the left of the decimal point.

Captive zeros result from measurement and are therefore always significant. Leading zeros, however, are never significant-they merely tell us where the decimal point is located.

The leading zeros in this example are not significant. We could use exponential notation (as described in Appendix B) and express the number as 8.32407×10^{-3}; then the number 8.32407 contains all of the significant figures, and 10^{-3} locates the decimal point.

The number of significant figures is uncertain in a number that ends with a zero to the left of the decimal point location. The zeros in the measurement 1,300 grams could be significant or they could simply indicate where the decimal point is located. The ambiguity can be resolved with the use of exponential notation: 1.3×10^{3} (two significant figures), 1.30×10^{3} (three significant figures, if the tens place was measured), or 1.300×10^{3} (four significant figures, if the ones place was also measured). In cases where only the decimal-formatted number is available, it is prudent to assume that all trailing zeros are not significant.

When determining significant figures, be sure to pay attention to reported values and think about the measurement and significant figures in terms of what is reasonable or likely when evaluating whether the value makes sense. For example,
the official January 2014 census reported the resident population of the US as $317,297,725$. Do you think the US population was correctly determined to the reported nine significant figures, that is, to the exact number of people? People are constantly being born, dying, or moving into or out of the country, and assumptions are made to account for the large number of people who are not actually counted. Because of these uncertainties, it might be more reasonable to expect that we know the population to within perhaps a million or so, in which case the population should be reported as 3.17×10^{8} people.

Significant Figures in Calculations

A second important principle of uncertainty is that results calculated from a measurement are at least as uncertain as the measurement itself. Take the uncertainty in measurements into account to avoid misrepresenting the uncertainty in calculated results. One way to do this is to report the result of a calculation with the correct number of significant figures, which is determined by the following three rules for rounding numbers:

1. When adding or subtracting numbers, round the result to the same number of decimal places as the number with the least number of decimal places (the least certain value in terms of addition and subtraction).
2. When multiplying or dividing numbers, round the result to the same number of digits as the number with the least number of significant figures (the least certain value in terms of multiplication and division).
3. If the digit to be dropped (the one immediately to the right of the digit to be retained) is less than 5, "round down" and leave the retained digit unchanged; if it is more than 5 , "round up" and increase the retained digit by 1 . If the dropped digit is 5 , and it's either the last digit in the number or it's followed only by zeros, round up or down, whichever yields an even value for the retained digit. If any nonzero digits follow the dropped 5, round up. (The last part of this rule may strike you as a bit odd, but it's based on reliable statistics and is aimed at avoiding any bias when dropping the digit " 5 ," since it is equally close to both possible values of the retained digit.)

The following examples illustrate the application of this rule in rounding a few different numbers to three significant figures:

- 0.028675 rounds "up" to 0.0287 (the dropped digit, 7 , is greater than 5)
- 18.3384 rounds "down" to 18.3 (the dropped digit, 3 , is less than 5)
- 6.8752 rounds "up" to 6.88 (the dropped digit is 5 , and a nonzero digit follows it)
- 92.85 rounds "down" to 92.8 (the dropped digit is 5 , and the retained digit is even)

Let's work through these rules with a few examples.

Example 3.3

Rounding Numbers

Round the following to the indicated number of significant figures:
(a) 31.57 (to two significant figures)
(b) 8.1649 (to three significant figures)
(c) 0.051065 (to four significant figures)
(d) 0.90275 (to four significant figures)

Solution

(a) 31.57 rounds "up" to 32 (the dropped digit is 5 , and the retained digit is even)
(b) 8.1649 rounds "down" to 8.16 (the dropped digit, 4 , is less than 5)
(c) 0.051065 rounds "down" to 0.05106 (the dropped digit is 5 , and the retained digit is even)
(d) 0.90275 rounds "up" to 0.9028 (the dropped digit is 5 , and the retained digit is even)

Check Your Learning

Round the following to the indicated number of significant figures:
(a) 0.424 (to two significant figures)
(b) 0.0038661 (to three significant figures)
(c) 421.25 (to four significant figures)
(d) 28,683.5 (to five significant figures)

Answer:

(a) 0.42; (b) 0.00387; (c) 421.2; (d) 28,684

Example 3.4

Addition and Subtraction with Significant Figures

Rule: When adding or subtracting numbers, round the result to the same number of decimal places as the number with the fewest decimal places (i.e., the least certain value in terms of addition and subtraction).
(a) Add 1.0023 g and 4.383 g .
(b) Subtract 421.23 g from 486 g .

Solution

(a)

$$
\begin{array}{r}
1.0023 \mathrm{~g} \\
+4.383 \mathrm{~g} \\
\hline 5.3853 \mathrm{~g}
\end{array}
$$

Answer is 5.385 g (round to the thousandths place; three decimal places)
(b)

$$
\begin{array}{r}
486 \mathrm{~g} \\
-421.23 \mathrm{~g} \\
\hline 64.77 \mathrm{~g}
\end{array}
$$

Answer is 65 g (round to the ones place; no decimal places)
$1.0023<$ Ten thousandths place
$+4.383 \longleftarrow$ Thousandths place: least precise
5.385

Round to thousandths
(a)

(b)

Check Your Learning
(a) Add 2.334 mL and 0.31 mL .
(b) Subtract 55.8752 m from 56.533 m .

Answer:

(a) 2.64 mL ; (b) 0.658 m

Example 3.5

Multiplication and Division with Significant Figures

Rule: When multiplying or dividing numbers, round the result to the same number of digits as the number with the fewest significant figures (the least certain value in terms of multiplication and division).
(a) Multiply 0.6238 cm by 6.6 cm .
(b) Divide 421.23 g by 486 mL .

Solution

(a)
$0.6238 \mathrm{~cm} \times 6.6 \mathrm{~cm}=4.11708 \mathrm{~cm}^{2} \rightarrow$ result is $4.1 \mathrm{~cm}^{2}$ (round to two significant figures) four significant figures \times two significant figures \rightarrow two significant figures answer
(b)
$\frac{421.23 \mathrm{~g}}{486 \mathrm{~mL}}=0.866728 \ldots \mathrm{~g} / \mathrm{mL} \rightarrow$ result is $0.867 \mathrm{~g} / \mathrm{mL}$ (round to three significant figures) $\frac{\text { five significant figures }}{\text { three significant figures }} \rightarrow$ three significant figures answer

Check Your Learning

(a) Multiply 2.334 cm and 0.320 cm .
(b) Divide 55.8752 m by 56.53 s .

Answer:

(a) $0.747 \mathrm{~cm}^{2}$ (b) $0.9884 \mathrm{~m} / \mathrm{s}$

In the midst of all these technicalities, it is important to keep in mind the reason for these rules about significant figures and rounding-to correctly represent the certainty of the values reported and to ensure that a calculated result is not represented as being more certain than the least certain value used in the calculation.

Example 3.6

Calculation with Significant Figures

One common bathtub is 13.44 dm long, 5.920 dm wide, and 2.54 dm deep. Assume that the tub is rectangular and calculate its approximate volume in liters.
Solution

$$
\begin{array}{rlc}
V & = & l \times w \times d \\
& = & 13.44 \mathrm{dm} \times 5.920 \mathrm{dm} \times 2.54 \mathrm{dm} \\
& = & 202.09459 \ldots \mathrm{dm}^{3}(\text { value from calculator }) \\
& = & 202 \mathrm{dm}^{3}, \text { or } 202 \mathrm{~L} \text { (answer rounded to three significant figures) }
\end{array}
$$

Check Your Learning

What is the density of a liquid with a mass of 31.1415 g and a volume of $30.13 \mathrm{~cm}^{3}$?

Answer:

$1.034 \mathrm{~g} / \mathrm{mL}$

Example 3.7

Experimental Determination of Density Using Water Displacement

A piece of rebar is weighed and then submerged in a graduated cylinder partially filled with water, with results as shown.

(a) Use these values to determine the density of this piece of rebar.
(b) Rebar is mostly iron. Does your result in (a) support this statement? How?

Solution

The volume of the piece of rebar is equal to the volume of the water displaced:

$$
\text { volume }=22.4 \mathrm{~mL}-13.5 \mathrm{~mL}=8.9 \mathrm{~mL}=8.9 \mathrm{~cm}^{3}
$$

(rounded to the nearest 0.1 mL , per the rule for addition and subtraction)
The density is the mass-to-volume ratio:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{69.658 \mathrm{~g}}{8.9 \mathrm{~cm}^{3}}=7.8 \mathrm{~g} / \mathrm{cm}^{3}
$$

(rounded to two significant figures, per the rule for multiplication and division)

From Table 3.3, the density of iron is $7.9 \mathrm{~g} / \mathrm{cm}^{3}$, very close to that of rebar, which lends some support to the fact that rebar is mostly iron.

Check Your Learning

An irregularly shaped piece of a shiny yellowish material is weighed and then submerged in a graduated cylinder, with results as shown.

(a) Use these values to determine the density of this material.
(b) Do you have any reasonable guesses as to the identity of this material? Explain your reasoning.

Answer:

(a) $19 \mathrm{~g} / \mathrm{cm}^{3}$; (b) It is likely gold; the right appearance for gold and very close to the density given for gold in Table 3.3.

Watch on YouTube

Accuracy and Precision

Scientists typically make repeated measurements of a quantity to ensure the quality of their findings and to evaluate both the precision and the accuracy of their results. Measurements are said to be precise if they yield very similar results when repeated in the same manner. A measurement is considered accurate if it yields a result that is very close to the true or accepted value. Precise values agree with each other; accurate values agree with a true value. These characterizations can be extended to other contexts, such as the results of an archery competition (Figure 3.5).

Figure 3.5
(a) These arrows are close to both the bull's eye and one another, so they are both accurate and precise. (b) These arrows are close to one another but not on target, so they are precise but not accurate. (c) These arrows are neither on target nor close to one another, so they are neither accurate nor precise.

Suppose a quality control chemist at a pharmaceutical company is tasked with checking the accuracy and precision of three different machines that are meant to dispense 10 ounces (296 mL) of cough syrup into storage bottles. She proceeds to use each machine to fill five bottles and then carefully determines the actual volume dispensed, obtaining the results tabulated in Table 3.4.

Table 3.4
Volume (mL) of Cough Medicine Delivered by 10-oz (296 mL) Dispensers

Dispenser \#1	Dispenser \#2	Dispenser \#3
283.3	298.3	296.1
284.1	294.2	295.9
283.9	296.0	296.1
284.0	297.8	296.0
284.1	293.9	296.1

Considering these results, she will report that dispenser \#1 is precise (values all close to one another, within a few tenths of a milliliter) but not accurate (none of the values are close to the target value of 296 mL , each being more than 10 mL too low). Results for dispenser \#2 represent improved accuracy (each volume is less than 3 mL away from 296 mL) but worse precision (volumes vary by more than 4 mL). Finally, she can report that dispenser \#3 is working well, dispensing cough syrup both accurately (all volumes within 0.1 mL of the target volume) and precisely (volumes differing from each other by no more than 0.2 mL).

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

3.3 Mathematical Treatment of Measurement Results

Learning Objectives

By the end of this section, you will be able to:

- Explain the dimensional analysis (factor label) approach to mathematical calculations involving quantities
- Use dimensional analysis to carry out unit conversions for a given property and computations involving two or more properties

It is often the case that a quantity of interest may not be easy (or even possible) to measure directly but instead must be calculated from other directly measured properties and appropriate mathematical relationships. For example, consider measuring the average speed of an athlete running sprints. This is typically accomplished by measuring the time required for the athlete to run from the starting line to the finish line, and the distance between these two lines, and then computing speed from the equation that relates these three properties:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

An Olympic-quality sprinter can run 100 m in approximately 10 s , corresponding to an average speed of

$$
\frac{100 \mathrm{~m}}{10 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}
$$

Note that this simple arithmetic involves dividing the numbers of each measured quantity to yield the number of the computed quantity $(100 / 10=10)$ and likewise dividing the units of each measured quantity to yield the unit of the computed quantity $(\mathrm{m} / \mathrm{s}=\mathrm{m} / \mathrm{s})$. Now, consider using this same relation to predict the time required for a person running at this speed to travel a distance of 25 m . The same relation among the three properties is used, but in this case, the two quantities provided are a speed $(10 \mathrm{~m} / \mathrm{s})$ and a distance $(25 \mathrm{~m})$. To yield the sought property, time, the equation must be rearranged appropriately:

$$
\text { time }=\frac{\text { distance }}{\text { speed }}
$$

The time can then be computed as:

$$
\frac{25 \mathrm{~m}}{10 \mathrm{~m} / \mathrm{s}}=2.5 \mathrm{~s}
$$

Again, arithmetic on the numbers $(25 / 10=2.5)$ was accompanied by the same arithmetic on the units $(\mathrm{m} /(\mathrm{m} / \mathrm{s})=\mathrm{s})$ to yield the number and unit of the result, 2.5 s . Note that, just as for numbers, when a unit is divided by an identical unit (in this case, m / m), the result is " 1 "-or, as commonly phrased, the units "cancel."

These calculations are examples of a versatile mathematical approach known as dimensional analysis (or the factorlabel method). Dimensional analysis is based on this premise: the units of quantities must be subjected to the same mathematical operations as their associated numbers. This method can be applied to computations ranging from simple unit conversions to more complex, multi-step calculations involving several different quantities.

Conversion Factors and Dimensional Analysis

A ratio of two equivalent quantities expressed with different measurement units can be used as a unit conversion factor. For example, the lengths of 2.54 cm and 1 in . are equivalent (by definition), and so a unit conversion factor may be derived from the ratio,

$$
\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}(2.54 \mathrm{~cm}=1 \mathrm{in} .) \text { or } 2.54 \frac{\mathrm{~cm}}{\mathrm{in} .}
$$

Several other commonly used conversion factors are given in Table 3.5.

Table 3.5

Common Conversion Factors

Length	Volume	Mass
$1 \mathrm{~m}=1.0936 \mathrm{yd}$	$1 \mathrm{~L}=1.0567 \mathrm{qt}$	$1 \mathrm{~kg}=2.2046 \mathrm{lb}$
$1 \mathrm{in}=.2.54 \mathrm{~cm}$ (exact)	$1 \mathrm{qt}=0.94635 \mathrm{~L}$	$1 \mathrm{lb}=453.59 \mathrm{~g}$
$1 \mathrm{~km}=0.62137 \mathrm{mi}$	$1 \mathrm{ft}^{3}=28.317 \mathrm{~L}$	1 (avoirdupois) $\mathrm{oz}=28.349 \mathrm{~g}$

Length	Volume	Mass
$1 \mathrm{mi}=1609.3 \mathrm{~m}$	$1 \mathrm{tbsp}=14.787 \mathrm{~mL}$	1 (troy) oz $=31.103 \mathrm{~g}$

When a quantity (such as distance in inches) is multiplied by an appropriate unit conversion factor, the quantity is converted to an equivalent value with different units (such as distance in centimeters). For example, a basketball player's vertical jump of 34 inches can be converted to centimeters by:

$$
34 \mathrm{in} . \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}=86 \mathrm{~cm}
$$

Since this simple arithmetic involves quantities, the premise of dimensional analysis requires that we multiply both numbers and units. The numbers of these two quantities are multiplied to yield the number of the product quantity, 86 , whereas the units are multiplied to yield
$\frac{\text { in. } \times \mathrm{cm}}{\text { in. }}$
. Just as for numbers, a ratio of identical units is also numerically equal to one,
$\frac{\mathrm{in} .}{\mathrm{in} .}=1$,
and the unit product thus simplifies to cm . (When identical units divide to yield a factor of 1 , they are said to "cancel.") Dimensional analysis may be used to confirm the proper application of unit conversion factors as demonstrated in the following example.

Example 3.8

Using a Unit Conversion Factor

The mass of a competition frisbee is 125 g . Convert its mass to ounces using the unit conversion factor derived from the relationship $1 \mathrm{oz}=28.349 \mathrm{~g}$ (Table 3.5).

Solution

Given the conversion factor, the mass in ounces may be derived using an equation similar to the one used for converting length from inches to centimeters.
$x \mathrm{oz}=125 \mathrm{~g} \times$ unit conversion factor

The unit conversion factor may be represented as:

$$
\frac{1 \mathrm{oz}}{28.349 \mathrm{~g}} \text { and } \frac{28.349 \mathrm{~g}}{1 \mathrm{oz}}
$$

The correct unit conversion factor is the ratio that cancels the units of grams and leaves ounces.

$$
\begin{array}{rlc}
x \mathrm{oz} & = & 125 \mathrm{~g} \times \frac{1 \mathrm{oz}}{28.349 \mathrm{~g}} \\
& = & \left(\frac{125}{28.349}\right) \mathrm{oz} \\
& = & 4.41 \mathrm{oz} \text { (three significant figures) }
\end{array}
$$

Check Your Learning

Convert a volume of 9.345 qt to liters.

Answer:

8.844 L

Beyond simple unit conversions, the factor-label method can be used to solve more complex problems involving computations. Regardless of the details, the basic approach is the same-all the factors involved in the calculation must be appropriately oriented to ensure that their labels (units) will appropriately cancel and/or combine to yield the desired unit in the result. As your study of chemistry continues, you will encounter many opportunities to apply this approach.

Example 3.9

Computing Quantities from Measurement Results and Known Mathematical Relations

What is the density of common antifreeze in units of g / mL ? A 4.00-qt sample of the antifreeze weighs 9.26 lb . Solution

Since
density $=\frac{\text { mass }}{\text { volume }}$
, we need to divide the mass in grams by the volume in milliliters. In general: the number of units of $B=$ the number of units of $A x$ unit conversion factor. The necessary conversion factors are given in Table 3.5: $1 \mathrm{lb}=$ $453.59 \mathrm{~g} ; 1 \mathrm{~L}=1.0567 \mathrm{qt} ; 1 \mathrm{~L}=1,000 \mathrm{~mL}$. Mass may be converted from pounds to grams as follows:

$$
9.26 \mathrm{lb} \times \frac{453.59 \mathrm{~g}}{1 \mathrm{lb}}=4.20 \times 10^{3} \mathrm{~g}
$$

Volume may be converted from quarts to milliliters via two steps:

1. Step 1. Convert quarts to liters.
$4.00 \mathrm{qt} \times \frac{1 \mathrm{~L}}{1.0567 \mathrm{qt}}=3.78 \mathrm{~L}$
2. Step 2. Convert liters to milliliters.

$$
3.78 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=3.78 \times 10^{3} \mathrm{~mL}
$$

Then,
density $=\frac{4.20 \times 10^{3} \mathrm{~g}}{3.78 \times 10^{3} \mathrm{~mL}}=1.11 \mathrm{~g} / \mathrm{mL}$

Alternatively, the calculation could be set up in a way that uses three unit conversion factors sequentially as follows:
$\frac{9.26 \mathrm{lb}}{4.00 \mathrm{qt}} \times \frac{453.59 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{1.0567 \mathrm{qt}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=1.11 \mathrm{~g} / \mathrm{mL}$

Check Your Learning

What is the volume in liters of 1.000 oz , given that $1 \mathrm{~L}=1.0567 \mathrm{qt}$ and $1 \mathrm{qt}=32 \mathrm{oz}$ (exactly)?

Answer:

$2.956 \times 10^{-2} \mathrm{~L}$

Example 3.10

Computing Quantities from Measurement Results and Known Mathematical Relations

While being driven from Philadelphia to Atlanta, a distance of about 1250 km, a 2014 Lamborghini Aventador Roadster uses 213 L gasoline.
(a) What (average) fuel economy, in miles per gallon, did the Roadster get during this trip?
(b) If gasoline costs $\$ 3.80$ per gallon, what was the fuel cost for this trip?

Solution

(a) First convert distance from kilometers to miles:
$1250 \mathrm{~km} \times \frac{0.62137 \mathrm{mi}}{1 \mathrm{~km}}=777 \mathrm{mi}$ and then convert volume from liters to gallons:
$213 \mathrm{~L} \times \frac{1.0567 \mathrm{qt}}{1 \mathrm{~L}} \times \frac{1 \mathrm{gal}}{4 \mathrm{qt}}=56.3 \mathrm{gal}$

Finally,
$($ average $)$ mileage $=\frac{777 \mathrm{mi}}{56.3 \mathrm{gal}}=13.8 \mathrm{miles} /$ gallon $=13.8 \mathrm{mpg}$

Alternatively, the calculation could be set up in a way that uses all the conversion factors sequentially, as follows:
$\frac{1250 \mathrm{~km}}{213 \mathrm{~L}} \times \frac{0.62137 \mathrm{mi}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~L}}{1.0567 \mathrm{qt}} \times \frac{4 \mathrm{qt}}{1 \mathrm{gal}}=13.8 \mathrm{mpg}$
(b) Using the previously calculated volume in gallons, we find:
$56.3 \mathrm{gal} \times \frac{\$ 3.80}{1 \mathrm{gal}}=\$ 214$

Check Your Learning

A Toyota Prius Hybrid uses 59.7 L gasoline to drive from San Francisco to Seattle, a distance of 1300 km (two significant digits).
(a) What (average) fuel economy, in miles per gallon, did the Prius get during this trip?
(b) If gasoline costs $\$ 3.90$ per gallon, what was the fuel cost for this trip?

Answer:

(a) $51 \mathrm{mpg} ;(\mathrm{b}) \$ 62$

Watch on YouTube

Conversion of Temperature Units

We use the word temperature to refer to the hotness or coldness of a substance. One way we measure a change in temperature is to use the fact that most substances expand when their temperature increases and contract when their temperature decreases. The liquid in a common glass thermometer changes its volume as the temperature changes, and the position of the trapped liquid's surface along a printed scale may be used as a measure of temperature.

Temperature scales are defined relative to selected reference temperatures: Two of the most commonly used are the freezing and boiling temperatures of water at a specified atmospheric pressure. On the Celsius scale, $0^{\circ} \mathrm{C}$ is defined as the freezing temperature of water and $100^{\circ} \mathrm{C}$ as the boiling temperature of water. The space between the two temperatures is divided into 100 equal intervals, which we call degrees. On the Fahrenheit scale, the freezing point of water is defined as $32^{\circ} \mathrm{F}$ and the boiling temperature as $212{ }^{\circ} \mathrm{F}$. The space between these two points on a Fahrenheit thermometer is divided into 180 equal parts (degrees).

Defining the Celsius and Fahrenheit temperature scales as described in the previous paragraph results in a slightly more complex relationship between temperature values on these two scales than for different units of measure for other properties. Most measurement units for a given property are directly proportional to one another ($\mathrm{y}=\mathrm{mx}$). Using familiar length units as one example:

$$
\text { length in feet }=\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right) \times \text { length in inches }
$$

where $y=$ length in feet, $x=$ length in inches, and the proportionality constant, m, is the conversion factor. The Celsius and Fahrenheit temperature scales, however, do not share a common zero point, and so the relationship between these two scales is a linear one rather than a proportional one $(y=m x+b)$. Consequently, converting a temperature from one of these scales into the other requires more than simple multiplication by a conversion factor, m, it also must take into account differences in the scales' zero points (b).

The linear equation relating Celsius and Fahrenheit temperatures is easily derived from the two temperatures used to define each scale. Representing the Celsius temperature as x and the Fahrenheit temperature as y, the slope, m, is computed to be:

$$
m=\frac{\Delta y}{\Delta x}=\frac{212^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}}=\frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}=\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}
$$

The y-intercept of the equation, b, is then calculated using either of the equivalent temperature pairs, $\left(100^{\circ} \mathrm{C}, 212^{\circ} \mathrm{F}\right)$ or $\left(0^{\circ} \mathrm{C}, 32^{\circ} \mathrm{F}\right)$, as:

$$
b=y-m x=32^{\circ} \mathrm{F}-\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \times 0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}
$$

The equation relating the temperature (T) scales is then:

$$
T_{{ }^{\circ} \mathrm{F}}=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \times T_{{ }^{\circ} \mathrm{C}}\right)+32^{\circ} \mathrm{F}
$$

An abbreviated form of this equation that omits the measurement units is:

$$
T_{{ }^{\circ} \mathrm{F}}=\left(\frac{9}{5} \times T_{{ }^{\circ} \mathrm{C}}\right)+32
$$

Rearrangement of this equation yields the form useful for converting from Fahrenheit to Celsius:

$$
T_{{ }^{\circ} \mathrm{C}}=\frac{5}{9}\left(T_{{ }^{\circ} \mathrm{F}}-32\right)
$$

As mentioned earlier in this chapter, the SI unit of temperature is the kelvin (K). Unlike the Celsius and Fahrenheit scales, the kelvin scale is an absolute temperature scale in which 0 (zero) K corresponds to the lowest temperature that can theoretically be achieved. Since the kelvin temperature scale is absolute, a degree symbol is not included in the unit abbreviation, K. The early 19th-century discovery of the relationship between a gas's volume and temperature suggested that the volume of a gas would be zero at $-273.15^{\circ} \mathrm{C}$. In 1848 , British physicist William Thompson, who later adopted the title of Lord Kelvin, proposed an absolute temperature scale based on this concept (further treatment of this topic is provided in this text's chapter on gases).

The freezing temperature of water on this scale is 273.15 K and its boiling temperature is 373.15 K . Notice the numerical difference in these two reference temperatures is 100 , the same as for the Celsius scale, and so the linear relation between these two temperature scales will exhibit a slope of
$1 \frac{\mathrm{~K}}{{ }^{\circ} \mathrm{C}}$
. Following the same approach, the equations for converting between the kelvin and Celsius temperature scales are derived to be:

$$
T_{\mathrm{K}}=T_{{ }^{\circ} \mathrm{C}}+273.15
$$

$T_{{ }^{\circ} \mathrm{C}}=T_{\mathrm{K}}-273.15$

The 273.15 in these equations has been determined experimentally, so it is not exact. Figure 3.6 shows the relationship among the three temperature scales.

Figure 3.6

The Fahrenheit, Celsius, and kelvin temperature scales are compared.

Although the kelvin (absolute) temperature scale is the official SI temperature scale, Celsius is commonly used in many scientific contexts and is the scale of choice for nonscience contexts in almost all areas of the world. Very few countries (the U.S. and its territories, the Bahamas, Belize, Cayman Islands, and Palau) still use Fahrenheit for weather, medicine, and cooking.

Example 3.11

Conversion from Celsius

Normal body temperature has been commonly accepted as $37.0^{\circ} \mathrm{C}$ (although it varies depending on time of day and method of measurement, as well as among individuals). What is this temperature on the kelvin scale and on the Fahrenheit scale?

Solution

$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15=37.0+273.2=310.2 \mathrm{~K}$
${ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32.0=\left(\frac{9}{5} \times 37.0\right)+32.0=66.6+32.0=98.6^{\circ} \mathrm{F}$
Check Your Learning
Convert $80.92{ }^{\circ} \mathrm{C}$ to K and ${ }^{\circ} \mathrm{F}$.

Answer:

$354.07 \mathrm{~K}, 177.7^{\circ} \mathrm{F}$

Example 3.12

Conversion from Fahrenheit

Baking a ready-made pizza calls for an oven temperature of $450^{\circ} \mathrm{F}$. If you are in Europe, and your oven thermometer uses the Celsius scale, what is the setting? What is the kelvin temperature?
Solution
${ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)=\frac{5}{9}(450-32)=\frac{5}{9} \times 418=232{ }^{\circ} \mathrm{C} \rightarrow$ set oven to $230^{\circ} \mathrm{C} \quad$ (two signif

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15=230+273=503 \mathrm{~K} \rightarrow 5.0 \times 10^{2} \mathrm{~K} \quad \text { (two significant figures) }
$$

Check Your Learning

Convert $50^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ and K .

Answer:

$10^{\circ} \mathrm{C}, 280 \mathrm{~K}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. For details see the Office of Weights and Measures page on SI Units

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/measurement.

The Atom

Atom Atomic Theory Atomic Structure

The ancient Greeks proposed that matter consists of extremely small particles called atoms. Dalton postulated that each element has a characteristic type of atom that differs in properties from atoms of all other elements, and that atoms of different elements can combine in fixed, small, whole-number ratios to form compounds. Samples of a particular compound all have the same elemental proportions by mass. When two elements form different compounds, a given mass of one element will combine with masses of the other element in a small, whole-number ratio. During any chemical change, atoms are neither created nor destroyed. Although no one has actually seen the inside of an atom, experiments have demonstrated much about atomic structure. Thomson's cathode ray tube showed that atoms contain small, negatively charged particles called electrons. Millikan discovered that there is a fundamental electric charge-the charge of an electron. Rutherford's gold foil experiment showed that atoms have a small, dense, positively charged nucleus; the positively charged particles within the nucleus are called protons. Chadwick discovered that the nucleus also contains neutral particles called neutrons. Soddy demonstrated that atoms of the same element can differ in mass; these are called isotopes.

4.1 Early Ideas in Atomic Theory

Learning Objectives

By the end of this section, you will be able to:

- State the postulates of Dalton's atomic theory
- Use postulates of Dalton's atomic theory to explain the laws of definite and multiple proportions

The earliest recorded discussion of the basic structure of matter comes from ancient Greek philosophers, the scientists of their day. In the fifth century BC, Leucippus and Democritus argued that all matter was composed of small, finite particles that they called atomos, a term derived from the Greek word for "indivisible." They thought of atoms as moving particles that differed in shape and size, and which could join together. Later, Aristotle and others came to the conclusion that matter consisted of various combinations of the four "elements"-fire, earth, air, and water-and could be infinitely divided. Interestingly, these philosophers thought about atoms and "elements" as philosophical concepts, but apparently never considered performing experiments to test their ideas.

The Aristotelian view of the composition of matter held sway for over two thousand years, until English schoolteacher John Dalton helped to revolutionize chemistry with his hypothesis that the behavior of matter could be explained using an atomic theory. First published in 1807, many of Dalton's hypotheses about the microscopic features of matter are still valid in modern atomic theory. Here are the postulates of Dalton's atomic theory.

1. Matter is composed of exceedingly small particles called atoms. An atom is the smallest unit of an element that can participate in a chemical change.
2. An element consists of only one type of atom, which has a mass that is characteristic of the element and is the same for all atoms of that element (Figure 4.1). A macroscopic sample of an element contains an incredibly large number of atoms, all of which have identical chemical properties.
Figure 4.1
A pre-1982 copper penny (left) contains approximately 3×10^{22} copper atoms (several dozen are represented as brown spheres at the right), each of which has the same chemical properties. (credit: modification of work by "slgckgc"/Flickr)

3. Atoms of one element differ in properties from atoms of all other elements.
4. A compound consists of atoms of two or more elements combined in a small, whole-number ratio. In a given compound, the numbers of atoms of each of its elements are always present in the same ratio (Figure 4.2).
Figure 4.2
Copper(II) oxide, a powdery, black compound, results from the combination of two types of atoms-copper (brown spheres) and oxygen (red spheres)-in a 1:1 ratio. (credit: modification of work by "Chemicalinterest"/Wikimedia Commons)

5. Atoms are neither created nor destroyed during a chemical change, but are instead rearranged to yield substances that are different from those present before the change (Figure 4.3).
Figure 4.3
When the elements copper (a shiny, red-brown solid, shown here as brown spheres) and oxygen (a clear and colorless gas, shown here as red spheres) react, their atoms rearrange to form a compound containing copper and oxygen (a powdery, black solid). (credit copper: modification of work by http://images-ofelements.com/copper.php)

The elements copper and oxygen

The compound copper(II) oxide

Dalton's atomic theory provides a microscopic explanation of the many macroscopic properties of matter that you've learned about. For example, if an element such as copper consists of only one kind of atom, then it cannot be broken down into simpler substances, that is, into substances composed of fewer types of atoms. And if atoms are neither created nor destroyed during a chemical change, then the total mass of matter present when matter changes from one type to another will remain constant (the law of conservation of matter).

Example 4.1

Testing Dalton's Atomic Theory

In the following drawing, the green spheres represent atoms of a certain element. The purple spheres represent atoms of another element. If the spheres touch, they are part of a single unit of a compound. Does the following chemical change represented by these symbols violate any of the ideas of Dalton's atomic theory? If so, which one?

Starting materials

Products of the change

Solution

The starting materials consist of two green spheres and two purple spheres. The products consist of only one green sphere and one purple sphere. This violates Dalton's postulate that atoms are neither created nor destroyed during a chemical change, but are merely redistributed. (In this case, atoms appear to have been destroyed.)

Check Your Learning

In the following drawing, the green spheres represent atoms of a certain element. The purple spheres represent atoms of another element. If the spheres touch, they are part of a single unit of a compound. Does the following chemical change represented by these symbols violate any of the ideas of Dalton's atomic theory? If so, which one?

Starting materials
Products of the change

Answer:

The starting materials consist of four green spheres and two purple spheres. The products consist of four green spheres and two purple spheres. This does not violate any of Dalton's postulates: Atoms are neither created nor destroyed, but are redistributed in small, whole-number ratios.

Dalton knew of the experiments of French chemist Joseph Proust, who demonstrated that all samples of a pure compound contain the same elements in the same proportion by mass. This statement is known as the law of definite proportions or the law of constant composition. The suggestion that the numbers of atoms of the elements in a given compound always exist in the same ratio is consistent with these observations. For example, when different samples of isooctane (a component of gasoline and one of the standards used in the octane rating system) are analyzed, they are found to have a carbon-to-hydrogen mass ratio of 5.33:1, as shown in Table 4.1.

Table 4.1

Sample	Carbon	Hydrogen	Mass Ratio
A	14.82 g	2.78 g	$\frac{14.82 \mathrm{~g} \text { carbon }}{2.78 \mathrm{~g} \text { hydrogen }}=\frac{5.33 \mathrm{~g} \text { carbon }}{1.00 \mathrm{~g} \text { hydrogen }}$
B	22.33 g	4.19 g	$\frac{22.33 \mathrm{~g} \text { carbon }}{4.19 \mathrm{~g} \text { hydrogen }}=\frac{5.33 \mathrm{~g} \text { carbon }}{1.00 \mathrm{~g} \text { hydrogen }}$
C	19.40 g	3.64 g	$\frac{19.40 \mathrm{~g} \text { carbon }}{3.63 \mathrm{~g} \text { hydrogen }}=\frac{5.33 \mathrm{~g} \text { carbon }}{1.00 \mathrm{~g} \text { hydrogen }}$

It is worth noting that although all samples of a particular compound have the same mass ratio, the converse is not true in general. That is, samples that have the same mass ratio are not necessarily the same substance. For example, there are many compounds other than isooctane that also have a carbon-to-hydrogen mass ratio of 5.33:1.00.

Dalton also used data from Proust, as well as results from his own experiments, to formulate another interesting law. The law of multiple proportions states that when two elements react to form more than one compound, a fixed mass of one element will react with masses of the other element in a ratio of small, whole numbers. For example, copper and chlorine can form a green, crystalline solid with a mass ratio of 0.558 g chlorine to 1 g copper, as well as a brown crystalline solid with a mass ratio of 1.116 g chlorine to 1 g copper. These ratios by themselves may not seem particularly interesting or informative; however, if we take a ratio of these ratios, we obtain a useful and possibly surprising result: a small, whole-number ratio.
$\frac{\frac{1.116 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~g} \mathrm{Cu}}}{\frac{0.558 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~g} \mathrm{Cu}}}=\frac{2}{1}$

This 2-to-1 ratio means that the brown compound has twice the amount of chlorine per amount of copper as the green compound.

This can be explained by atomic theory if the copper-to-chlorine ratio in the brown compound is 1 copper atom to 2 chlorine atoms, and the ratio in the green compound is 1 copper atom to 1 chlorine atom. The ratio of chlorine atoms (and thus the ratio of their masses) is therefore 2 to 1 (Figure 4.4).

Figure 4.4
Compared to the copper chlorine compound in (a), where copper is represented by brown spheres and chlorine by green spheres, the copper chlorine compound in (b) has twice as many chlorine atoms per copper atom. (credit a: modification of work by "Benjah-bmm27"/Wikimedia Commons; credit b: modification of work by "Walkerma"/Wikimedia Commons)

Example 4.2

Laws of Definite and Multiple Proportions

A sample of compound A (a clear, colorless gas) is analyzed and found to contain 4.27 g carbon and 5.69 g oxygen. A sample of compound B (also a clear, colorless gas) is analyzed and found to contain 5.19 g carbon and 13.84 g oxygen. Are these data an example of the law of definite proportions, the law of multiple proportions, or neither? What do these data tell you about substances A and B?

Solution

In compound A, the mass ratio of oxygen to carbon is:

$$
\frac{1.33 \mathrm{~g} \mathrm{O}}{1 \mathrm{~g} \mathrm{C}}
$$

In compound B, the mass ratio of oxygen to carbon is:

$$
\frac{2.67 \mathrm{~g} \mathrm{O}}{1 \mathrm{~g} \mathrm{C}}
$$

The ratio of these ratios is:

$$
\frac{\frac{1.33 \mathrm{~g} \mathrm{O}}{1 \mathrm{~g} \mathrm{C}}}{\frac{2.67 \mathrm{~g} \mathrm{O}}{1 \mathrm{~g} \mathrm{C}}}=\frac{1}{2}
$$

This supports the law of multiple proportions. This means that A and B are different compounds, with A having one-half as much oxygen per amount of carbon (or twice as much carbon per amount of oxygen) as B. A possible pair of compounds that would fit this relationship would be $\mathrm{A}=\mathrm{CO}$ and $\mathrm{B}=\mathrm{CO}_{2}$.

Check Your Learning

A sample of compound X (a clear, colorless, combustible liquid with a noticeable odor) is analyzed and found to contain 14.13 g carbon and 2.96 g hydrogen. A sample of compound Y (a clear, colorless, combustible liquid with a noticeable odor that is slightly different from X's odor) is analyzed and found to contain 19.91 g carbon and 3.34 g hydrogen. Are these data an example of the law of definite proportions, the law of multiple proportions, or neither? What do these data tell you about substances X and Y ?

Answer:

In compound X , the mass ratio of carbon to hydrogen is
$\frac{14.13 \mathrm{~g} \mathrm{C}}{2.96 \mathrm{~g} \mathrm{H}}$.

In compound Y, the mass ratio of carbon to hydrogen is
$\frac{19.91 \mathrm{~g} \mathrm{C}}{3.34 \mathrm{~g} \mathrm{H}}$.

The ratio of these ratios is
$\frac{\frac{14.13 \mathrm{~g} \mathrm{C}}{2.96 \mathrm{gH}}}{\frac{19.9 \mathrm{gC}}{3.34 \mathrm{gH}}}=\frac{4.77 \mathrm{~g} \mathrm{C/g} \mathrm{H}}{5.96 \mathrm{~g} \mathrm{C/g} \mathrm{H}}=0.800=\frac{4}{5}$.

This small, whole-number ratio supports the law of multiple proportions. This means that X and Y are different compounds.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

4.2 Evolution of Atomic Theory

Learning Objectives

By the end of this section, you will be able to:

- Outline milestones in the development of modern atomic theory
- Summarize and interpret the results of the experiments of Thomson, Millikan, and Rutherford
- Describe the three subatomic particles that compose atoms
- Define isotopes and give examples for several elements

If matter is composed of atoms, what are atoms composed of? Are they the smallest particles, or is there something smaller? In the late 1800s, a number of scientists interested in questions like these investigated the electrical discharges that could be produced in low-pressure gases, with the most significant discovery made by English physicist J. J. Thomson using a cathode ray tube. This apparatus consisted of a sealed glass tube from which almost all the air had been removed; the tube contained two metal electrodes. When high voltage was applied across the electrodes, a visible beam called a cathode ray appeared between them. This beam was deflected toward the positive charge and away from the negative charge, and was produced in the same way with identical properties when different metals were used for the electrodes. In similar experiments, the ray was simultaneously deflected by an applied magnetic field, and measurements of the extent of deflection and the magnetic field strength allowed Thomson to calculate the charge-tomass ratio of the cathode ray particles. The results of these measurements indicated that these particles were much lighter than atoms (Figure 4.5).

Figure 4.5
(a) J. J. Thomson produced a visible beam in a cathode ray tube. (b) This is an early cathode ray tube, invented in 1897 by Ferdinand Braun. (c) In the cathode ray, the beam (shown in yellow) comes from the cathode and is accelerated past the anode toward a fluorescent scale at the end of the tube. Simultaneous deflections by applied electric and magnetic fields permitted Thomson to calculate the mass-to-charge ratio of the particles composing the cathode ray. (credit a:
modification of work by Nobel Foundation; credit b: modification of work by Eugen Nesper; credit c: modification of work by "Kurzon"/Wikimedia Commons)

Based on his observations, here is what Thomson proposed and why: The particles are attracted by positive (+) charges and repelled by negative (-) charges, so they must be negatively charged (like charges repel and unlike charges attract); they are less massive than atoms and indistinguishable, regardless of the source material, so they must be fundamental, subatomic constituents of all atoms. Although controversial at the time, Thomson's idea was gradually accepted, and his cathode ray particle is what we now call an electron, a negatively charged, subatomic particle with a mass more than one thousand-times less that of an atom. The term "electron" was coined in 1891 by lrish physicist George Stoney, from "electric ion."

In 1909, more information about the electron was uncovered by American physicist Robert A. Millikan via his "oil drop" experiments. Millikan created microscopic oil droplets, which could be electrically charged by friction as they formed or by using X-rays. These droplets initially fell due to gravity, but their downward progress could be slowed or even reversed by an electric field lower in the apparatus. By adjusting the electric field strength and making careful measurements and appropriate calculations, Millikan was able to determine the charge on individual drops (Figure 4.6).

Figure 4.6

Millikan's experiment measured the charge of individual oil drops. The tabulated data are examples of a few possible values.

Looking at the charge data that Millikan gathered, you may have recognized that the charge of an oil droplet is always a multiple of a specific charge, $1.6 \times 10^{-19} \mathrm{C}$. Millikan concluded that this value must therefore be a fundamental chargethe charge of a single electron-with his measured charges due to an excess of one electron (1 times $1.6 \times 10^{-19} \mathrm{C}$), two electrons (2 times $1.6 \times 10^{-19} \mathrm{C}$), three electrons (3 times $1.6 \times 10^{-19} \mathrm{C}$), and so on, on a given oil droplet. Since the charge of an electron was now known due to Millikan's research, and the charge-to-mass ratio was already known due to Thomson's research $\left(1.759 \times 10^{11} \mathrm{C} / \mathrm{kg}\right)$, it only required a simple calculation to determine the mass of the electron as well.

$$
\text { Mass of electron }=1.602 \times 10^{-19} \mathrm{C} \times \frac{1 \mathrm{~kg}}{1.759 \times 10^{11} \mathrm{C}}=9.107 \times 10^{-31} \mathrm{~kg}
$$

Scientists had now established that the atom was not indivisible as Dalton had believed, and due to the work of Thomson, Millikan, and others, the charge and mass of the negative, subatomic particles-the electrons-were known. However, the positively charged part of an atom was not yet well understood. In 1904, Thomson proposed the "plum pudding" model of atoms, which described a positively charged mass with an equal amount of negative charge in the form of electrons embedded in it, since all atoms are electrically neutral. A competing model had been proposed in 1903 by Hantaro Nagaoka, who postulated a Saturn-like atom, consisting of a positively charged sphere surrounded by a halo of electrons (Figure 4.7).

Figure 4.7
(a) Thomson suggested that atoms resembled plum pudding, an English dessert consisting of moist cake with embedded raisins ("plums"). (b) Nagaoka proposed that atoms resembled the planet Saturn, with a ring of electrons surrounding a positive "planet." (credit a: modification of work by "Man vyi"/Wikimedia Commons; credit b: modification of work by "NASA"/Wikimedia Commons)

The next major development in understanding the atom came from Ernest Rutherford, a physicist from New Zealand who largely spent his scientific career in Canada and England. He performed a series of experiments using a beam of high-speed, positively charged alpha particles (a particles) that were produced by the radioactive decay of radium; a particles consist of two protons and two neutrons (you will learn more about radioactive decay in the chapter on nuclear chemistry). Rutherford and his colleagues Hans Geiger (later famous for the Geiger counter) and Ernest Marsden aimed a beam of a particles, the source of which was embedded in a lead block to absorb most of the radiation, at a very thin piece of gold foil and examined the resultant scattering of the a particles using a luminescent screen that glowed briefly where hit by an a particle.

What did they discover? Most particles passed right through the foil without being deflected at all. However, some were diverted slightly, and a very small number were deflected almost straight back toward the source (Figure 4.8).
Rutherford described finding these results: "It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15 -inch shell at a piece of tissue paper and it came back and hit you." ${ }^{1}$

Figure 4.8
Geiger and Rutherford fired a particles at a piece of gold foil and detected where those particles went, as shown in this schematic diagram of their experiment. Most of the particles passed straight through the foil, but a few were deflected slightly and a very small number were significantly deflected.

Here is what Rutherford deduced: Because most of the fast-moving a particles passed through the gold atoms undeflected, they must have traveled through essentially empty space inside the atom. Alpha particles are positively charged, so deflections arose when they encountered another positive charge (like charges repel each other). Since like charges repel one another, the few positively charged a particles that changed paths abruptly must have hit, or closely approached, another body that also had a highly concentrated, positive charge. Since the deflections occurred a small
fraction of the time, this charge only occupied a small amount of the space in the gold foil. Analyzing a series of such experiments in detail, Rutherford drew two conclusions:

1. The volume occupied by an atom must consist of a large amount of empty space.
2. A small, relatively heavy, positively charged body, the nucleus, must be at the center of each atom.

Link to Learning

View a Simulation of the Rutherford gold foil experiment. Adjust the slit width to produce a narrower or broader beam of a particles to see how that affects the scattering pattern.

This analysis led Rutherford to propose a model in which an atom consists of a very small, positively charged nucleus, in which most of the mass of the atom is concentrated, surrounded by the negatively charged electrons, so that the atom is electrically neutral (Figure 4.9). After many more experiments, Rutherford also discovered that the nuclei of other elements contain the hydrogen nucleus as a "building block," and he named this more fundamental particle the proton, the positively charged, subatomic particle found in the nucleus. With one addition, which you will learn next, this nuclear model of the atom, proposed over a century ago, is still used today.

Figure 4.9
The a particles are deflected only when they collide with or pass close to the much heavier, positively charged gold nucleus. Because the nucleus is very small compared to the size of an atom, very few a particles are deflected. Most pass through the relatively large region occupied by electrons, which are too light to deflect the rapidly moving particles.

Link to Learning

Investigate the differences between a "plum pudding" atom and a Rutherford atom by firing a particles at each type of atom in this simulation.

Another important finding was the discovery of isotopes. During the early 1900s, scientists identified several substances that appeared to be new elements, isolating them from radioactive ores. For example, a "new element" produced by the radioactive decay of thorium was initially given the name mesothorium. However, a more detailed analysis showed that mesothorium was chemically identical to radium (another decay product), despite having a different atomic mass. This result, along with similar findings for other elements, led the English chemist Frederick Soddy to realize that an element could have types of atoms with different masses that were chemically indistinguishable. These different types are called isotopes-atoms of the same element that differ in mass. Soddy was awarded the Nobel Prize in Chemistry in 1921 for this discovery.

One puzzle remained: The nucleus was known to contain almost all of the mass of an atom, with the number of protons only providing half, or less, of that mass. Different proposals were made to explain what constituted the remaining mass, including the existence of neutral particles in the nucleus. As you might expect, detecting uncharged particles is very challenging, and it was not until 1932 that James Chadwick found evidence of neutrons, uncharged, subatomic particles with a mass approximately the same as that of protons. The existence of the neutron also explained isotopes: They differ in mass because they have different numbers of neutrons, but they are chemically identical because they have the same number of protons. This will be explained in more detail later.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

4.3 Atomic Structure and Symbolism

Learning Objectives

By the end of this section, you will be able to:

- Write and interpret symbols that depict the atomic number, mass number, and charge of an atom or ion
- Define the atomic mass unit

The development of modern atomic theory revealed much about the inner structure of atoms. It was learned that an atom contains a very small nucleus composed of positively charged protons and uncharged neutrons, surrounded by a much larger volume of space containing negatively charged electrons. The nucleus contains the majority of an atom's mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom's volume. The diameter of an atom is on the order of $10^{-10} \mathrm{~m}$, whereas the diameter of the nucleus is roughly $10^{-15} \mathrm{~m}-$ about 100,000 times smaller. For a perspective about their relative sizes, consider this: If the nucleus were the size of a blueberry, the atom would be about the size of a football stadium (Figure 4.10).

Figure 4.10
If an atom could be expanded to the size of a football stadium, the nucleus would be the size of a single blueberry. (credit middle: modification of work by "babyknight"/Wikimedia Commons; credit right: modification of work by Paxson Woelber)

Atoms-and the protons, neutrons, and electrons that compose them-are extremely small. For example, a carbon atom weighs less than
$2 \times 10^{-23} \mathrm{~g}$, and an electron has a charge of less than $2 \times 10^{-19} \mathrm{C}$ (coulombs). When describing the properties of tiny objects such as atoms, we use appropriately small units of measure, such as the atomic mass unit (amu) and the fundamental unit of charge (e). The amu was originally defined based on hydrogen, the lightest element, then later in terms of oxygen. Since 1961, it has been defined with regard to the most abundant isotope of carbon, atoms of which are assigned masses of exactly 12 amu . (This isotope is known as "carbon-12" as will be discussed later in this module.) Thus, one amu is exactly
$\frac{1}{12}$
of the mass of one carbon-12 atom: $1 \mathrm{amu}=1.6605 \times 10^{-24} \mathrm{~g}$. (The Dalton (Da) and the unified atomic mass unit (u) are alternative units that are equivalent to the amu.) The fundamental unit of charge (also called the elementary charge) equals the magnitude of the charge of an electron (e) with $e=1.602 \times 10^{-19} \mathrm{C}$.

A proton has a mass of 1.0073 amu and a charge of $1+$. A neutron is a slightly heavier particle with a mass 1.0087 amu and a charge of zero; as its name suggests, it is neutral. The electron has a charge of 1 - and is a much lighter particle with a mass of about 0.00055 amu (it would take about 1800 electrons to equal the mass of one proton). The properties of these fundamental particles are summarized in Table 4.2. (An observant student might notice that the sum of an atom's subatomic particles does not equal the atom's actual mass: The total mass of six protons, six neutrons, and six electrons is 12.0993 amu , slightly larger than 12.00 amu . This "missing" mass is known as the mass defect, and you will learn about it in the chapter on nuclear chemistry.)

Table 4.2

Properties of Subatomic Particles

Name	Location	Charge (C)	Unit Charge	Mass (amu)	Mass (g)
electron	outside nucleus	-1.602×10^{-19}	$1-$	0.00055	0.00091×10^{-24}
proton	nucleus	1.602×10^{-19}	$1+$	1.00727	1.67262×10^{-24}
neutron	nucleus	0	0	1.00866	1.67493×10^{-24}

The number of protons in the nucleus of an atom is its atomic number (Z). This is the defining trait of an element: Its value determines the identity of the atom. For example, any atom that contains six protons is the element carbon and has the atomic number 6 , regardless of how many neutrons or electrons it may have. A neutral atom must contain the same number of positive and negative charges, so the number of protons equals the number of electrons. Therefore, the atomic number also indicates the number of electrons in an atom. The total number of protons and neutrons in an atom is called its mass number (A). The number of neutrons is therefore the difference between the mass number and the atomic number: $\mathrm{A}-\mathrm{Z}=$ number of neutrons.

$$
\begin{array}{clc}
\text { atomic number }(\mathrm{Z}) & = & \text { number of protons } \\
\text { mass number }(\mathrm{A}) & = & \text { number of protons }+ \text { number of neutrons } \\
\mathrm{A}-\mathrm{Z} & = & \text { number of neutrons }
\end{array}
$$

Atoms are electrically neutral if they contain the same number of positively charged protons and negatively charged electrons. When the numbers of these subatomic particles are not equal, the atom is electrically charged and is called an ion. The charge of an atom is defined as follows:

Atomic charge $=$ number of protons $\boldsymbol{-}$ number of electrons
As will be discussed in more detail, atoms (and molecules) typically acquire charge by gaining or losing electrons. An atom that gains one or more electrons will exhibit a negative charge and is called an anion. Positively charged atoms called cations are formed when an atom loses one or more electrons. For example, a neutral sodium atom $(Z=11)$ has 11 electrons. If this atom loses one electron, it will become a cation with a $1+$ charge ($11-10=1+$). A neutral oxygen atom $(Z=8)$ has eight electrons, and if it gains two electrons it will become an anion with a $2-$ charge $(8-10=2-)$.

Example 4.3

Composition of an Atom

Iodine is an essential trace element in our diet; it is needed to produce thyroid hormone. Insufficient iodine in the diet can lead to the development of a goiter, an enlargement of the thyroid gland (Figure 4.11).
Figure 4.11
(a) Insufficient iodine in the diet can cause an enlargement of the thyroid gland called a goiter. (b) The addition of small amounts of iodine to salt, which prevents the formation of goiters, has helped eliminate this concern in the US where salt consumption is high. (credit a: modification of work by "Almazi"/Wikimedia Commons; credit b: modification of work by Mike Mozart)

The addition of small amounts of iodine to table salt (iodized salt) has essentially eliminated this health concern in the United States, but as much as 40% of the world's population is still at risk of iodine deficiency. The iodine atoms are added as anions, and each has a 1-charge and a mass number of 127. Determine the numbers of protons, neutrons, and electrons in one of these iodine anions.

Solution

The atomic number of iodine (53) tells us that a neutral iodine atom contains 53 protons in its nucleus and 53 electrons outside its nucleus. Because the sum of the numbers of protons and neutrons equals the mass number, 127 , the number of neutrons is $74(127-53=74)$. Since the iodine is added as a 1 - anion, the number of electrons is 54 [53-(1-)=54].

Check Your Learning

An ion of platinum has a mass number of 195 and contains 74 electrons. How many protons and neutrons does it contain, and what is its charge?

Answer:

78 protons; 117 neutrons; charge is 4+

Chemical Symbols

A chemical symbol is an abbreviation that we use to indicate an element or an atom of an element. For example, the symbol for mercury is Hg (Figure 4.12). We use the same symbol to indicate one atom of mercury (microscopic domain) or to label a container of many atoms of the element mercury (macroscopic domain).

Figure 4.12
The symbol Hg represents the element mercury regardless of the amount; it could represent one atom of mercury or a large amount of mercury.

The symbols for several common elements and their atoms are listed in Table 4.3. Some symbols are derived from the common name of the element; others are abbreviations of the name in another language. Most symbols have one or two letters, but three-letter symbols have been used to describe some elements that have atomic numbers greater than 112. To avoid confusion with other notations, only the first letter of a symbol is capitalized. For example, Co is the symbol for the element cobalt, but CO is the notation for the compound carbon monoxide, which contains atoms of the elements carbon (C) and oxygen (O). All known elements and their symbols are in the periodic table in Figure 3.37.

Table 4.3
Some Common Elements and Their Symbols

Element	Symbol	Element	Symbol
aluminum	Al	iron	Fe (from ferrum)
bromine	Br	lead	Pb (from plumbum)
calcium	Ca	magnesium	Mg

| Element | Symbol | Element | Symbol |
| :--- | :--- | :--- | :--- | :--- |
| carbon | C | mercury | Hg (from hydrargyrum) |
| chlorine | Cl | nitrogen | N |
| chromium | Cr | oxygen | O |
| cobalt | Co | potassium | $\mathrm{K} \mathrm{(from} \mathrm{kalium)}$ |
| copper | Cu (from cuprum) | silicon | Si |
| fluorine | F | silver | Ag (from argentum) |
| gold | Au (from aurum) | sodium | Na (from natrium) |
| helium | He | sulfur | S |
| hydrogen | H | tin | Sn (from stannum) |
| iodine | I | zinc | Zn |

Traditionally, the discoverer (or discoverers) of a new element names the element. However, until the name is recognized by the International Union of Pure and Applied Chemistry (IUPAC), the recommended name of the new element is based on the Latin word(s) for its atomic number. For example, element 106 was called unnilhexium (Unh), element 107 was called unnilseptium (Uns), and element 108 was called unniloctium (Uno) for several years. These elements are now named after scientists (or occasionally locations); for example, element 106 is now known as seaborgium (Sg) in honor of Glenn Seaborg, a Nobel Prize winner who was active in the discovery of several heavy elements. Element 109 was named in honor of Lise Meitner, who discovered nuclear fission, a phenomenon that would have world-changing impacts; Meitner also contributed to the discovery of some major isotopes, discussed immediately below.

Link to Learning

Visit the International Union of Pure and Applied Chemistry website to learn more about IUPAC and explore its periodic table.

Isotopes

The symbol for a specific isotope of any element is written by placing the mass number as a superscript to the left of the element symbol (Figure 4.13). The atomic number is sometimes written as a subscript preceding the symbol, but since this number defines the element's identity, as does its symbol, it is often omitted. For example, magnesium exists as a mixture of three isotopes, each with an atomic number of 12 and with mass numbers of 24,25 , and 26 , respectively. These isotopes can be identified as ${ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$, and ${ }^{26} \mathrm{Mg}$. These isotope symbols are read as "element, mass number" and can be symbolized consistent with this reading. For instance, ${ }^{24} \mathrm{Mg}$ is read as "magnesium 24, " and can be written as "magnesium- 24 " or " $\mathrm{Mg}-24 .{ }^{25} \mathrm{Mg}$ is read as "magnesium 25 ," and can be written as "magnesium- 25 " or "Mg-25." All magnesium atoms have 12 protons in their nucleus. They differ only because a ${ }^{24} \mathrm{Mg}$ atom has 12 neutrons in its nucleus, $\mathrm{a}^{25} \mathrm{Mg}$ atom has 13 neutrons, and ${ }^{26} \mathrm{Mg}$ has 14 neutrons.

Figure 4.13
The symbol for an atom indicates the element via its usual two-letter symbol, the mass number as a left superscript, the atomic number as a left subscript (sometimes omitted), and the charge as a right superscript.

Mass number - $4 \quad 2+-$ Charge

He

Atomic number - 2
 (often omitted)

Information about the naturally occurring isotopes of elements with atomic numbers 1 through 10 is given in Table 4.4. Note that in addition to standard names and symbols, the isotopes of hydrogen are often referred to using common names and accompanying symbols. Hydrogen-2, symbolized ${ }^{2} \mathrm{H}$, is also called deuterium and sometimes symbolized D. Hydrogen-3, symbolized ${ }^{3} \mathrm{H}$, is also called tritium and sometimes symbolized T.

Table 4.4
Nuclear Compositions of Atoms of the Very Light Elements

Element	Symbol	Atomic Number	Number of Protons	Number of Neutrons	Mass (amu)	\% Natural Abundance
hydrogen	${ }_{1}^{1} \mathrm{H}$ (protium)	1	1	0	1.0078	99.989
	${ }_{1}^{2} \mathrm{H}$ (deuterium)	1	1	1	2.0141	0.0115
	${ }_{1}^{3} \mathrm{H}$ (tritium)	1	1	2	3.01605	- (trace)
helium	${ }_{2}^{3} \mathrm{He}$	2	2	1	3.01603	0.00013
	${ }_{2}^{4} \mathrm{He}$	2	2	2	4.0026	100
lithium	${ }_{3}^{6} \mathrm{Li}$	3	3	3	6.0151	7.59
	${ }_{3}^{7} \mathrm{Li}$	3	3	4	7.0160	92.41
beryllium	${ }_{4}^{9} \mathrm{Be}$	4	4	5	9.0122	100
boron	${ }_{5}^{10} \mathrm{~B}$	5	5	5	10.0129	19.9
	${ }_{5}^{11} \mathrm{~B}$	5	5	6	11.0093	80.1
carbon	${ }_{6}^{12} \mathrm{C}$	6	6	6	12.0000	98.89
	${ }_{6}^{13} \mathrm{C}$	6	6	7	13.0034	1.11
	${ }_{6}^{14} \mathrm{C}$	6	6	8	14.0032	- (trace)
nitrogen	${ }_{7}^{14} \mathrm{~N}$	7	7	7	14.0031	99.63
	${ }_{7}^{15} \mathrm{~N}$	7	7	8	15.0001	0.37
oxygen	${ }_{8}^{16} \mathrm{O}$	8	8	8	15.9949	99.757
	${ }_{8}^{17} \mathrm{O}$	8	8	9	16.9991	0.038
	${ }_{8}^{18} \mathrm{O}$	8	8	10	17.9992	0.205
fluorine	${ }_{9}^{19} \mathrm{~F}$	9	9	10	18.9984	100
neon	${ }_{10}^{20} \mathrm{Ne}$	10	10	10	19.9924	90.48

${ }_{10}^{21} \mathrm{Ne}$	10	10	11	20.9938	0.27
${ }_{10}^{22} \mathrm{Ne}$	10	10	12	21.9914	9.25

Link to Learning

Use this simulation to build atoms of the first 10 elements, see which isotopes exist, check nuclear stability, and gain experience with isotope symbols.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. Ernest Rutherford, "The Development of the Theory of Atomic Structure," ed. J. A. Ratcliffe, in Background to Modern Science, eds. Joseph Needham and Walter Pagel, (Cambridge, UK: Cambridge University Press, 1938), 6174. Accessed September 22, 2014, archive.org.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/2-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/the_atom.

Periodic Table

Atomic Mass Periodic Table

Isotopes of an element are atoms with the same atomic number but different mass numbers; isotopes of an element, therefore, differ from each other only in the number of neutrons within the nucleus. When a naturally occurring element is composed of several isotopes, the atomic mass of the element represents the average of the masses of the isotopes involved. A chemical symbol identifies the atoms in a substance using symbols, which are one-, two-, or three-letter abbreviations for the atoms. The discovery of the periodic recurrence of similar properties among the elements led to the formulation of the periodic table, in which the elements are arranged in order of increasing atomic number in rows known as periods and columns known as groups. Elements in the same group of the periodic table have similar chemical properties. Elements can be classified as metals, metalloids, and nonmetals, or as a main-group elements, transition metals, and inner transition metals. Groups are numbered 1-18 from left to right. The elements in group 1 are known as the alkali metals; those in group 2 are the alkaline earth metals; those in 15 are the pnictogens; those in 16 are the chalcogens; those in 17 are the halogens; and those in 18 are the noble gases.

5.1 Atomic Mass

Learning Objectives

By the end of this section, you will be able to:

- Define the average atomic mass
- Calculate average atomic mass and isotopic abundance

Because each proton and each neutron contribute approximately one amu to the mass of an atom, and each electron contributes far less, the atomic mass of a single atom is approximately equal to its mass number (a whole number). However, the average masses of atoms of most elements are not whole numbers because most elements exist naturally as mixtures of two or more isotopes.

The mass of an element shown in a periodic table or listed in a table of atomic masses is a weighted, average mass of all the isotopes present in a naturally occurring sample of that element. This is equal to the sum of each individual isotope's mass multiplied by its fractional abundance.

$$
\text { average mass }=\sum_{i}(\text { fractional abundance } \times \text { isotopic mass })_{i}
$$

For example, the element boron is composed of two isotopes: About 19.9% of all boron atoms are ${ }^{10} \mathrm{~B}$ with a mass of 10.0129 amu , and the remaining 80.1% are ${ }^{11} \mathrm{~B}$ with a mass of 11.0093 amu . The average atomic mass for boron is calculated to be:

$$
\begin{aligned}
& \text { boron average mass }=(0.199 \times 10.0129 \mathrm{amu})+(0.801 \times 11.0093 \mathrm{amu}) \\
&= 1.99 \mathrm{amu}+8.82 \mathrm{amu} \\
&=10.81 \mathrm{amu}
\end{aligned}
$$

It is important to understand that no single boron atom weighs exactly $10.8 \mathrm{amu} ; 10.8 \mathrm{amu}$ is the average mass of all boron atoms, and individual boron atoms weigh either approximately 10 amu or 11 amu .

Watch on YouTube

Example 5.1

Calculation of Average Atomic Mass

A meteorite found in central Indiana contains traces of the noble gas neon picked up from the solar wind during the meteorite's trip through the solar system. Analysis of a sample of the gas showed that it consisted of $91.84 \%{ }^{20} \mathrm{Ne}$ (mass 19.9924 amu), $0.47 \%{ }^{21} \mathrm{Ne}$ (mass 20.9940 amu), and $7.69 \%{ }^{22} \mathrm{Ne}$ (mass 21.9914 amu). What is the average mass of the neon in the solar wind?

Solution

$$
\begin{aligned}
\text { average mass }=(0.9184 \times 19.9924 \mathrm{amu}) & +(0.0047 \times 20.9940 \mathrm{amu})+(0.0769 \times 21.9914 \\
= & (18.36+0.099+1.69) \mathrm{amu} \\
= & 20.15 \mathrm{amu}
\end{aligned}
$$

The average mass of a neon atom in the solar wind is 20.15 amu . (The average mass of a terrestrial neon atom is 20.1796 amu . This result demonstrates that we may find slight differences in the natural abundance of isotopes, depending on their origin.)

Check Your Learning

A sample of magnesium is found to contain 78.70% of ${ }^{24} \mathrm{Mg}$ atoms (mass 23.98 amu), 10.13% of ${ }^{25} \mathrm{Mg}$ atoms (mass 24.99 amu), and 11.17% of ${ }^{26} \mathrm{Mg}$ atoms (mass 25.98 amu). Calculate the average mass of a Mg atom.

Answer:

24.31 amu

We can also do variations of this type of calculation, as shown in the next example.

Example 5.2

Calculation of Percent Abundance

Naturally occurring chlorine consists of ${ }^{35} \mathrm{Cl}$ (mass 34.96885 amu) and ${ }^{37} \mathrm{Cl}$ (mass 36.96590 amu), with an average mass of 35.453 amu . What is the percent composition of Cl in terms of these two isotopes?

Solution

The average mass of chlorine is the fraction that is ${ }^{35} \mathrm{Cl}$ times the mass of ${ }^{35} \mathrm{Cl}$ plus the fraction that is ${ }^{37} \mathrm{Cl}$ times the mass of ${ }^{37} \mathrm{Cl}$.

$$
\text { average mass }=\left(\text { fraction of }{ }^{35} \mathrm{Cl} \times \operatorname{mass} \text { of }{ }^{35} \mathrm{Cl}\right)+\left(\text { fraction of }{ }^{37} \mathrm{Cl} \times \operatorname{mass} \text { of }^{37} \mathrm{Cl}\right)
$$

If we let x represent the fraction that is ${ }^{35} \mathrm{Cl}$, then the fraction that is ${ }^{37} \mathrm{Cl}$ is represented by $1.00-x$.
(The fraction that is ${ }^{35} \mathrm{Cl}+$ the fraction that is ${ }^{37} \mathrm{Cl}$ must add up to 1 , so the fraction of ${ }^{37} \mathrm{Cl}$ must equal 1.00 - the fraction of ${ }^{35} \mathrm{Cl}$.)

Substituting this into the average mass equation, we have:

$$
\begin{array}{ccc}
35.453 \mathrm{amu} & = & (x \times 34.96885 \mathrm{amu})+[(1.00-x) \times 36.96590 \mathrm{amu}] \\
35.453 & = & 34.96885 x+36.96590-36.96590 x \\
1.99705 x & = & 1.513 \\
x & = & \frac{1.513}{1.99705}=0.7576
\end{array}
$$

So solving yields: $x=0.7576$, which means that $1.00-0.7576=0.2424$. Therefore, chlorine consists of 75.76% ${ }^{35} \mathrm{Cl}$ and $24.24 \%{ }^{37} \mathrm{Cl}$.

Check Your Learning

Naturally occurring copper consists of ${ }^{63} \mathrm{Cu}$ (mass 62.9296 amu) and ${ }^{65} \mathrm{Cu}$ (mass 64.9278 amu), with an average mass of 63.546 amu . What is the percent composition of Cu in terms of these two isotopes?

Answer:

69.15\% Cu-63 and 30.85\% Cu-65

Link to Learning

Use this simulation to make mixtures of the main isotopes of the first 18 elements, gain experience with average atomic mass, and check naturally occurring isotope ratios using the Isotopes and Atomic Mass simulation.

As you will learn, isotopes are important in nature and especially in human understanding of science and medicine. Let's consider just one natural, stable isotope: Oxygen-18, which is noted in the table above and is referred to as one of the environmental isotopes. It is important in paleoclimatology, for example, because scientists can use the ratio between Oxygen-18 and Oxygen-16 in an ice core to determine the temperature of precipitation over time. Oxygen-18 was also critical to the discovery of metabolic pathways and the mechanisms of enzymes. Mildred Cohn pioneered the usage of these isotopes to act as tracers, so that researchers could follow their path through reactions and gain a better understanding of what is happening. One of her first discoveries provided insight into the phosphorylation of glucose that takes place in mitochondria. And the methods of using isotopes for this research contributed to entire fields of study.

The occurrence and natural abundances of isotopes can be experimentally determined using an instrument called a mass spectrometer. Mass spectrometry (MS) is widely used in chemistry, forensics, medicine, environmental science, and many other fields to analyze and help identify the substances in a sample of material. In a typical mass spectrometer (Figure 5.1), the sample is vaporized and exposed to a high-energy electron beam that causes the sample's atoms (or molecules) to become electrically charged, typically by losing one or more electrons. These cations then pass through a (variable) electric or magnetic field that deflects each cation's path to an extent that depends on both its mass and charge (similar to how the path of a large steel ball rolling past a magnet is deflected to a lesser extent that that of a small steel ball). The ions are detected, and a plot of the relative number of ions generated versus their mass-to-charge ratios (a mass spectrum) is made. The height of each vertical feature or peak in a mass spectrum is proportional to the fraction of cations with the specified mass-to-charge ratio. Since its initial use during the development of modern atomic theory, MS has evolved to become a powerful tool for chemical analysis in a wide range of applications.

Figure 5.1
Analysis of zirconium in a mass spectrometer produces a mass spectrum with peaks showing the different isotopes of Zr.

Link to Learning

Watch this explanation of of mass spectrometry.

Watch this video from the Royal Society for Chemistry for a brief description of the rudiments of mass spectrometry.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

5.2 The Periodic Table

Learning Objectives

By the end of this section, you will be able to:

- State the periodic law and explain the organization of elements in the periodic table
- Predict the general properties of elements based on their location within the periodic table
- Identify metals, nonmetals, and metalloids by their properties and/or location on the periodic table

As early chemists worked to purify ores and discovered more elements, they realized that various elements could be grouped together by their similar chemical behaviors. One such grouping includes lithium (Li), sodium (Na), and potassium (K): These elements all are shiny, conduct heat and electricity well, and have similar chemical properties. A second grouping includes calcium (Ca), strontium (Sr), and barium (Ba), which also are shiny, good conductors of heat and electricity, and have chemical properties in common. However, the specific properties of these two groupings are notably different from each other. For example: Li, Na, and K are much more reactive than are Ca, Sr, and $\mathrm{Ba} ; \mathrm{Li}, \mathrm{Na}$, and K form compounds with oxygen in a ratio of two of their atoms to one oxygen atom, whereas Ca, Sr, and Ba form compounds with one of their atoms to one oxygen atom. Fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) also exhibit similar properties to each other, but these properties are drastically different from those of any of the elements above.

Dimitri Mendeleev in Russia (1869) and Lothar Meyer in Germany (1870) independently recognized that there was a periodic relationship among the properties of the elements known at that time. Both published tables with the elements arranged according to increasing atomic mass. But Mendeleev went one step further than Meyer: He used his table to predict the existence of elements that would have the properties similar to aluminum and silicon, but were yet unknown. The discoveries of gallium (1875) and germanium (1886) provided great support for Mendeleev's work. Although Mendeleev and Meyer had a long dispute over priority, Mendeleev's contributions to the development of the periodic table are now more widely recognized (Figure 5.2).

Figure 5.2
(a) Dimitri Mendeleev is widely credited with creating (b) the first periodic table of the elements. (credit a: modification of work by Serge Lachinov; credit b: modification of work by "Den fjättrade ankan"/Wikimedia Commons)

(a)

(b)

By the twentieth century, it became apparent that the periodic relationship involved atomic numbers rather than atomic masses. The modern statement of this relationship, the periodic law, is as follows: the properties of the elements are periodic functions of their atomic numbers. A modern periodic table arranges the elements in increasing order of their atomic numbers and groups atoms with similar properties in the same vertical column (Figure 5.3). Each box represents an element and contains its atomic number, symbol, average atomic mass, and (sometimes) name. The elements are arranged in seven horizontal rows, called periods or series, and 18 vertical columns, called groups. Groups are labeled at the top of each column. In the United States, the labels traditionally were numerals with capital letters. However, IUPAC recommends that the numbers 1 through 18 be used, and these labels are more common. For the table to fit on a single page, parts of two of the rows, a total of 14 columns, are usually written below the main body of the table.

Figure 5.3
Elements in the periodic table are organized according to their properties.

Even after the periodic nature of elements and the table itself were widely accepted, gaps remained. Mendeleev had predicted, and others including Henry Moseley had later confirmed, that there should be elements below Manganese in Group 7. German chemists Ida Tacke and Walter Noddack set out to find the elements, a quest being pursued by scientists around the world. Their method was unique in that they did not only consider the properties of manganese, but also the elements horizontally adjacent to the missing elements 43 and 75 on the table. Thus, by investigating ores containing minerals of ruthenium (Ru), tungsten (W), osmium (Os), and so on, they were able to identify naturally occurring elements that helped complete the table. Rhenium, one of their discoveries, was one of the last natural elements to be discovered and is the last stable element to be discovered. (Francium, the last natural element to be discovered, was identified by Marguerite Perey in 1939.)

Many elements differ dramatically in their chemical and physical properties, but some elements are similar in their behaviors. For example, many elements appear shiny, are malleable (able to be deformed without breaking) and ductile
(can be drawn into wires), and conduct heat and electricity well. Other elements are not shiny, malleable, or ductile, and are poor conductors of heat and electricity. We can sort the elements into large classes with common properties: metals (elements that are shiny, malleable, good conductors of heat and electricity-shaded yellow); nonmetals (elements that appear dull, poor conductors of heat and electricity-shaded green); and metalloids (elements that conduct heat and electricity moderately well, and possess some properties of metals and some properties of nonmetals-shaded purple).

The elements can also be classified into the main-group elements (or representative elements) in the columns labeled 1,2 and $13-18$; the transition metals in the columns labeled $3-12 ;{ }^{1}$ and inner transition metals in the two rows at the bottom of the table (the top-row elements are called lanthanides and the bottom-row elements are actinides; Figure 5.4). The elements can be subdivided further by more specific properties, such as the composition of the compounds they form. For example, the elements in group 1 (the first column) form compounds that consist of one atom of the element and one atom of hydrogen. These elements (except hydrogen) are known as alkali metals, and they all have similar chemical properties. The elements in group 2 (the second column) form compounds consisting of one atom of the element and two atoms of hydrogen: These are called alkaline earth metals, with similar properties among members of that group. Other groups with specific names are the pnictogens (group 15), chalcogens (group 16), halogens (group 17), and the noble gases (group 18, also known as inert gases). The groups can also be referred to by the first element of the group: For example, the chalcogens can be called the oxygen group or oxygen family. Hydrogen is a unique, nonmetallic element with properties similar to both group 1 and group 17 elements. For that reason, hydrogen may be shown at the top of both groups, or by itself.

Figure 5.4

The periodic table organizes elements with similar properties into groups.

Link to Learning

Check out this interactive periodic table, which you can use to explore the properties of the elements (includes podcasts and videos of each element). You may also want to try this alternative interactive period table, which shows photos of all the elements.

Example 5.3

Naming Groups of Elements

Atoms of each of the following elements are essential for life. Give the group name for the following elements:
(a) chlorine
(b) calcium
(c) sodium
(d) sulfur

Solution

The family names are as follows:
(a) halogen
(b) alkaline earth metal
(c) alkali metal
(d) chalcogen

Check Your Learning

Give the group name for each of the following elements:
(a) krypton
(b) selenium
(c) barium
(d) lithium

Answer:

(a) noble gas; (b) chalcogen; (c) alkaline earth metal; (d) alkali metal

As you will learn in your further study of chemistry, elements in groups often behave in a somewhat similar manner. This is partly due to the number of electrons in their outer shell and their similar readiness to bond. These shared properties can have far-ranging implications in nature, science, and medicine. For example, when Gertrude Elion and George

Hitchens were investigating ways to interrupt cell and virus replication to fight diseases, they utilized the similarity between sulfur and oxygen (both in Group 16) and their capacity to bond in similar ways. Elion focused on purines, which are key components of DNA and which contain oxygen. She found that by introducing sulfur-based compounds (called purine analogues) that mimic the structure of purines, molecules within DNA would bond to the analogues rather than the "regular" DNA purine. With the normal DNA bonding and structure altered, Elion successfully interrupted cell replication. At its core, the strategy worked because of the similarity between sulfur and oxygen. Her discovery led directly to important treatments for leukemia. Overall, Elion's work with George Hitchens not only led to more treatments, but also changed the entire methodology of drug development. By using specific elements and compounds to target specific aspects of tumor cells, viruses, and bacteria, they laid the groundwork for many of today's most common and important medicines, used to help millions of people each year. They were awarded the Nobel Prize in 1988.

In studying the periodic table, you might have noticed something about the atomic masses of some of the elements. Element 43 (technetium), element 61 (promethium), and most of the elements with atomic number 84 (polonium) and higher have their atomic mass given in square brackets. This is done for elements that consist entirely of unstable, radioactive isotopes (you will learn more about radioactivity in the nuclear chemistry chapter). An average atomic weight cannot be determined for these elements because their radioisotopes may vary significantly in relative abundance, depending on the source, or may not even exist in nature. The number in square brackets is the atomic mass number (and approximate atomic mass) of the most stable isotope of that element.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. Per the IUPAC definition, group 12 elements are not transition metals, though they are often referred to as such. Additional details on this group's elements are provided in a chapter on transition metals and coordination chemistry.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/periodic_table.

Moles \& Mass

Atom Isomers Atomic Mass Moles

A convenient amount unit for expressing very large numbers of atoms or molecules is the mole. Experimental measurements have determined the number of entities composing 1 mole of substance to be 6.022×10^{23}, a quantity called Avogadro's number. The mass in grams of 1 mole of substance is its molar mass. The formula mass of a substance is the sum of the average atomic masses of each atom represented in the chemical formula and is expressed in atomic mass units. The formula mass of a covalent compound is also called the molecular mass. Due to the use of the same reference substance in defining the atomic mass unit and the mole, the formula mass (amu) and molar mass ($\mathrm{g} / \mathrm{mol}$) for any substance are numerically equivalent (for example, one $\mathrm{H}_{2} \mathrm{O}$ molecule weighs approximately 18 amu and 1 mole of $\mathrm{H}_{2} \mathrm{O}$ molecules weighs approximately 18 g).

6.1 The Mole

Learning Objectives

By the end of this section, you will be able to:

- Define the amount unit mole and the related quantity Avogadro's number
- Explain the relation between mass, moles, and numbers of atoms or molecules and perform calculations deriving these quantities from one another

The identity of a substance is defined not only by the types of atoms or ions it contains, but by the quantity of each type of atom or ion. For example, water, $\mathrm{H}_{2} \mathrm{O}$, and hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, are alike in that their respective molecules are composed of hydrogen and oxygen atoms. However, because a hydrogen peroxide molecule contains two oxygen atoms, as opposed to the water molecule, which has only one, the two substances exhibit very different properties. Today, we possess sophisticated instruments that allow the direct measurement of these defining microscopic traits; however, the same traits were originally derived from the measurement of macroscopic properties (the masses and volumes of bulk quantities of matter) using relatively simple tools (balances and volumetric glassware). This experimental approach required the introduction of a new unit for amount of substances, the mole, which remains indispensable in modern chemical science.

The mole is an amount unit similar to familiar units like pair, dozen, gross, etc. It provides a specific measure of the number of atoms or molecules in a sample of matter. One Latin connotation for the word "mole" is "large mass" or "bulk," which is consistent with its use as the name for this unit. The mole provides a link between an easily measured macroscopic property, bulk mass, and an extremely important fundamental property, number of atoms, molecules, and so forth. A mole of substance is that amount in which there are $6.02214076 \times 10^{23}$ discrete entities (atoms or molecules). This large number is a fundamental constant known as Avogadro's number (N_{A}) or the Avogadro constant in honor of Italian scientist Amedeo Avogadro. This constant is properly reported with an explicit unit of "per mole," a conveniently rounded version being $6.022 \times 10^{23} / \mathrm{mol}$.

Consistent with its definition as an amount unit, 1 mole of any element contains the same number of atoms as 1 mole of any other element. The masses of 1 mole of different elements, however, are different, since the masses of the individual atoms are drastically different. The molar mass of an element (or compound) is the mass in grams of 1 mole of that substance, a property expressed in units of grams per mole ($\mathrm{g} / \mathrm{mol}$) (see Figure 6.1).

Figure 6.1
Each sample contains 6.022×10^{23} atoms -1.00 mol of atoms. From left to right (top row): 65.4 g zinc, 12.0 g carbon, 24.3 g magnesium, and 63.5 g copper. From left to right (bottom row): 32.1 g sulfur, 28.1 g silicon, 207 g lead, and 118.7 g tin. (credit: modification of work by Mark Ott)

The molar mass of any substance is numerically equivalent to its atomic or formula weight in amu. Per the amu definition, a single ${ }^{12} \mathrm{C}$ atom weighs 12 amu (its atomic mass is 12 amu). A mole of ${ }^{12} \mathrm{C}$ atoms weighs 12 g (its molar mass is $12 \mathrm{~g} / \mathrm{mol}$). This relationship holds for all elements, since their atomic masses are measured relative to that of the amu-reference substance, ${ }^{12} \mathrm{C}$. Extending this principle, the molar mass of a compound in grams is likewise numerically equivalent to its formula mass in amu (Figure 6.2).

Figure 6.2

Each sample contains 6.02×10^{23} molecules or formula units -1.00 mol of the compound or element. Clock-wise from the upper left: 130.2 g of $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}$ (1-octanol, formula mass 130.2 amu), 454.4 g of Hgl_{2} (mercury(II) iodide, formula mass 454.4 amu), 32.0 g of $\mathrm{CH}_{3} \mathrm{OH}$ (methanol, formula mass 32.0 amu) and 256.5 g of S_{8} (sulfur, formula mass 256.5 amu). (credit: Sahar Atwa)

While atomic mass and molar mass are numerically equivalent, keep in mind that they are vastly different in terms of scale, as represented by the vast difference in the magnitudes of their respective units (amu versus g). To appreciate the enormity of the mole, consider a small drop of water weighing about 0.03 g (see Figure 6.3). Although this represents just a tiny fraction of 1 mole of water ($\sim 18 \mathrm{~g}$), it contains more water molecules than can be clearly imagined. If the molecules were distributed equally among the roughly seven billion people on earth, each person would receive more than 100 billion molecules.

Figure 6.3

The number of molecules in a single droplet of water is roughly 100 billion times greater than the number of people on earth. (credit: "tanakawho"/Wikimedia commons)

Link to Learning

The mole is used in chemistry to represent 6.022×10^{23} of something, but it can be difficult to conceptualize such a large number. Watch the explanation in this video:

Watch on YouTube

After watching the video, you can visit the TedEd website to complete the "Think" questions and to explore more information by reviewing the "Dig Deeper" information.

The relationships between formula mass, the mole, and Avogadro's number can be applied to compute various quantities that describe the composition of substances and compounds. For example, if we know the mass and chemical composition of a substance, we can determine the number of moles and calculate number of atoms or molecules in the sample. Likewise, if we know the number of moles of a substance, we can derive the number of atoms or molecules and calculate the substance's mass.

Example 6.1

Deriving Moles from Grams for an Element

According to nutritional guidelines from the US Department of Agriculture, the estimated average requirement for dietary potassium is 4.7 g . What is the estimated average requirement of potassium in moles?

Solution

The mass of K is provided, and the corresponding amount of K in moles is requested. Referring to the periodic table, the atomic mass of K is 39.10 amu , and so its molar mass is $39.10 \mathrm{~g} / \mathrm{mol}$. The given mass of $\mathrm{K}(4.7 \mathrm{~g})$ is a bit more than one-tenth the molar mass (39.10 g), so a reasonable "ballpark" estimate of the number of moles would be slightly greater than 0.1 mol.
The molar amount of a substance may be calculated by dividing its mass (g) by its molar mass ($\mathrm{g} / \mathrm{mol}$):

The factor-label method supports this mathematical approach since the unit " g " cancels and the answer has units of "mol:"
$4.7 \mathrm{~g} \mathrm{~K}\left(\frac{\mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{~g} \mathrm{~K}}\right)=0.12 \mathrm{~mol} \mathrm{~K}$

The calculated magnitude $(0.12 \mathrm{~mol} \mathrm{~K})$ is consistent with our ballpark expectation, since it is a bit greater than 0.1 mol .

Check Your Learning

Beryllium is a light metal used to fabricate transparent X -ray windows for medical imaging instruments. How many moles of Be are in a thin-foil window weighing 3.24 g ?

Answer

0.360 mol

Example 6.2

Deriving Grams from Moles for an Element

A liter of air contains $9.2 \times 10^{-4} \mathrm{~mol}$ argon. What is the mass of Ar in a liter of air?

Solution

The molar amount of Ar is provided and must be used to derive the corresponding mass in grams. Since the amount of Ar is less than 1 mole, the mass will be less than the mass of 1 mole of Ar, approximately 40 g . The molar amount in question is approximately one-one thousandth ($\sim 10^{-3}$) of a mole, and so the corresponding mass should be roughly one-one thousandth of the molar mass ($\sim 0.04 \mathrm{~g}$):

In this case, logic dictates (and the factor-label method supports) multiplying the provided amount (mol) by the molar mass ($\mathrm{g} / \mathrm{mol}$):

$$
9.2 \times 10^{-4} \mathrm{~mol} \mathrm{Ar}\left(\frac{39.95 \mathrm{~g} \mathrm{Ar}}{\mathrm{~mol} \mathrm{Ar}}\right)=0.037 \mathrm{~g} \mathrm{Ar}
$$

The result is in agreement with our expectations, around 0.04 g Ar .

Check Your Learning

What is the mass of 2.561 mol of gold?

Answer

504.4 g

Example 6.3

Deriving Number of Atoms from Mass for an Element

Copper is commonly used to fabricate electrical wire (Figure 6.4). How many copper atoms are in 5.00 g of copper wire?
Figure 6.4
Copper wire is composed of many, many atoms of Cu. (credit: Emilian Robert Vicol)

Solution

The number of Cu atoms in the wire may be conveniently derived from its mass by a two-step computation: first calculating the molar amount of Cu , and then using Avogadro's number $\left(N_{A}\right)$ to convert this molar amount to number of Cu atoms:

Considering that the provided sample mass $(5.00 \mathrm{~g})$ is a little less than one-tenth the mass of 1 mole of Cu (~64 g), a reasonable estimate for the number of atoms in the sample would be on the order of one-tenth N_{A}, or approximately $10^{22} \mathrm{Cu}$ atoms. Carrying out the two-step computation yields:

$$
5.00 \mathrm{~g} \mathrm{Cu}\left(\frac{\mathrm{~mol} \mathrm{Cu}}{63.55 \mathrm{~g} \mathrm{Cu}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{Cu} \text { atoms }}{\mathrm{mol} \mathrm{Cu}}\right)=4.74 \times 10^{22} \mathrm{Cu} \text { atoms }
$$

The factor-label method yields the desired cancellation of units, and the computed result is on the order of 10^{22} as expected.

Check Your Learning

A prospector panning for gold in a river collects 15.00 g of pure gold. How many Au atoms are in this quantity of gold?

Answer

$4.586 \times 10^{22} \mathrm{Au}$ atoms

Example 6.4

Deriving Moles from Grams for a Compound

Our bodies synthesize protein from amino acids. One of these amino acids is glycine, which has the molecular formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$. How many moles of glycine molecules are contained in 28.35 g of glycine?

Solution

We can derive the number of moles of a compound from its mass following the same procedure we used for an element in Example 6.1.

The molar mass of glycine is required for this calculation, and it is computed in the same fashion as its molecular mass. One mole of glycine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$, contains 2 moles of carbon, 5 moles of hydrogen, 2 moles of oxygen, and 1 mole of nitrogen:
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Element } & \begin{array}{c}\text { Quantity } \\ \text { (mol element/ } \\ \text { mol compound) }\end{array} & 2 & \times & 12.01 & = \\ \hline \text { (g/mol element) }\end{array} \quad \begin{array}{c}\text { Subtotal } \\ \text { (g/mol compound) }\end{array}\right]$

The provided mass of glycine ($\sim 28 \mathrm{~g}$) is a bit more than one-third the molar mass ($\sim 75 \mathrm{~g} / \mathrm{mol}$), so we would expect the computed result to be a bit greater than one-third of a mole ($\sim 0.33 \mathrm{~mol}$). Dividing the compound's mass by its molar mass yields:

$$
28.35 \text { g glycine }\left(\frac{\text { mol glycine }}{75.07 \text { g glycine }}\right)=0.378 \mathrm{~mol} \text { glycine }
$$

This result is consistent with our rough estimate.

Check Your Learning

How many moles of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, are in a $25-\mathrm{g}$ sample of sucrose?

Answer

0.073 mol

Example 6.5

Deriving Grams from Moles for a Compound

Vitamin C is a covalent compound with the molecular formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$. The recommended daily dietary allowance of vitamin C for children aged $4-8$ years is 1.42
\times
$10^{-4} \mathrm{~mol}$. What is the mass of this allowance in grams?

Solution

As for elements, the mass of a compound can be derived from its molar amount as shown:

The molar mass for this compound is computed to be $176.124 \mathrm{~g} / \mathrm{mol}$. The given number of moles is a very small fraction of a mole ($\sim 10^{-4}$ or one-ten thousandth); therefore, we would expect the corresponding mass to be about one-ten thousandth of the molar mass ($\sim 0.02 \mathrm{~g}$). Performing the calculation, we get:

$$
1.42 \times 10^{-4} \mathrm{~mol} \text { vitamin } \mathrm{C}\left(\frac{176.124 \mathrm{~g} \text { vitamin } \mathrm{C}}{\text { mol vitamin } \mathrm{C}}\right)=0.0250 \mathrm{~g} \text { vitamin } \mathrm{C}
$$

This is consistent with the anticipated result.

Check Your Learning

What is the mass of 0.443 mol of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$?

Answer

14.2 g

Example 6.6

Deriving the Number of Atoms and Molecules from the Mass of a Compound

A packet of an artificial sweetener contains 40.0 mg of saccharin $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}\right)$, which has the structural formula:

Given that saccharin has a molar mass of $183.18 \mathrm{~g} / \mathrm{mol}$, how many saccharin molecules are in a $40.0-\mathrm{mg}$ ($0.0400-\mathrm{g}$) sample of saccharin? How many carbon atoms are in the same sample?

Solution

The number of molecules in a given mass of compound is computed by first deriving the number of moles, as demonstrated in Example 6.4, and then multiplying by Avogadro's number:

Mass of $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$ (g)		Moles of $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$ (mol)		Number of
	Divide by molar mass ($\mathrm{g} / \mathrm{mol}$)		Multiply by Avogadro's number $\left(\mathrm{mol}^{-1}\right)$	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$ molecules

Using the provided mass and molar mass for saccharin yields:

$$
\begin{gathered}
0.0400 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}\left(\frac{\mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}}{183.18 \mathrm{gC}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S} \text { molecules }}{1 \mathrm{molC}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}}\right) \\
=1.31 \times 10^{20} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S} \text { molecules }
\end{gathered}
$$

The compound's formula shows that each molecule contains seven carbon atoms, and so the number of C atoms in the provided sample is:
$1.31 \times 10^{20} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$ molecules $\left(\frac{7 \mathrm{C} \text { atoms }}{1 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S} \text { molecule }}\right)=9.17 \times 10^{20} \mathrm{C}$ atoms

Check Your Learning

How many $\mathrm{C}_{4} \mathrm{H}_{10}$ molecules are contained in 9.213 g of this compound? How many hydrogen atoms?

Answer

9.545×10^{22} molecules $\mathrm{C}_{4} \mathrm{H}_{10} ; 9.545 \times 10^{23}$ atoms H

How Sciences Interconnect

Counting Neurotransmitter Molecules in the Brain

The brain is the control center of the central nervous system (Figure 6.5). It sends and receives signals to and from muscles and other internal organs to monitor and control their functions; it processes stimuli detected by sensory organs to guide interactions with the external world; and it houses the complex physiological processes that give rise to our intellect and emotions. The broad field of neuroscience spans all aspects of the structure and function of the central nervous system, including research on the anatomy and physiology of the brain. Great progress has been made in brain research over the past few decades, and the BRAIN Initiative, a federal initiative announced in 2013, aims to accelerate and capitalize on these advances through the concerted efforts of various industrial, academic, and government agencies (see BRAIN Initiative website for details).

Figure 6.5
(a) A typical human brain weighs about 1.5 kg and occupies a volume of roughly 1.1 L . (b) Information is transmitted in brain tissue and throughout the central nervous system by specialized cells called neurons (micrograph shows cells at $1600 \times$ magnification).

Specialized cells called neurons transmit information between different parts of the central nervous system by way of electrical and chemical signals. Chemical signaling occurs at the interface between different neurons when one of the cells releases molecules (called neurotransmitters) that diffuse across the small gap between the cells (called the synapse) and bind to the surface of the other cell. These neurotransmitter molecules are stored in small intracellular structures called vesicles that fuse to the cell membrane and then break open to release their contents when the neuron is appropriately stimulated. This process is called exocytosis (see Figure 6.6). One neurotransmitter that has been very extensively studied is dopamine, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$. Dopamine is involved in various neurological processes that impact a wide variety of human behaviors. Dysfunctions in the dopamine systems of the brain underlie serious neurological diseases such as Parkinson's and schizophrenia.

Figure 6.6
(a) Chemical signals are transmitted from neurons to other cells by the release of neurotransmitter molecules into the small gaps (synapses) between the cells. (b) Dopamine, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$, is a neurotransmitter involved in a number of neurological processes.

One important aspect of the complex processes related to dopamine signaling is the number of neurotransmitter molecules released during exocytosis. Since this number is a central factor in determining neurological response (and subsequent human thought and action), it is important to know how this number changes with certain controlled stimulations, such as the administration of drugs. It is also important to understand the mechanism responsible for any changes in the number of neurotransmitter molecules released -for example, some dysfunction in exocytosis, a change in the number of vesicles in the neuron, or a change in the number of neurotransmitter molecules in each vesicle.

Significant progress has been made recently in directly measuring the number of dopamine molecules stored in individual vesicles and the amount actually released when the vesicle undergoes exocytosis. Using miniaturized probes that can selectively detect dopamine molecules in very small amounts, scientists have determined that the vesicles of a certain type of mouse brain neuron contain an average of 30,000 dopamine molecules per vesicle (about
5×10^{-20}
mol or 50 zmol). Analysis of these neurons from mice subjected to various drug therapies shows significant changes in the average number of dopamine molecules contained in individual vesicles, increasing or decreasing by up to three-fold, depending on the specific drug used. These studies also indicate that not all of the dopamine in a given vesicle is released during exocytosis, suggesting that it may be possible to regulate the fraction released using pharmaceutical therapies. ${ }^{1}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

6.2 Formula Mass

Learning Objectives

By the end of this section, you will be able to:

- Calculate formula masses for covalent and ionic compounds

Many argue that modern chemical science began when scientists started exploring the quantitative as well as the qualitative aspects of chemistry. For example, Dalton's atomic theory was an attempt to explain the results of measurements that allowed him to calculate the relative masses of elements combined in various compounds. Understanding the relationship between the masses of atoms and the chemical formulas of compounds allows us to quantitatively describe the composition of substances.

An earlier chapter of this text described the development of the atomic mass unit, the concept of average atomic masses, and the use of chemical formulas to represent the elemental makeup of substances. These ideas can be extended to calculate the formula mass of a substance by summing the average atomic masses of all the atoms represented in the substance's formula.

Formula Mass for Covalent Substances

For covalent substances, the formula represents the numbers and types of atoms composing a single molecule of the substance; therefore, the formula mass may be correctly referred to as a molecular mass. Consider chloroform $\left(\mathrm{CHCl}_{3}\right)$, a covalent compound once used as a surgical anesthetic and now primarily used in the production of the "anti-stick" polymer, Teflon. The molecular formula of chloroform indicates that a single molecule contains one carbon atom, one hydrogen atom, and three chlorine atoms. The average molecular mass of a chloroform molecule is therefore equal to the sum of the average atomic masses of these atoms. Figure 6.7 outlines the calculations used to derive the molecular mass of chloroform, which is 119.37 amu .

Figure 6.7
The average mass of a chloroform molecule, CHCl_{3}, is 119.37 amu, which is the sum of the average atomic masses of each of its constituent atoms. The model shows the molecular structure of chloroform.

Element	Quantity		Average atomic mass (amu)	Subtotal $(\mathbf{a m u})$	
C	1	\times	12.01	$=$	12.01
H	1	\times	1.008	$=$	1.008
Cl	3	\times	35.45	$=$	106.35
Molecular mass					119.37

Likewise, the molecular mass of an aspirin molecule, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, is the sum of the atomic masses of nine carbon atoms, eight hydrogen atoms, and four oxygen atoms, which amounts to 180.15 amu (Figure 6.8).

Figure 6.8
The average mass of an aspirin molecule is 180.15 amu . The model shows the molecular structure of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$.

Element	Quantity		Average atomic mass (amu)	Subtotal $(\mathbf{a m u})$	
C	9	\times	12.01	$=$	108.09
H	8	\times	1.008	$=$	8.064
O	4	\times	16.00	$=$	64.00
Molecular mass					180.15

Example 6.8

Computing Molecular Mass for a Covalent Compound

Ibuprofen, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, is a covalent compound and the active ingredient in several popular nonprescription pain medications, such as Advil and Motrin. What is the molecular mass (amu) for this compound?

Solution

Molecules of this compound are comprised of 13 carbon atoms, 18 hydrogen atoms, and 2 oxygen atoms. Following the approach described above, the average molecular mass for this compound is therefore:

Element	Quantity		Average atomic mass (amu)	Subtotal $(\mathbf{a m u})$	
C	13	\times	12.01	$=$	156.13
H	18	\times	1.008	$=$	18.144
O	2	\times	16.00	$=$	32.00

Check Your Learning

Acetaminophen, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$, is a covalent compound and the active ingredient in several popular nonprescription pain medications, such as Tylenol. What is the molecular mass (amu) for this compound?

Answer

151.16 amu

Formula Mass for Ionic Compounds

Ionic compounds are composed of discrete cations and anions combined in ratios to yield electrically neutral bulk matter. The formula mass for an ionic compound is calculated in the same way as the formula mass for covalent compounds: by summing the average atomic masses of all the atoms in the compound's formula. Keep in mind, however, that the formula for an ionic compound does not represent the composition of a discrete molecule, so it may not correctly be referred to as the "molecular mass."

As an example, consider sodium chloride, NaCl , the chemical name for common table salt. Sodium chloride is an ionic compound composed of sodium cations, Na^{+}, and chloride anions, Cl^{-}, combined in a $1: 1$ ratio. The formula mass for
this compound is computed as 58.44 amu (see Figure 6.9).
Figure 6.9
Table salt, NaCl , contains an array of sodium and chloride ions combined in a 1:1 ratio. Its formula mass is 58.44 amu.

Element	Quantity	Average atomic mass (amu)	Subtotal		
Na	1	\times	22.99	$=$	22.99
Cl	1	\times	35.45	$=$	35.45
Formula mass					58.44

Note that the average masses of neutral sodium and chlorine atoms were used in this computation, rather than the masses for sodium cations and chlorine anions. This approach is perfectly acceptable when computing the formula mass of an ionic compound. Even though a sodium cation has a slightly smaller mass than a sodium atom (since it is missing an electron), this difference will be offset by the fact that a chloride anion is slightly more massive than a chloride atom (due to the extra electron). Moreover, the mass of an electron is negligibly small with respect to the mass of a typical atom. Even when calculating the mass of an isolated ion, the missing or additional electrons can generally be ignored, since their contribution to the overall mass is negligible, reflected only in the nonsignificant digits that will be lost when the computed mass is properly rounded. The few exceptions to this guideline are very light ions derived from elements with precisely known atomic masses.

Example 6.9

Computing Formula Mass for an Ionic Compound

Aluminum sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, is an ionic compound that is used in the manufacture of paper and in various water purification processes. What is the formula mass (amu) of this compound?

Solution

The formula for this compound indicates it contains Al^{3+} and $\mathrm{SO}_{4}{ }^{2-}$ ions combined in a $2: 3$ ratio. For purposes of computing a formula mass, it is helpful to rewrite the formula in the simpler format, $\mathrm{Al}_{2} \mathrm{~S}_{3} \mathrm{O}_{12}$. Following the approach outlined above, the formula mass for this compound is calculated as follows:

Element	Quantity	Average atomic mass (amu)	Subtotal (amu)		
Al	2	\times	26.98	$=$	53.96
S	3	\times	32.06	$=$	96.18
O	12	\times	16.00	192.00	

Check Your Learning

Calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, is an ionic compound and a common anti-caking agent added to food products. What is the formula mass (amu) of calcium phosphate?

Answer

310.18 amu

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. Omiatek, Donna M., Amanda J. Bressler, Ann-Sofie Cans, Anne M. Andrews, Michael L. Heien, and Andrew G. Ewing. "The Real Catecholamine Content of Secretory Vesicles in the CNS Revealed by Electrochemical Cytometry." Scientific Report 3 (2013): 1447, accessed January 14, 2015, doi:10.1038/srep01447.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/moles_mass.

Light

Abstract

Light Electromagnetic Energy

Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c, of 2.998 $\times 10^{8} \mathrm{~m} / \mathrm{s}$. This radiation shows wavelike behavior, which can be characterized by a frequency, v, and a wavelength, λ, such that $c=\lambda v$. Light is an example of a traveling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths. Electromagnetic radiation that passes through two closely spaced narrow slits having dimensions roughly similar to the wavelength will show an interference pattern that is a result of constructive and destructive interference of the waves. Electromagnetic radiation also demonstrates properties of particles called photons. The energy of a photon is related to the frequency (or alternatively, the wavelength) of the radiation as $E=h v$ (or $E=h c l$), where h is Planck's constant. That light demonstrates both wavelike and particle-like behavior is known as wave-particle duality. All forms of electromagnetic radiation share these properties, although various forms including X-rays, visible light, microwaves, and radio waves interact differently with matter and have very different practical applications.

7.1 Electromagnetic Energy

Learning Objectives

By the end of this section, you will be able to:

- Explain the basic behavior of waves, including travelling waves and standing waves
- Describe the wave nature of light
- Use appropriate equations to calculate related light-wave properties such as period, frequency, wavelength, and energy
- Describe the particle nature of light

The nature of light has been a subject of inquiry since antiquity. In the seventeenth century, Isaac Newton performed experiments with lenses and prisms and was able to demonstrate that white light consists of the individual colors of the rainbow combined together. Newton explained his optics findings in terms of a "corpuscular" view of light, in which
light was composed of streams of extremely tiny particles travelling at high speeds according to Newton's laws of motion. Others in the seventeenth century, such as Christiaan Huygens, had shown that optical phenomena such as reflection and refraction could be equally well explained in terms of light as waves travelling at high speed through a medium called "luminiferous aether" that was thought to permeate all space. Early in the nineteenth century, Thomas Young demonstrated that light passing through narrow, closely spaced slits produced interference patterns that could not be explained in terms of Newtonian particles but could be easily explained in terms of waves. Later in the nineteenth century, after James Clerk Maxwell developed his theory of electromagnetic radiation and showed that light was the visible part of a vast spectrum of electromagnetic waves, the particle view of light became thoroughly discredited. By the end of the nineteenth century, scientists viewed the physical universe as roughly comprising two separate domains: matter composed of particles moving according to Newton's laws of motion, and electromagnetic radiation consisting of waves governed by Maxwell's equations. Today, these domains are referred to as classical mechanics and classical electrodynamics (or classical electromagnetism). Although there were a few physical phenomena that could not be explained within this framework, scientists at that time were so confident of the overall soundness of this framework that they viewed these aberrations as puzzling paradoxes that would ultimately be resolved somehow within this framework. As we shall see, these paradoxes led to a contemporary framework that intimately connects particles and waves at a fundamental level called wave-particle duality, which has superseded the classical view.

Visible light and other forms of electromagnetic radiation play important roles in chemistry, since they can be used to infer the energies of electrons within atoms and molecules. Much of modern technology is based on electromagnetic radiation. For example, radio waves from a mobile phone, X-rays used by dentists, the energy used to cook food in your microwave, the radiant heat from red-hot objects, and the light from your television screen are forms of electromagnetic radiation that all exhibit wavelike behavior.

Waves

A wave is an oscillation or periodic movement that can transport energy from one point in space to another. Common examples of waves are all around us. Shaking the end of a rope transfers energy from your hand to the other end of the rope, dropping a pebble into a pond causes waves to ripple outward along the water's surface, and the expansion of air that accompanies a lightning strike generates sound waves (thunder) that can travel outward for several miles. In each of these cases, kinetic energy is transferred through matter (the rope, water, or air) while the matter remains essentially in place. An insightful example of a wave occurs in sports stadiums when fans in a narrow region of seats rise simultaneously and stand with their arms raised up for a few seconds before sitting down again while the fans in neighboring sections likewise stand up and sit down in sequence. While this wave can quickly encircle a large stadium in a few seconds, none of the fans actually travel with the wave-they all stay in or above their seats.

Waves need not be restricted to travel through matter. As Maxwell showed, electromagnetic waves consist of an electric field oscillating in step with a perpendicular magnetic field, both of which are perpendicular to the direction of travel. These waves can travel through a vacuum at a constant speed of $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the speed of light (denoted by c).

All waves, including forms of electromagnetic radiation, are characterized by, a wavelength (denoted by λ, the lowercase Greek letter lambda), a frequency (denoted by v, the lowercase Greek letter nu), and an amplitude. As can be seen in Figure 7.1, the wavelength is the distance between two consecutive peaks or troughs in a wave (measured in meters in the SI system). Electromagnetic waves have wavelengths that fall within an enormous range-wavelengths of kilometers $\left(10^{3} \mathrm{~m}\right)$ to picometers $\left(10^{-12} \mathrm{~m}\right)$ have been observed. The frequency is the number of wave cycles that pass a specified point in space in a specified amount of time (in the SI system, this is measured in seconds). A cycle corresponds to one complete wavelength. The unit for frequency, expressed as cycles per second $\left[\mathrm{s}^{-1}\right]$, is the hertz (Hz). Common multiples of this unit are megahertz, ($1 \mathrm{MHz}=1 \times 10^{6} \mathrm{~Hz}$) and gigahertz ($1 \mathrm{GHz}=1 \times 10^{9} \mathrm{~Hz}$). The amplitude corresponds to the magnitude of the wave's displacement and so, in Figure 7.1, this corresponds to one-half the height between the peaks
and troughs. The amplitude is related to the intensity of the wave, which for light is the brightness, and for sound is the loudness.

Figure 7.1
One-dimensional sinusoidal waves show the relationship among wavelength, frequency, and speed. The wave with the shortest wavelength has the highest frequency. Amplitude is one-half the height of the wave from peak to trough.

The product of a wave's wavelength (λ) and its frequency $(v), \lambda v$, is the speed of the wave. Thus, for electromagnetic radiation in a vacuum, speed is equal to the fundamental constant, c :

$$
c=2.998 \times 10^{8} \mathrm{~ms}^{-1}=\lambda \nu
$$

Wavelength and frequency are inversely proportional: As the wavelength increases, the frequency decreases. The inverse proportionality is illustrated in Figure 7.2. This figure also shows the electromagnetic spectrum, the range of all types of electromagnetic radiation. Each of the various colors of visible light has specific frequencies and wavelengths associated with them, and you can see that visible light makes up only a small portion of the electromagnetic spectrum. Because the technologies developed to work in various parts of the electromagnetic spectrum are different, for reasons of convenience and historical legacies, different units are typically used for different parts of the spectrum. For example, radio waves are usually specified as frequencies (typically in units of MHz), while the visible region is usually specified in wavelengths (typically in units of $n m$ or angstroms).

Watch on YouTube

Figure 7.2
Portions of the electromagnetic spectrum are shown in order of decreasing frequency and increasing wavelength. (credit "Cosmic ray": modification of work by NASA; credit "PET scan": modification of work by the National Institute of Health; credit "X-ray": modification of work by Dr. Jochen Lengerke; credit "Dental curing": modification of work by the Department of the Navy; credit "Night vision": modification of work by the Department of the Army; credit "Remote": modification of work by Emilian Robert Vicol; credit "Cell phone": modification of work by Brett Jordan; credit "Microwave oven": modification of work by Billy Mabray; credit "Ultrasound": modification of work by Jane Whitney; credit "AM radio": modification of work by Dave Clausen)

Example 7.1

Determining the Frequency and Wavelength of Radiation

A sodium streetlight gives off yellow light that has a wavelength of $589 \mathrm{~nm}\left(1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\right)$. What is the frequency of this light?

Solution

We can rearrange the equation $c=\lambda v$ to solve for the frequency:

$$
\nu=\frac{c}{\lambda}
$$

Since c is expressed in meters per second, we must also convert 589 nm to meters.

$$
\nu=\left(\frac{2.998 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}\right)\left(\frac{1 \times 10^{9} \mathrm{~nm}}{1 \mathrm{~m}}\right)=5.09 \times 10^{14} \mathrm{~s}^{-1}
$$

Check Your Learning

One of the frequencies used to transmit and receive cellular telephone signals in the United States is 850 MHz . What is the wavelength in meters of these radio waves?

Answer

Chemistry in Everyday Life

Wireless Communication

Figure 7.3
Radio and cell towers are typically used to transmit long-wavelength electromagnetic radiation. Increasingly, cell towers are designed to blend in with the landscape, as with the Tucson, Arizona, cell tower (right) disguised as a palm tree. (credit left: modification of work by Sir Mildred Pierce; credit middle: modification of work by M.O. Stevens)

Many valuable technologies operate in the radio ($3 \mathrm{kHz}-300 \mathrm{GHz}$) frequency region of the electromagnetic spectrum. At the low frequency (low energy, long wavelength) end of this region are AM (amplitude modulation) radio signals ($540-2830 \mathrm{kHz}$) that can travel long distances. FM (frequency modulation) radio signals are used at higher frequencies ($87.5-108.0 \mathrm{MHz}$). In AM radio, the information is transmitted by varying the amplitude of the wave (Figure 7.4). In FM radio, by contrast, the amplitude is constant and the instantaneous frequency varies.

Figure 7.4
This schematic depicts how amplitude modulation (AM) and frequency modulation (FM) can be used to transmit a radio wave.

NDODMm m

Other technologies also operate in the radio-wave portion of the electromagnetic spectrum. For example, 4G cellular telephone signals are approximately 880 MHz , while Global Positioning System (GPS) signals operate at 1.228 and 1.575 GHz , local area wireless technology (Wi-Fi) networks operate at 2.4 to 5 GHz , and highway toll sensors operate at 5.8 GHz . The frequencies associated with these applications are convenient because such waves tend not to be absorbed much by common building materials.

One particularly characteristic phenomenon of waves results when two or more waves come into contact: They interfere with each other. Figure 7.5 shows the interference patterns that arise when light passes through narrow slits closely spaced about a wavelength apart. The fringe patterns produced depend on the wavelength, with the fringes being more closely spaced for shorter wavelength light passing through a given set of slits. When the light passes through the two slits, each slit effectively acts as a new source, resulting in two closely spaced waves coming into contact at the detector (the camera in this case). The dark regions in Figure 7.5 correspond to regions where the peaks for the wave from one slit happen to coincide with the troughs for the wave from the other slit (destructive interference), while the brightest regions correspond to the regions where the peaks for the two waves (or their two troughs) happen to coincide (constructive interference). Likewise, when two stones are tossed close together into a pond, interference patterns are visible in the interactions between the waves produced by the stones. Such interference patterns cannot be explained by particles moving according to the laws of classical mechanics.

Figure 7.5
Interference fringe patterns are shown for light passing through two closely spaced, narrow slits. The spacing of the fringes depends on the wavelength, with the fringes being more closely spaced for the shorter-wavelength blue light. (credit: PASCO)

Portrait of a Chemist

Dorothy Crowfoot Hodgkin

X-rays exhibit wavelengths of approximately $0.01-10 \mathrm{~nm}$. Since these wavelengths are comparable to the spaces between atoms in a crystalline solid, X-rays are scattered when they pass through crystals. The scattered rays undergo constructive and destructive interference that creates a specific diffraction pattern that may be measured and used to precisely determine the positions of atoms within the crystal. This phenomenon of X -ray diffraction is the basis for very powerful techniques enabling the determination of molecular structure. One of the pioneers who applied this powerful technology to important biochemical substances was Dorothy Crowfoot Hodgkin.

Born in Cairo, Egypt, in 1910 to British parents, Dorothy's fascination with chemistry was fostered early in her life. At age 11 she was enrolled in a prestigious English grammar school where she was one of just two girls allowed to study chemistry. On her 16th birthday, her mother, Molly, gifted her a book on X-ray crystallography, which had a profound impact on the trajectory of her career. She studied chemistry at Oxford University, graduating with first-class honors in 1932 and directly entering Cambridge University to pursue a doctoral degree. At Cambridge, Dorothy recognized the promise of X-ray crystallography for protein structure determinations, conducting research that earned her a PhD in 1937. Over the course of a very productive career, Dr. Hodgkin was credited with determining structures for several important biomolecules, including cholesterol iodide, penicillin, and vitamin B12. In recognition of her achievements in the use of X-ray techniques to elucidate the structures of biochemical substances, she was awarded the 1964 Nobel Prize in Chemistry. In 1969, she led a team of scientists who deduced the structure of insulin, facilitating the mass production of this hormone and greatly advancing the treatment of diabetic patients worldwide. Dr. Hodgkin continued working with the international scientific community, earning numerous distinctions and awards prior to her death in 1993.

Not all waves are travelling waves. Standing waves (also known as stationary waves) remain constrained within some region of space. As we shall see, standing waves play an important role in our understanding of the electronic structure of atoms and molecules. The simplest example of a standing wave is a one-dimensional wave associated with a vibrating string that is held fixed at its two end points. Figure 7.6 shows the four lowest-energy standing waves (the fundamental wave and the lowest three harmonics) for a vibrating string at a particular amplitude. Although the string's motion lies mostly within a plane, the wave itself is considered to be one dimensional, since it lies along the length of the string. The motion of string segments in a direction perpendicular to the string length generates the waves and so the amplitude of the waves is visible as the maximum displacement of the curves seen in Figure 7.6. The key observation from the figure is that only those waves having an integer number, n, of half-wavelengths between the end points can form. A system with fixed end points such as this restricts the number and type of the possible waveforms. This is an example of quantization, in which only discrete values from a more general set of continuous values of some property are observed. Another important observation is that the harmonic waves (those waves displaying more than one-half wavelength) all have one or more points between the two end points that are not in motion. These special points are nodes. The energies of the standing waves with a given amplitude in a vibrating string increase with the
number of half-wavelengths n. Since the number of nodes is $n-1$, the energy can also be said to depend on the number of nodes, generally increasing as the number of nodes increases.

Figure 7.6

A vibrating string shows some one-dimensional standing waves. Since the two end points of the string are held fixed, only waves having an integer number of half-wavelengths can form. The points on the string between the end points that are not moving are called the nodes.

An example of two-dimensional standing waves is shown in Figure 7.7, which shows the vibrational patterns on a flat surface. Although the vibrational amplitudes cannot be seen like they could in the vibrating string, the nodes have been made visible by sprinkling the drum surface with a powder that collects on the areas of the surface that have minimal displacement. For one-dimensional standing waves, the nodes were points on the line, but for two-dimensional standing waves, the nodes are lines on the surface (for three-dimensional standing waves, the nodes are two-dimensional surfaces within the three-dimensional volume).

Figure 7.7
Two-dimensional standing waves can be visualized on a vibrating surface. The surface has been sprinkled with a powder that collects near the nodal lines. There are two types of nodes visible: radial nodes (circles) and angular nodes (radii).

Link to Learning

Watch the formation of various radial nodes as singer Imogen Heap projects her voice across a kettle drum.

Watch on YouTube

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-1-electromagneticenergy

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/light.

Blackbody Radiation, Photoelectric Effect

Light Blackbody radiation Photoelectric effect

Electromagnetic radiation can be generated by exciting matter to higher energies, such as by heating it. The emitted light can be either continuous (incandescent sources like the sun) or discrete (from specific types of excited atoms). Continuous spectra often have distributions that can be approximated as blackbody radiation at some appropriate temperature. The line spectrum of hydrogen can be obtained by passing the light from an electrified tube of hydrogen gas through a prism.

8.1 Blackbody Radiation and the Ultraviolet Catastrophe

Learning Objectives

By the end of this section, you should be able to:

- Explain the phenomenon of blackbody radiation
- Identify ways in which blackbody radiation contradicted accepted scientific understandings.

The last few decades of the nineteenth century witnessed intense research activity in commercializing newly discovered electric lighting. This required obtaining a better understanding of the distributions of light emitted from various sources being considered. Artificial lighting is usually designed to mimic natural sunlight within the limitations of the underlying technology. Such lighting consists of a range of broadly distributed frequencies that form a continuous spectrum. Figure 8.1 shows the wavelength distribution for sunlight. The most intense radiation is in the visible region, with the intensity dropping off rapidly for shorter wavelength ultraviolet (UV) light, and more slowly for longer wavelength infrared (IR) light.

Figure 8.1
The spectral distribution (light intensity vs. wavelength) of sunlight reaches the Earth's atmosphere as UV light, visible light, and IR light. The unabsorbed sunlight at the top of the atmosphere has a distribution that approximately matches the theoretical distribution of a blackbody at $5250^{\circ} \mathrm{C}$, represented by the blue curve. (credit: modification of work by American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation)

Solar Radiation Spectrum

In Figure 8.1, the solar distribution is compared to a representative distribution, called a blackbody spectrum, that corresponds to a temperature of $5250^{\circ} \mathrm{C}$. The blackbody spectrum matches the solar spectrum quite well. A blackbody is a convenient, ideal emitter that approximates the behavior of many materials when heated. It is "ideal" in the same sense that an ideal gas is a convenient, simple representation of real gases that works well, provided that the pressure is not too high nor the temperature too low. A good approximation of a blackbody that can be used to observe blackbody radiation is a metal oven that can be heated to very high temperatures. The oven has a small hole allowing for the light being emitted within the oven to be observed with a spectrometer so that the wavelengths and their intensities can be measured. Figure 8.2 shows the resulting curves for some representative temperatures. Each distribution depends only on a single parameter: the temperature. The maxima in the blackbody curves, $\lambda_{\text {max }}$, shift to shorter wavelengths as the temperature increases, reflecting the observation that metals being heated to high temperatures begin to glow a darker red that becomes brighter as the temperature increases, eventually becoming white hot at very high temperatures as the intensities of all of the visible wavelengths become appreciable. This common observation was at the heart of the first paradox that showed the fundamental limitations of classical physics that we will examine.

Physicists derived mathematical expressions for the blackbody curves using well-accepted concepts from the theories of classical mechanics and classical electromagnetism. The theoretical expressions as functions of temperature fit the observed experimental blackbody curves well at longer wavelengths, but showed significant discrepancies at shorter
wavelengths. Not only did the theoretical curves not show a peak, they absurdly showed the intensity becoming infinitely large as the wavelength became smaller, which would imply that everyday objects at room temperature should be emitting large amounts of UV light. This became known as the "ultraviolet catastrophe" because no one could find any problems with the theoretical treatment that could lead to such unrealistic short-wavelength behavior. Finally, around 1900, Max Planck derived a theoretical expression for blackbody radiation that fit the experimental observations exactly (within experimental error). Planck developed his theoretical treatment by extending the earlier work that had been based on the premise that the atoms composing the oven vibrated at increasing frequencies (or decreasing wavelengths) as the temperature increased, with these vibrations being the source of the emitted electromagnetic radiation. But where the earlier treatments had allowed the vibrating atoms to have any energy values obtained from a continuous set of energies (perfectly reasonable, according to classical physics), Planck found that by restricting the vibrational energies to discrete values for each frequency, he could derive an expression for blackbody radiation that correctly had the intensity dropping rapidly for the short wavelengths in the UV region.

$$
E=n h \nu, n=1,2,3, \ldots
$$

The quantity h is a constant now known as Planck's constant, in his honor. Although Planck was pleased he had resolved the blackbody radiation paradox, he was disturbed that to do so, he needed to assume the vibrating atoms required quantized energies, which he was unable to explain. The value of Planck's constant is very small, 6.626×10^{-34} joule seconds (J s), which helps explain why energy quantization had not been observed previously in macroscopic phenomena.

Figure 8.2
Blackbody spectral distribution curves are shown for some representative temperatures.

8.2 The Photoelectric Effect

Learning Objectives

By the end of this section, you should be able to:

- Explain the phenomenon of the photoelectric effect
- Calculate the work function, kinetic energy of an electron, or energy of light incident on the surface given the other two.

The next paradox in the classical theory to be resolved concerned the photoelectric effect (Figure 8.3). It had been observed that electrons could be ejected from the clean surface of a metal when light having a frequency greater than some threshold frequency was shone on it. Surprisingly, the kinetic energy of the ejected electrons did not depend on the brightness of the light, but increased with increasing frequency of the light. Since the electrons in the metal had a certain amount of binding energy keeping them there, the incident light needed to have more energy to free the electrons. According to classical wave theory, a wave's energy depends on its intensity (which depends on its amplitude), not its frequency. One part of these observations was that the number of electrons ejected within in a given time period was seen to increase as the brightness increased. In 1905, Albert Einstein was able to resolve the paradox by incorporating Planck's quantization findings into the discredited particle view of light (Einstein actually won his Nobel prize for this work, and not for his theories of relativity for which he is most famous).

Einstein argued that the quantized energies that Planck had postulated in his treatment of blackbody radiation could be applied to the light in the photoelectric effect so that the light striking the metal surface should not be viewed as a wave, but instead as a stream of particles (later called photons) whose energy depended on their frequency, according to Planck's formula, $E=h v$ (or, in terms of wavelength using $c=v \lambda$,
$E=\frac{h c}{\lambda}$
). Electrons were ejected when hit by photons having sufficient energy (a frequency greater than the threshold). The greater the frequency, the greater the kinetic energy imparted to the escaping electrons by the collisions. Processes that increase the energy of an atom involve the absorption of light and are called endothermic. Processes that decrease the energy involve emission of light and are called exothermic. Einstein also argued that the light intensity did not depend on the amplitude of the incoming wave, but instead corresponded to the number of photons striking the surface within a given time period. This explains why the number of ejected electrons increased with increasing brightness, since the greater the number of incoming photons, the greater the likelihood that they would collide with some of the electrons.

With Einstein's findings, the nature of light took on a new air of mystery. Although many light phenomena could be explained either in terms of waves or particles, certain phenomena, such as the interference patterns obtained when light passed through a double slit, were completely contrary to a particle view of light, while other phenomena, such as the photoelectric effect, were completely contrary to a wave view of light. Somehow, at a deep fundamental level still not fully understood, light is both wavelike and particle-like. This is known as wave-particle duality.

Figure 8.3
Photons with low frequencies do not have enough energy to cause electrons to be ejected via the photoelectric effect. For any frequency of light above the threshold frequency, the kinetic energy of an ejected electron will increase linearly with the energy of the incoming photon.

$$
E=h \nu
$$

no ex eject

Watch on YouTube

Example 8.1

Calculating the Energy of Radiation

When we see light from a neon sign, we are observing radiation from excited neon atoms. If this radiation has a wavelength of 640 nm , what is the energy of the photon being emitted?

Solution

We use the part of Planck's equation that includes the wavelength, λ, and convert units of nanometers to meters so that the units of λ and c are the same.

$$
\begin{gathered}
E=\frac{h c}{\lambda} \\
E=\frac{\left(6.626 \times 10^{-34} \mathrm{~J}\right)\left(2.999 \times 10^{8} \mathrm{~ms}^{-1}\right)}{(640 \mathrm{~mm})\left(\frac{\mathrm{m}}{\left.10^{\mathrm{mm} \mathrm{~mm}}\right)}\right.} \\
E=3.10 \times 10^{-19} \mathrm{~J}
\end{gathered}
$$

Check Your Learning

The microwaves in an oven are of a specific frequency that will heat the water molecules contained in food. (This is why most plastics and glass do not become hot in a microwave oven-they do not contain water molecules.) This frequency is about $3 \times 10^{9} \mathrm{~Hz}$. What is the energy of one photon in these microwaves?

Answer

2
\times
$10^{-24} \mathrm{~J}$

Link to Learning

Experiment with this simulation of photoelectric effect to see how intensity, frequency, type of metal, and other factors influence the ejected photons.

Example 8.2

Photoelectric Effect

Identify which of the following statements are false and, where necessary, change the italicized word or phrase to make them true, consistent with Einstein's explanation of the photoelectric effect.
(a) Increasing the brightness of incoming light increases the kinetic energy of the ejected electrons.
(b) Increasing the wavelength of incoming light increases the kinetic energy of the ejected electrons.
(c) Increasing the brightness of incoming light increases the number of ejected electrons.
(d) Increasing the frequency of incoming light can increase the number of ejected electrons.

Solution

(a) False. Increasing the brightness of incoming light has no effect on the kinetic energy of the ejected electrons. Only energy, not the number or amplitude, of the photons influences the kinetic energy of the electrons.
(b) False. Increasing the frequency of incoming light increases the kinetic energy of the ejected electrons.

Frequency is proportional to energy and inversely proportional to wavelength. Frequencies above the threshold value transfer the excess energy into the kinetic energy of the electrons.
(c) True. Because the number of collisions with photons increases with brighter light, the number of ejected electrons increases.
(d) True with regard to the threshold energy binding the electrons to the metal. Below this threshold, electrons are not emitted and above it they are. Once over the threshold value, further increasing the frequency does not increase the number of ejected electrons

Check Your Learning

Calculate the threshold energy in $\mathrm{kJ} / \mathrm{mol}$ of electrons in aluminum, given that the lowest frequency photon for which the photoelectric effect is observed is $9.87 \times 10^{14} \mathrm{~Hz}$.

Answer

394

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-1-electromagneticenergy

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/blackbody_radiation_photoelectric_effect.

Atomic Spectra, Bohr Model

Bohr Model
Atomic Spectra

This line spectrum was simple enough that an empirical formula called the Rydberg formula could be derived from the spectrum. Three historically important paradoxes from the late 19th and early 20th centuries that could not be explained within the existing framework of classical mechanics and classical electromagnetism were the blackbody problem, the photoelectric effect, and the discrete spectra of atoms. The resolution of these paradoxes ultimately led to quantum theories that superseded the classical theories. Bohr incorporated Planck's and Einstein's quantization ideas into a model of the hydrogen atom that resolved the paradox of atom stability and discrete spectra. The Bohr model of the hydrogen atom explains the connection between the quantization of photons and the quantized emission from atoms. Bohr described the hydrogen atom in terms of an electron moving in a circular orbit about a nucleus. He postulated that the electron was restricted to certain orbits characterized by discrete energies. Transitions between these allowed orbits result in the absorption or emission of photons. When an electron moves from a higher-energy orbit to a more stable one, energy is emitted in the form of a photon. To move an electron from a stable orbit to a more excited one, a photon of energy must be absorbed. Using the Bohr model, we can calculate the energy of an electron and the radius of its orbit in any oneelectron system.

9.1 Line Spectra

Another paradox within the classical electromagnetic theory that scientists in the late nineteenth century struggled with concerned the light emitted from atoms and molecules. When solids, liquids, or condensed gases are heated sufficiently, they radiate some of the excess energy as light. Photons produced in this manner have a range of energies, and thereby produce a continuous spectrum in which an unbroken series of wavelengths is present. Most of the light generated from stars (including our sun) is produced in this fashion. You can see all the visible wavelengths of light present in sunlight by using a prism to separate them. As can be seen in Figure 9.1, sunlight also contains UV light (shorter wavelengths) and IR light (longer wavelengths) that can be detected using instruments but that are invisible to the human eye.

Figure 9.1
The spectral distribution (light intensity vs. wavelength) of sunlight reaches the Earth's atmosphere as UV light, visible light, and IR light. The unabsorbed sunlight at the top of the atmosphere has a distribution that approximately matches the theoretical distribution of a blackbody at $5250^{\circ} \mathrm{C}$, represented by the blue curve. (credit: modification of work by American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation)

Solar Radiation Spectrum

Incandescent (glowing) solids such as tungsten filaments in incandescent lights also give off light that contains all wavelengths of visible light. These continuous spectra can often be approximated by blackbody radiation curves at some appropriate temperature, such as those shown in Figure 9.2.

Figure 9.2
Blackbody spectral distribution curves are shown for some representative temperatures.

In contrast to continuous spectra, light can also occur as discrete or line spectra having very narrow line widths interspersed throughout the spectral regions such as those shown in Figure 9.4. Exciting a gas at low partial pressure using an electrical current, or heating it, will produce line spectra. Fluorescent light bulbs and neon signs operate in this way (Figure 9.3). Each element displays its own characteristic set of lines, as do molecules, although their spectra are generally much more complicated.

Figure 9.3
Neon signs operate by exciting a gas at low partial pressure using an electrical current. This sign shows the elaborate artistic effects that can be achieved. (credit: Dave Shaver)

Each emission line consists of a single wavelength of light, which implies that the light emitted by a gas consists of a set of discrete energies. For example, when an electric discharge passes through a tube containing hydrogen gas at low pressure, the H_{2} molecules are broken apart into separate H atoms and we see a blue-pink color. Passing the light through a prism produces a line spectrum, indicating that this light is composed of photons of four visible wavelengths, as shown in Figure 9.4.

Figure 9.4

Compare the two types of emission spectra: continuous spectrum of white light (top) and the line spectra of the light from excited sodium, hydrogen, calcium, and mercury atoms.

The origin of discrete spectra in atoms and molecules was extremely puzzling to scientists in the late nineteenth century, since according to classical electromagnetic theory, only continuous spectra should be observed. Even more puzzling, in 1885, Johann Balmer was able to derive an empirical equation that related the four visible wavelengths of light emitted by hydrogen atoms to whole integers. That equation is the following one, in which k is a constant:

$$
\frac{1}{\lambda}=k\left(\frac{1}{4}-\frac{1}{n^{2}}\right), n=3,4,5,6
$$

Other discrete lines for the hydrogen atom were found in the UV and IR regions. Johannes Rydberg generalized Balmer's work and developed an empirical formula that predicted all of hydrogen's emission lines, not just those restricted to the visible range, where, n_{1} and n_{2} are integers, $n_{1}<n_{2}$, and
R_{∞}
is the Rydberg constant $\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)$.

$$
\frac{1}{\lambda}=R_{\infty}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

Even in the late nineteenth century, spectroscopy was a very precise science, and so the wavelengths of hydrogen were measured to very high accuracy, which implied that the Rydberg constant could be determined very precisely as well. That such a simple formula as the Rydberg formula could account for such precise measurements seemed astounding at the time, but it was the eventual explanation for emission spectra by Neils Bohr in 1913 that ultimately convinced scientists to abandon classical physics and spurred the development of modern quantum mechanics.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

9.2 The Bohr Model

Learning Objectives

By the end of this section, you will be able to:

- Describe the Bohr model of the hydrogen atom
- Use the Rydberg equation to calculate energies of light emitted or absorbed by hydrogen atoms

Following the work of Ernest Rutherford and his colleagues in the early twentieth century, the picture of atoms consisting of tiny dense nuclei surrounded by lighter and even tinier electrons continually moving about the nucleus was well established. This picture was called the planetary model, since it pictured the atom as a miniature "solar system" with the electrons orbiting the nucleus like planets orbiting the sun. The simplest atom is hydrogen, consisting of a single proton as the nucleus about which a single electron moves. The electrostatic force attracting the electron to the proton depends only on the distance between the two particles. This classical mechanics description of the atom is incomplete, however, since an electron moving in an elliptical orbit would be accelerating (by changing direction) and, according to classical electromagnetism, it should continuously emit electromagnetic radiation. This loss in orbital energy should result in the electron's orbit getting continually smaller until it spirals into the nucleus, implying that atoms are inherently unstable.

In 1913, Niels Bohr attempted to resolve the atomic paradox by ignoring classical electromagnetism's prediction that the orbiting electron in hydrogen would continuously emit light. Instead, he incorporated into the classical mechanics description of the atom Planck's ideas of quantization and Einstein's finding that light consists of photons whose energy is proportional to their frequency. Bohr assumed that the electron orbiting the nucleus would not normally emit any radiation (the stationary state hypothesis), but it would emit or absorb a photon if it moved to a different orbit. The energy absorbed or emitted would reflect differences in the orbital energies according to this equation:

$$
|\Delta E|=\left|E_{\mathrm{f}}-E_{\mathrm{i}}\right|=h \nu=\frac{h c}{\lambda}
$$

In this equation, h is Planck's constant and E_{i} and E_{f} are the initial and final orbital energies, respectively. The absolute value of the energy difference is used, since frequencies and wavelengths are always positive. Instead of allowing for continuous values of energy, Bohr assumed the energies of these electron orbitals were quantized:

$$
E_{n}=-\frac{k}{n^{2}}, n=1,2,3, \ldots
$$

In this expression, k is a constant comprising fundamental constants such as the electron mass and charge and Planck's constant. Inserting the expression for the orbit energies into the equation for ΔE gives

$$
\Delta E=k\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=\frac{h c}{\lambda}
$$

or

$$
\frac{1}{\lambda}=\frac{k}{h c}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

which is identical to the Rydberg equation in which
$R_{\infty}=\frac{k}{h c}$.
When Bohr calculated his theoretical value for the Rydberg constant,

R_{∞},

and compared it with the experimentally accepted value, he got excellent agreement. Since the Rydberg constant was one of the most precisely measured constants at that time, this level of agreement was astonishing and meant that Bohr's model was taken seriously, despite the many assumptions that Bohr needed to derive it.

The lowest few energy levels are shown in Figure 9.5. One of the fundamental laws of physics is that matter is most stable with the lowest possible energy. Thus, the electron in a hydrogen atom usually moves in the $n=1$ orbit, the orbit in which it has the lowest energy. When the electron is in this lowest energy orbit, the atom is said to be in its ground electronic state (or simply ground state). If the atom receives energy from an outside source, it is possible for the electron to move to an orbit with a higher n value and the atom is now in an excited electronic state (or simply an excited state) with a higher energy. When an electron transitions from an excited state (higher energy orbit) to a less excited state, or ground state, the difference in energy is emitted as a photon. Similarly, if a photon is absorbed by an atom, the energy of the photon moves an electron from a lower energy orbit up to a more excited one. We can relate the energy of electrons in atoms to what we learned previously about energy. The law of conservation of energy says that we can neither create nor destroy energy. Thus, if a certain amount of external energy is required to excite an electron from one energy level to another, that same amount of energy will be liberated when the electron returns to its initial state (Figure 9.6).

Since Bohr's model involved only a single electron, it could also be applied to the single electron ions $\mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$, and so forth, which differ from hydrogen only in their nuclear charges, and so one-electron atoms and ions are collectively referred to as hydrogen-like atoms. The energy expression for hydrogen-like atoms is a generalization of the hydrogen atom energy, in which Z is the nuclear charge (+1 for hydrogen, +2 for $\mathrm{He},+3$ for Li , and so on) and k has a value of $2.179 \times 10^{-18} \mathrm{~J}$.

$$
E_{n}=-\frac{k Z^{2}}{n^{2}}
$$

The sizes of the circular orbits for hydrogen-like atoms are given in terms of their radii by the following expression, in which
a_{0}
is a constant called the Bohr radius, with a value of $5.292 \times 10^{-11} \mathrm{~m}$:

$$
r=\frac{n^{2}}{Z} a_{0}
$$

The equation also shows us that as the electron's energy increases (as n increases), the electron is found at greater distances from the nucleus. This is implied by the inverse dependence of electrostatic attraction on distance, since, as the electron moves away from the nucleus, the electrostatic attraction between it and the nucleus decreases and it is held less tightly in the atom. Note that as n gets larger and the orbits get larger, their energies get closer to zero, and so the limits
$n \rightarrow \infty$
and
$r \rightarrow \infty$
imply that $E=0$ corresponds to the ionization limit where the electron is completely removed from the nucleus. Thus, for hydrogen in the ground state $n=1$, the ionization energy would be:

$$
\Delta E=E_{n \rightarrow \infty}-E_{1}=0+k=k
$$

With three extremely puzzling paradoxes now solved (blackbody radiation, the photoelectric effect, and the hydrogen atom), and all involving Planck's constant in a fundamental manner, it became clear to most physicists at that time that the classical theories that worked so well in the macroscopic world were fundamentally flawed and could not be extended down into the microscopic domain of atoms and molecules. Unfortunately, despite Bohr's remarkable achievement in deriving a theoretical expression for the Rydberg constant, he was unable to extend his theory to the next simplest atom, He, which only has two electrons. Bohr's model was severely flawed, since it was still based on the classical mechanics notion of precise orbits, a concept that was later found to be untenable in the microscopic domain, when a proper model of quantum mechanics was developed to supersede classical mechanics.

Figure 9.5

Quantum numbers and energy levels in a hydrogen atom. The more negative the calculated value, the lower the energy.

Energy, n

Example 9.1

Calculating the Energy of an Electron in a Bohr Orbit

Early researchers were very excited when they were able to predict the energy of an electron at a particular distance from the nucleus in a hydrogen atom. If a spark promotes the electron in a hydrogen atom into an orbit with $n=3$, what is the calculated energy, in joules, of the electron?

Solution

The energy of the electron is given by this equation:

$$
E=\frac{-k Z^{2}}{n^{2}}
$$

The atomic number, Z, of hydrogen is $1 ; k=2.179$
\times
$10^{-18} \mathrm{~J}$; and the electron is characterized by an n value of 3 . Thus,

$$
E=\frac{-\left(2.179 \times 10^{-18} \mathrm{~J}\right) \times(1)^{2}}{(3)^{2}}=-2.421 \times 10^{-19} \mathrm{~J}
$$

Check Your Learning

The electron in Figure 9.6 is promoted even further to an orbit with $n=6$. What is its new energy?

Answer

-6.053
\times
$10^{-20} \mathrm{~J}$

Figure 9.6
The horizontal lines show the relative energy of orbits in the Bohr model of the hydrogen atom, and the vertical arrows depict the energy of photons absorbed (left) or emitted (right) as electrons move between these orbits.

Energy, n

Example 9.2

Calculating the Energy and Wavelength of Electron Transitions in a Oneelectron (Bohr) System

What is the energy (in joules) and the wavelength (in meters) of the line in the spectrum of hydrogen that represents the movement of an electron from Bohr orbit with $n=4$ to the orbit with $n=6$? In what part of the electromagnetic spectrum do we find this radiation?

Solution

In this case, the electron starts out with $n=4$, so $n_{1}=4$. It comes to rest in the $n=6$ orbit, so $n_{2}=6$. The difference in energy between the two states is given by this expression:

$$
\begin{gathered}
\Delta E=E_{1}-E_{2}=2.179 \times 10^{-18}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
\Delta E=2.179 \times 10^{-18}\left(\frac{1}{4^{2}}-\frac{1}{6^{2}}\right) \mathrm{J} \\
\Delta E=2.179 \times 10^{-18}\left(\frac{1}{16}-\frac{1}{36}\right) \mathrm{J}
\end{gathered}
$$

$$
\Delta E=7.566 \times 10^{-20} \mathrm{~J}
$$

This energy difference is positive, indicating a photon enters the system (is absorbed) to excite the electron from the $n=4$ orbit up to the $n=6$ orbit. The wavelength of a photon with this energy is found by the expression
$E=\frac{h c}{\lambda}$.

Rearrangement gives:

$$
\begin{gathered}
\lambda=\frac{h c}{E} \\
=\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right) \times \frac{2.998 \times 10^{8} \mathrm{~m}^{-1}}{7.566 \times 10^{-20} \mathrm{~J}} \\
=2.626 \times 10^{-6} \mathrm{~m}
\end{gathered}
$$

From the illustration of the electromagnetic spectrum in Electromagnetic Energy, we can see that this wavelength is found in the infrared portion of the electromagnetic spectrum.

Check Your Learning

What is the energy in joules and the wavelength in meters of the photon produced when an electron falls from the $n=5$ to the $n=3$ level in a He^{+}ion $\left(Z=2\right.$ for $\left.\mathrm{He}^{+}\right)$?

Answer

$$
\begin{aligned}
& 6.198 \\
& \times \\
& 10^{-19} \mathrm{~J} ; 3.205 \\
& \times \\
& 10^{-7} \mathrm{~m}
\end{aligned}
$$

Bohr's model of the hydrogen atom provides insight into the behavior of matter at the microscopic level, but it does not account for electron-electron interactions in atoms with more than one electron. It does introduce several important features of all models used to describe the distribution of electrons in an atom. These features include the following:

- The energies of electrons (energy levels) in an atom are quantized, described by quantum numbers: integer numbers having only specific allowed value and used to characterize the arrangement of electrons in an atom.
- An electron's energy increases with increasing distance from the nucleus.
- The discrete energies (lines) in the spectra of the elements result from quantized electronic energies.

Of these features, the most important is the postulate of quantized energy levels for an electron in an atom. As a consequence, the model laid the foundation for the quantum mechanical model of the atom. Bohr won a Nobel Prize in Physics for his contributions to our understanding of the structure of atoms and how that is related to line spectra emissions.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/atomic_spectra_bohr_model.

Orbitals \& Quantum Numbers

Macroscopic Microscopic Atom Orbitals Quantum Numbers

Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. Their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the three-dimensional position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. Atomic wavefunctions are also called orbitals. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in space. Therefore, atomic orbitals describe the areas in an atom where electrons are most likely to be found. An atomic orbital is characterized by three quantum numbers. The principal quantum number, n, can be any positive integer. The general region for value of energy of the orbital and the average distance of an electron from the nucleus are related to n. Orbitals having the same value of n are said to be in the same shell. The secondary (angular momentum) quantum number, l, can have any integer value from 0 to $n-1$. This quantum number describes the shape or type of the orbital. Orbitals with the same principal quantum number and the same I value belong to the same subshell. The magnetic quantum number, m_{p}, with $21+1$ values ranging from -/ to +1 , describes the orientation of the orbital in space. In addition, each electron has a spin quantum number, m_{s}, that can be equal to ± 12. No two electrons in the same atom can have the same set of values for all the four quantum numbers.

10.1 Development of Quantum Theory

Learning Objectives

By the end of this section, you will be able to:

- Extend the concept of wave-particle duality that was observed in electromagnetic radiation to matter as well
- Understand the general idea of the quantum mechanical description of electrons in an atom, and that it uses the notion of three-dimensional wave functions, or orbitals, that define the distribution of probability to find an electron in a particular part of space
- List and describe traits of the four quantum numbers that form the basis for completely specifying the state of an electron in an atom

Bohr's model explained the experimental data for the hydrogen atom and was widely accepted, but it also raised many questions. Why did electrons orbit at only fixed distances defined by a single quantum number $n=1,2,3$, and so on, but never in between? Why did the model work so well describing hydrogen and one-electron ions, but could not correctly predict the emission spectrum for helium or any larger atoms? To answer these questions, scientists needed to completely revise the way they thought about matter.

Behavior in the Microscopic World

We know how matter behaves in the macroscopic world-objects that are large enough to be seen by the naked eye follow the rules of classical physics. A billiard ball moving on a table will behave like a particle: It will continue in a straight line unless it collides with another ball or the table cushion, or is acted on by some other force (such as friction). The ball has a well-defined position and velocity (or a well-defined momentum, $p=m v$, defined by mass m and velocity v) at any given moment. In other words, the ball is moving in a classical trajectory. This is the typical behavior of a classical object.

When waves interact with each other, they show interference patterns that are not displayed by macroscopic particles such as the billiard ball. For example, interacting waves on the surface of water can produce interference patterns similar to those shown on Figure 10.1. This is a case of wave behavior on the macroscopic scale, and it is clear that particles and waves are very different phenomena in the macroscopic realm.

Figure 10.1
An interference pattern on the water surface is formed by interacting waves. The waves are caused by reflection of water from the rocks. (credit: modification of work by Sukanto Debnath)

As technological improvements allowed scientists to probe the microscopic world in greater detail, it became increasingly clear by the 1920s that very small pieces of matter follow a different set of rules from those we observe for large objects. The unquestionable separation of waves and particles was no longer the case for the microscopic world.

One of the first people to pay attention to the special behavior of the microscopic world was Louis de Broglie. He asked the question: If electromagnetic radiation can have particle-like character, can electrons and other submicroscopic particles exhibit wavelike character? In his 1925 doctoral dissertation, de Broglie extended the wave-particle duality of light that Einstein used to resolve the photoelectric-effect paradox to material particles. He predicted that a particle with mass m and velocity v (that is, with linear momentum p) should also exhibit the behavior of a wave with a wavelength value λ, given by this expression in which h is the familiar Planck's constant:

$$
\lambda=\frac{h}{m v}=\frac{h}{p}
$$

This is called the de Broglie wavelength. Unlike the other values of λ discussed in this chapter, the de Broglie wavelength is a characteristic of particles and other bodies, not electromagnetic radiation (note that this equation involves velocity [$\mathrm{v}, \mathrm{m} / \mathrm{s}$], not frequency $[\mathrm{v}, \mathrm{Hz}$]. Although these two symbols appear nearly identical, they mean very different things). Where Bohr had postulated the electron as being a particle orbiting the nucleus in quantized orbits, de Broglie argued that Bohr's assumption of quantization can be explained if the electron is considered not as a particle, but rather as a circular standing wave such that only an integer number of wavelengths could fit exactly within the orbit (Figure 10.2).

Figure 10.2
If an electron is viewed as a wave circling around the nucleus, an integer number of wavelengths must fit into the orbit for this standing wave behavior to be possible.

For a circular orbit of radius r, the circumference is $2 \pi r$, and so de Broglie's condition is:

$$
2 \pi r=n \lambda, n=1,2,3, \ldots
$$

Shortly after de Broglie proposed the wave nature of matter, two scientists at Bell Laboratories, C. J. Davisson and L. H. Germer, demonstrated experimentally that electrons can exhibit wavelike behavior by showing an interference pattern for electrons travelling through a regular atomic pattern in a crystal. The regularly spaced atomic layers served as slits, as used in other interference experiments. Since the spacing between the layers serving as slits needs to be similar in size to the wavelength of the tested wave for an interference pattern to form, Davisson and Germer used a crystalline nickel target for their "slits," since the spacing of the atoms within the lattice was approximately the same as the de Broglie wavelengths of the electrons that they used. Figure 10.3 shows an interference pattern. It is strikingly similar to the interference patterns for light shown in Electromagnetic Energy for light passing through two closely spaced, narrow slits. The wave-particle duality of matter can be seen in Figure 10.3 by observing what happens if electron collisions are recorded over a long period of time. Initially, when only a few electrons have been recorded, they show clear particlelike behavior, having arrived in small localized packets that appear to be random. As more and more electrons arrived and were recorded, a clear interference pattern that is the hallmark of wavelike behavior emerged. Thus, it appears that while electrons are small localized particles, their motion does not follow the equations of motion implied by classical
mechanics, but instead it is governed by some type of a wave equation. Thus the wave-particle duality first observed with photons is actually a fundamental behavior intrinsic to all quantum particles.

Figure 10.3

(a) The interference pattern for electrons passing through very closely spaced slits demonstrates that quantum particles such as electrons can exhibit wavelike behavior. (b) The experimental results illustrated here demonstrate the wave-particle duality in electrons.

Link to Learning

Watch the Dr. Quantum - Double Slit Experiment cartoon for an easy-to-understand description of waveparticle duality and the associated experiments.

Watch on YouTube

Example 10.1

Calculating the Wavelength of a Particle

If an electron travels at a velocity of $1.000 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ and has a mass of $9.109 \times 10^{-28} \mathrm{~g}$, what is its wavelength?

Solution

We can use de Broglie's equation to solve this problem, but we first must do a unit conversion of Planck's constant. You learned earlier that $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$. Thus, we can write $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ as $6.626 \times 10^{-34} \mathrm{~kg}$ $\mathrm{m}^{2} / \mathrm{s}$.

$$
\begin{gathered}
\lambda=\frac{h}{m v} \\
=\frac{6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.000 \times 10^{\prime} \mathrm{m} / \mathrm{s}\right)} \\
=7.274 \times 10^{-11} \mathrm{~m}
\end{gathered}
$$

This is a small value, but it is significantly larger than the size of an electron in the classical (particle) view. This size is the same order of magnitude as the size of an atom. This means that electron wavelike behavior is going to be noticeable in an atom.

Check Your Learning

Calculate the wavelength of a softball with a mass of 100 g traveling at a velocity of $35 \mathrm{~m} \mathrm{~s}^{-1}$, assuming that it can be modeled as a single particle.

Answer

1.9
\times
$10^{-34} \mathrm{~m}$.
We never think of a thrown softball having a wavelength, since this wavelength is so small it is impossible for our senses or any known instrument to detect (strictly speaking, the wavelength of a real baseball would correspond to the wavelengths of its constituent atoms and molecules, which, while much larger than this value, would still be microscopically tiny). The de Broglie wavelength is only appreciable for matter that has a very small mass and/or a very high velocity.

Werner Heisenberg considered the limits of how accurately we can measure properties of an electron or other microscopic particles. He determined that there is a fundamental limit to how accurately one can measure both a particle's position and its momentum simultaneously. The more accurately we measure the momentum of a particle, the less accurately we can determine its position at that time, and vice versa. This is summed up in what we now call the Heisenberg uncertainty principle: It is fundamentally impossible to determine simultaneously and exactly both the
momentum and the position of a particle. For a particle of mass m moving with velocity v_{x} in the x direction (or equivalently with momentum p_{x}), the product of the uncertainty in the position, Δx, and the uncertainty in the momentum, Δp_{x}, must be greater than or equal to
$\frac{\hbar}{2}$
(where
$\hbar=\frac{h}{2 \pi}$,
the value of Planck's constant divided by 2π).

$$
\Delta x \times \Delta p_{x}=(\Delta x)(m \Delta v) \geq \frac{\hbar}{2}
$$

This equation allows us to calculate the limit to how precisely we can know both the simultaneous position of an object and its momentum. For example, if we improve our measurement of an electron's position so that the uncertainty in the position (Δx) has a value of, say, $1 \mathrm{pm}\left(10^{-12} \mathrm{~m}\right.$, about 1% of the diameter of a hydrogen atom), then our determination of its momentum must have an uncertainty with a value of at least

$$
\left[\Delta p=m \Delta v=\frac{\hbar}{(2 \Delta x)}\right]=\frac{\left(1.055 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}\right)}{\left(2 \times 1 \times 10^{-12} \mathrm{~m}\right)}=5 \times 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

The value of \hbar is not large, so the uncertainty in the position or momentum of a macroscopic object like a baseball is too insignificant to observe. However, the mass of a microscopic object such as an electron is small enough that the uncertainty can be large and significant.

It should be noted that Heisenberg's uncertainty principle is not just limited to uncertainties in position and momentum, but it also links other dynamical variables. For example, when an atom absorbs a photon and makes a transition from one energy state to another, the uncertainty in the energy and the uncertainty in the time required for the transition are similarly related, as $\Delta E \Delta t \geq$
$\frac{\hbar}{2}$.

Heisenberg's principle imposes ultimate limits on what is knowable in science. The uncertainty principle can be shown to be a consequence of wave-particle duality, which lies at the heart of what distinguishes modern quantum theory from classical mechanics.

Link to Learning

Read this article on the Heisenberguncertainty_principle that describes a recent macroscopic demonstration of the uncertainty principle applied to microscopic objects.

The Quantum-Mechanical Model of an Atom

Shortly after de Broglie published his ideas that the electron in a hydrogen atom could be better thought of as being a circular standing wave instead of a particle moving in quantized circular orbits, Erwin Schrödinger extended de Broglie's work by deriving what is today known as the Schrödinger equation. When Schrödinger applied his equation to hydrogenlike atoms, he was able to reproduce Bohr's expression for the energy and, thus, the Rydberg formula governing hydrogen spectra. Schrödinger described electrons as three-dimensional stationary waves, or wavefunctions, represented by the Greek letter psi, ψ. A few years later, Max Born proposed an interpretation of the wavefunction ψ that is still accepted today: Electrons are still particles, and so the waves represented by ψ are not physical waves but, instead, are complex probability amplitudes. The square of the magnitude of a wavefunction
$|\psi|^{2}$
describes the probability of the quantum particle being present near a certain location in space. This means that wavefunctions can be used to determine the distribution of the electron's density with respect to the nucleus in an atom. In the most general form, the Schrödinger equation can be written as:

$$
\hat{H} \psi=E \psi
$$

H

is the Hamiltonian operator, a set of mathematical operations representing the total energy of the quantum particle (such as an electron in an atom), ψ is the wavefunction of this particle that can be used to find the special distribution of the probability of finding the particle, and

E

is the actual value of the total energy of the particle.
Schrödinger's work, as well as that of Heisenberg and many other scientists following in their footsteps, is generally referred to as quantum mechanics.

Link to Learning

You may also have heard of Schrödinger because of his famous thought experiment. Watch the story of Schrödinger cat for an explanation of the concepts of superposition and entanglement as related to a cat in a box with poison.

Watch on YouTube

Understanding Quantum Theory of Electrons in Atoms

The goal of this section is to understand the electron orbitals (location of electrons in atoms), their different energies, and other properties. The use of quantum theory provides the best understanding to these topics. This knowledge is a precursor to chemical bonding.

As was described previously, electrons in atoms can exist only on discrete energy levels but not between them. It is said that the energy of an electron in an atom is quantized, that is, it can be equal only to certain specific values and can jump from one energy level to another but not transition smoothly or stay between these levels.

The energy levels are labeled with an n value, where $n=1,2,3, \ldots$. Generally speaking, the energy of an electron in an atom is greater for greater values of n. This number, n, is referred to as the principal quantum number. The principal quantum number defines the location of the energy level. It is essentially the same concept as the n in the Bohr atom description. Another name for the principal quantum number is the shell number. The shells of an atom can be thought of concentric circles radiating out from the nucleus. The electrons that belong to a specific shell are most likely to be found within the corresponding circular area. The further we proceed from the nucleus, the higher the shell number, and so the higher the energy level (Figure 10.4). The positively charged protons in the nucleus stabilize the electronic orbitals by electrostatic attraction between the positive charges of the protons and the negative charges of the electrons. So the further away the electron is from the nucleus, the greater the energy it has.

Figure 10.4

Different shells are numbered by principal quantum numbers.

This quantum mechanical model for where electrons reside in an atom can be used to look at electronic transitions, the events when an electron moves from one energy level to another. If the transition is to a higher energy level, energy is absorbed, and the energy change has a positive value. To obtain the amount of energy necessary for the transition to a higher energy level, a photon is absorbed by the atom. A transition to a lower energy level involves a release of energy, and the energy change is negative. This process is accompanied by emission of a photon by the atom. The following equation summarizes these relationships and is based on the hydrogen atom:

$$
\begin{gathered}
\Delta E=E_{\text {final }}-E_{\text {initial }} \\
=-2.18 \times 10^{-18}\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right) \mathrm{J}
\end{gathered}
$$

The values n_{f} and n_{i} are the final and initial energy states of the electron.
The principal quantum number is one of three quantum numbers used to characterize an orbital. An atomic orbital is a general region in an atom within which an electron is most probable to reside. The quantum mechanical model specifies the probability of finding an electron in the three-dimensional space around the nucleus and is based on solutions of the Schrödinger equation. In addition, the principal quantum number defines the energy of an electron in a hydrogen or hydrogen-like atom or an ion (an atom or an ion with only one electron) and the general region in which discrete energy levels of electrons in a multi-electron atoms and ions are located.

Another quantum number is l, the secondary (angular momentum) quantum number. It is an integer that may take the values, $I=0,1,2, \ldots, n-1$. This means that an orbital with $n=1$ can have only one value of $I, I=0$, whereas $n=2$ permits
$I=0$ and $/=1$, and so on. Whereas the principal quantum number, n, defines the general size and energy of the orbital, the secondary quantum number / specifies the shape of the orbital. Orbitals with the same value of / define a subshell.

Orbitals with $/=0$ are called s orbitals and they make up the s subshells. The value $/=1$ corresponds to the p orbitals. For a given n, p orbitals constitute a p subshell (e.g., $3 p$ if $n=3$). The orbitals with $/=2$ are called the d orbitals, followed by the f - g-, and h-orbitals for $I=3,4$, and 5 .

There are certain distances from the nucleus at which the probability density of finding an electron located at a particular orbital is zero. In other words, the value of the wavefunction ψ is zero at this distance for this orbital. Such a value of radius r is called a radial node. The number of radial nodes in an orbital is $n-I-1$.

Figure 10.5
The graphs show the probability (y axis) of finding an electron for the $1 s, 2 s, 3 s$ orbitals as a function of distance from the nucleus.

Consider the examples in Figure 10.5. The orbitals depicted are of the s type, thus $/=0$ for all of them. It can be seen from the graphs of the probability densities that there are 1-0-1=0 places where the density is zero (nodes) for 1 s $(n=1), 2-0-1=1$ node for $2 s$, and $3-0-1=2$ nodes for the $3 s$ orbitals.

The s subshell electron density distribution is spherical and the p subshell has a dumbbell shape. The d and f orbitals are more complex. These shapes represent the three-dimensional regions within which the electron is likely to be found.

Figure 10.6
Shapes of s, p, d, and forbitals.

The magnetic quantum number, m_{l}, specifies the relative spatial orientation of a particular orbital. Generally speaking, $m_{/}$can be equal to $-I,-(I-1), \ldots, 0, \ldots,(I-1), I$. The total number of possible orbitals with the same value of $/$ (that is, in the same subshell) is $2 /+1$. Thus, there is one s-orbital in an s subshell $(I=0)$, there are three p-orbitals in a p subshell ($/$ $=1$), five d-orbitals in a d subshell $(I=2)$, seven forbitals in an f subshell $(I=3)$, and so forth. The principal quantum number defines the general value of the electronic energy. The angular momentum quantum number determines the shape of the orbital. And the magnetic quantum number specifies orientation of the orbital in space, as can be seen in Figure 10.6 .

Watch on YouTube

Figure 10.7
The chart shows the energies of electron orbitals in a multi-electron atom.

Figure 10.7 illustrates the energy levels for various orbitals. The number before the orbital name (such as $2 s, 3 p$, and so forth) stands for the principal quantum number, n. The letter in the orbital name defines the subshell with a specific angular momentum quantum number $/=0$ for s orbitals, 1 for p orbitals, 2 for d orbitals. Finally, there are more than one possible orbitals for $l \geq 1$, each corresponding to a specific value of m_{l}. In the case of a hydrogen atom or a one-electron ion (such as $\mathrm{He}^{+}, \mathrm{Li}^{2+}$, and so on), energies of all the orbitals with the same n are the same. This is called a degeneracy, and the energy levels for the same principal quantum number, n, are called degenerate orbitals. However, in atoms with more than one electron, this degeneracy is eliminated by the electron-electron interactions, and orbitals that belong to different subshells have different energies, as shown on Figure 10.7. Orbitals within the same subshell are still degenerate and have the same energy.

While the three quantum numbers discussed in the previous paragraphs work well for describing electron orbitals, some experiments showed that they were not sufficient to explain all observed results. It was demonstrated in the 1920s that when hydrogen-line spectra are examined at extremely high resolution, some lines are actually not single peaks but, rather, pairs of closely spaced lines. This is the so-called fine structure of the spectrum, and it implies that there are additional small differences in energies of electrons even when they are located in the same orbital. These observations led Samuel Goudsmit and George Uhlenbeck to propose that electrons have a fourth quantum number. They called this the spin quantum number, or m_{s}.

The other three quantum numbers, n, l, and m_{l}, are properties of specific atomic orbitals that also define in what part of the space an electron is most likely to be located. Orbitals are a result of solving the Schrödinger equation for electrons in atoms. The electron spin is a different kind of property. It is a completely quantum phenomenon with no analogues in the classical realm. In addition, it cannot be derived from solving the Schrödinger equation and is not related to the normal spatial coordinates (such as the Cartesian x, y, and z). Electron spin describes an intrinsic electron "rotation" or "spinning." Each electron acts as a tiny magnet or a tiny rotating object with an angular momentum, or as a loop with an electric current, even though this rotation or current cannot be observed in terms of spatial coordinates.

The magnitude of the overall electron spin can only have one value, and an electron can only "spin" in one of two quantized states. One is termed the a state, with the z component of the spin being in the positive direction of the z axis. This corresponds to the spin quantum number
$m_{s}=\frac{1}{2}$.

The other is called the β state, with the z component of the spin being negative and
$m_{s}=-\frac{1}{2}$.

Any electron, regardless of the atomic orbital it is located in, can only have one of those two values of the spin quantum number. The energies of electrons having
$m_{s}=-\frac{1}{2}$
and
$m_{s}=\frac{1}{2}$
are different if an external magnetic field is applied.

Figure 10.8

Electrons with spin values $\pm \frac{1}{2}$ in an external magnetic field.

Figure 10.8 illustrates this phenomenon. An electron acts like a tiny magnet. Its moment is directed up (in the positive direction of the z axis) for the
$\frac{1}{2}$
spin quantum number and down (in the negative z direction) for the spin quantum number of
$-\frac{1}{2}$.

A magnet has a lower energy if its magnetic moment is aligned with the external magnetic field (the left electron on Figure 10.8) and a higher energy for the magnetic moment being opposite to the applied field. This is why an electron with
$m_{s}=\frac{1}{2}$
has a slightly lower energy in an external field in the positive z direction, and an electron with
$m_{s}=-\frac{1}{2}$
has a slightly higher energy in the same field. This is true even for an electron occupying the same orbital in an atom. A spectral line corresponding to a transition for electrons from the same orbital but with different spin quantum numbers has two possible values of energy; thus, the line in the spectrum will show a fine structure splitting.

The Pauli Exclusion Principle

An electron in an atom is completely described by four quantum numbers: n, I, m_{l}, and m_{s}. The first three quantum numbers define the orbital and the fourth quantum number describes the intrinsic electron property called spin. An

Austrian physicist Wolfgang Pauli formulated a general principle that gives the last piece of information that we need to understand the general behavior of electrons in atoms. The Pauli exclusion principle can be formulated as follows: No two electrons in the same atom can have exactly the same set of all the four quantum numbers. What this means is that two electrons can share the same orbital (the same set of the quantum numbers n, l, and m_{l}) only if their spin quantum numbers m_{s} have different values. Since the spin quantum number can only have two values

$\left(\pm \frac{1}{2}\right)$,

no more than two electrons can occupy the same orbital (and if two electrons are located in the same orbital, they must have opposite spins). Therefore, any atomic orbital can be populated by only zero, one, or two electrons.

The properties and meaning of the quantum numbers of electrons in atoms are briefly summarized in Table 10.1.
Table 10.1

Quantum Numbers, Their Properties, and Significance

| Name | SymbolAllowed
 values
 principal quantum number | n | $1,2,3,4, \ldots$ |
| :--- | :--- | :--- | :--- | | Physical meaning |
| :--- |
| shell, the general region for the value of energy for an |
| electron on the orbital |

Example 10.2

Working with Shells and Subshells

Indicate the number of subshells, the number of orbitals in each subshell, and the values of $/$ and m_{l} for the orbitals in the $n=4$ shell of an atom.

Solution

For $n=4, I$ can have values of $0,1,2$, and 3 . Thus, s, p, d, and f subshells are found in the $n=4$ shell of an atom. For $I=0$ (the s subshell), m_{l} can only be 0 . Thus, there is only one $4 s$ orbital. For $I=1$ (p-type orbitals), m can have values of $-1,0,+1$, so we find three $4 p$ orbitals. For $I=2$ (d-type orbitals), m_{l} can have values of $-2,-1,0$, $+1,+2$, so we have five $4 d$ orbitals. When $I=3$ (f-type orbitals), m_{l} can have values of $-3,-2,-1,0,+1,+2,+3$, and we can have seven $4 f$ orbitals. Thus, we find a total of 16 orbitals in the $n=4$ shell of an atom.
Check Your Learning
Identify the subshell in which electrons with the following quantum numbers are found: (a) $n=3, I=1$; (b) $n=5, I$ = 3 ; (c) $n=2, I=0$.

Answer

(a) $3 p$
(b) $5 f$
(c) 2 s

Example 10.3

Maximum Number of Electrons

Calculate the maximum number of electrons that can occupy a shell with (a) $n=2$, (b) $n=5$, and (c) n as a variable. Note you are only looking at the orbitals with the specified n value, not those at lower energies.

Solution

(a) When $n=2$, there are four orbitals (a single $2 s$ orbital, and three orbitals labeled $2 p$). These four orbitals can contain eight electrons.
(b) When $n=5$, there are five subshells of orbitals that we need to sum:

> 1 orbital labeled $5 s$
> 3 orbitals labeled $5 p$
> 5 orbitals labeled $5 d$
> 7 orbitals labeled $5 f$
> +9 orbitals labeled $5 g$
> 25 orbitals total

Again, each orbital holds two electrons, so 50 electrons can fit in this shell.
(c) The number of orbitals in any shell n will equal n^{2}. There can be up to two electrons in each orbital, so the maximum number of electrons will be $2 \times n^{2}$.

Check Your Learning

If a shell contains a maximum of 32 electrons, what is the principal quantum number, n ?

Answer

$n=4$

Example 10.4

Working with Quantum Numbers

Complete the following table for atomic orbitals:

Orbital	\boldsymbol{n}	\boldsymbol{m} degeneracy	Radial nodes (no.)	
$4 f$				
	4	1		3
$5 d$	7	7		

Solution

The table can be completed using the following rules:

- The orbital designation is $n l$, where $I=0,1,2,3,4,5, \ldots$ is mapped to the letter sequence s, p, d, f, g, h, \ldots,
- The m_{l} degeneracy is the number of orbitals within an / subshell, and so is $2 /+1$ (there is one s orbital, three p orbitals, five d orbitals, seven f orbitals, and so forth).
- The number of radial nodes is equal to $n-/-1$.

Orbital	\boldsymbol{n}	\boldsymbol{I}	$\boldsymbol{m}_{\boldsymbol{\prime}}$ degeneracy	Radial nodes (no.)
$4 f$	4	3	7	0
$4 p$	4	1	3	2
$7 f$	7	3	7	3
$5 d$	5	2	5	2

Check Your Learning

How many orbitals have $\mathrm{I}=2$ and $n=3$?

Answer

The five degenerate $3 d$ orbitals

Link to Supplementary Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-3-development-of-quantum-theory

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/orbitals_quantum_numbers.

Electron Configurations

Electron Configurations

The relative energy of the subshells determine the order in which atomic orbitals are filled ($1 s, 2 s, 2 p, 3 s, 3 p, 4 s$, $3 d, 4 p$, and so on). Electron configurations and orbital diagrams can be determined by applying the Pauli exclusion principle (no two electrons can have the same set of four quantum numbers) and Hund's rule (whenever possible, electrons retain unpaired spins in degenerate orbitals). Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group. There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. The periodic table can be divided into three categories based on the orbital in which the last electron to be added is placed: main group elements (s and p orbitals), transition elements (d orbitals), and inner transition elements (f orbitals).

11.1 Electronic Structure of Atoms (Electron Configurations)

Learning Objectives

By the end of this section, you will be able to:

- Derive the predicted ground-state electron configurations of atoms
- Identify and explain exceptions to predicted electron configurations for atoms and ions
- Relate electron configurations to element classifications in the periodic table

Having introduced the basics of atomic structure and quantum mechanics, we can use our understanding of quantum numbers to determine how atomic orbitals relate to one another. This allows us to determine which orbitals are occupied by electrons in each atom. The specific arrangement of electrons in orbitals of an atom determines many of the chemical properties of that atom.

Orbital Energies and Atomic Structure

The energy of atomic orbitals increases as the principal quantum number, n, increases. In any atom with two or more electrons, the repulsion between the electrons makes energies of subshells with different values of / differ so that the
energy of the orbitals increases within a shell in the order $s<p<d<f$. Figure 11.1 depicts how these two trends in increasing energy relate. The $1 s$ orbital at the bottom of the diagram is the orbital with electrons of lowest energy. The energy increases as we move up to the $2 s$ and then $2 p, 3 s$, and $3 p$ orbitals, showing that the increasing n value has more influence on energy than the increasing /value for small atoms. However, this pattern does not hold for larger atoms. The $3 d$ orbital is higher in energy than the $4 s$ orbital. Such overlaps continue to occur frequently as we move up the chart.

Figure 11.1

Generalized energy-level diagram for atomic orbitals in an atom with two or more electrons (not to scale).

Electrons in successive atoms on the periodic table tend to fill low-energy orbitals first. Thus, many students find it confusing that, for example, the $5 p$ orbitals fill immediately after the $4 d$, and immediately before the $6 s$. The filling order is based on observed experimental results, and has been confirmed by theoretical calculations. As the principal quantum number, n, increases, the size of the orbital increases and the electrons spend more time farther from the nucleus. Thus, the attraction to the nucleus is weaker and the energy associated with the orbital is higher (less stabilized). But this is not the only effect we have to take into account. Within each shell, as the value of /increases, the electrons are less penetrating (meaning there is less electron density found close to the nucleus), in the order $s>p>d>$ f. Electrons that are closer to the nucleus slightly repel electrons that are farther out, offsetting the more dominant electron-nucleus attractions slightly (recall that all electrons have -1 charges, but nuclei have $+Z$ charges). This phenomenon is called shielding and will be discussed in more detail in the next section. Electrons in orbitals that experience more shielding are less stabilized and thus higher in energy. For small orbitals ($1 s$ through $3 p$), the increase in energy due to n is more significant than the increase due to l; however, for larger orbitals the two trends are comparable and cannot be simply predicted. We will discuss methods for remembering the observed order.

The arrangement of electrons in the orbitals of an atom is called the electron configuration of the atom. We describe an electron configuration with a symbol that contains three pieces of information (Figure 11.2):

1. The number of the principal quantum shell, n,
2. The letter that designates the orbital type (the subshell, I), and
3. A superscript number that designates the number of electrons in that particular subshell.

For example, the notation $2 p^{4}$ (read "two-p-four") indicates four electrons in a p subshell ($/=1$) with a principal quantum number (n) of 2 . The notation $3 d^{B}$ (read "three-d-eight") indicates eight electrons in the d subshell (i.e., $I=2$) of the principal shell for which $n=3$.

Figure 11.2

The diagram of an electron configuration specifies the subshell (n and I value, with letter symbol) and superscript number of electrons.

The Aufbau Principle

To determine the electron configuration for any particular atom, we can "build" the structures in the order of atomic numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at a time to the nucleus and one electron to the proper subshell until we have described the electron configurations of all the elements. This procedure is called the Aufbau principle, from the German word Aufbau ("to build up"). Each added electron occupies the subshell of lowest energy available (in the order shown in Figure 11.1), subject to the limitations imposed by the allowed quantum numbers according to the Pauli exclusion principle. Electrons enter higher-energy subshells only after lower-energy subshells have been filled to capacity. Figure 11.3 illustrates the traditional way to remember the filling order for atomic orbitals. Since the arrangement of the periodic table is based on the electron configurations, Figure.11.4 provides an alternative method for determining the electron configuration. The filling order simply begins at hydrogen and includes each subshell as you proceed in increasing Z order. For example, after filling the $3 p$ block up to Ar, we see the orbital will be $4 \mathrm{~s}(\mathrm{~K}, \mathrm{Ca})$, followed by the $3 d$ orbitals.

Figure 11.3

This diagram depicts the energy order for atomic orbitals and is useful for deriving ground-state electron configurations.

Figure 11.4
This partial periodic table shows electron configurations for the valence subshells of atoms. By "building up" from hydrogen, this table can be used to determine the electron configuration for atoms of most elements in the periodic table. (Electron configurations of the lanthanides and actinides are not accurately predicted by this simple approach. See Figure 11.6

We will now construct the ground-state electron configuration and orbital diagram for a selection of atoms in the first and second periods of the periodic table. Orbital diagrams are pictorial representations of the electron configuration, showing the individual orbitals and the pairing arrangement of electrons. We start with a single hydrogen atom (atomic number 1), which consists of one proton and one electron. Referring to Figure 11.3 or Figure 11.4, we would expect to find the electron in the $1 s$ orbital. By convention, the
$m_{s}=+\frac{1}{2}$
value is usually filled first. The electron configuration and the orbital diagram are:

Following hydrogen is the noble gas helium, which has an atomic number of 2 . The helium atom contains two protons and two electrons. The first electron has the same four quantum numbers as the hydrogen atom electron ($n=1, l=0, m_{l}$ $=0$,
$m_{s}=+\frac{1}{2}$
). The second electron also goes into the $1 s$ orbital and fills that orbital. The second electron has the same n, l, and m_{l} quantum numbers, but must have the opposite spin quantum number,
$m_{s}=-\frac{1}{2}$.

This is in accord with the Pauli exclusion principle: No two electrons in the same atom can have the same set of four quantum numbers. For orbital diagrams, this means two arrows go in each box (representing two electrons in each orbital) and the arrows must point in opposite directions (representing paired spins). The electron configuration and orbital diagram of helium are:

The $n=1$ shell is completely filled in a helium atom.
The next atom is the alkali metal lithium with an atomic number of 3 . The first two electrons in lithium fill the $1 s$ orbital and have the same sets of four quantum numbers as the two electrons in helium. The remaining electron must occupy the orbital of next lowest energy, the $2 s$ orbital (Figure 11.3 or Figure 11.4). Thus, the electron configuration and orbital diagram of lithium are:

An atom of the alkaline earth metal beryllium, with an atomic number of 4, contains four protons in the nucleus and four electrons surrounding the nucleus. The fourth electron fills the remaining space in the $2 s$ orbital.

An atom of boron (atomic number 5) contains five electrons. The $n=1$ shell is filled with two electrons and three electrons will occupy the $n=2$ shell. Because any s subshell can contain only two electrons, the fifth electron must occupy the next energy level, which will be a $2 p$ orbital. There are three degenerate $2 p$ orbitals $\left(m_{l}=-1,0,+1\right)$ and the electron can occupy any one of these p orbitals. When drawing orbital diagrams, we include empty boxes to depict any empty orbitals in the same subshell that we are filling.

Carbon (atomic number 6) has six electrons. Four of them fill the $1 s$ and $2 s$ orbitals. The remaining two electrons occupy the $2 p$ subshell. We now have a choice of filling one of the $2 p$ orbitals and pairing the electrons or leaving the electrons unpaired in two different, but degenerate, p orbitals. The orbitals are filled as described by Hund's rule: the lowest-energy configuration for an atom with electrons within a set of degenerate orbitals is that having the maximum number of unpaired electrons. Thus, the two electrons in the carbon $2 p$ orbitals have identical n, l, and m_{s} quantum numbers and differ in their m_{l} quantum number (in accord with the Pauli exclusion principle). The electron configuration and orbital diagram for carbon are:

Nitrogen (atomic number 7) fills the $1 s$ and $2 s$ subshells and has one electron in each of the three $2 p$ orbitals, in accordance with Hund's rule. These three electrons have unpaired spins. Oxygen (atomic number 8) has a pair of electrons in any one of the $2 p$ orbitals (the electrons have opposite spins) and a single electron in each of the other two. Fluorine (atomic number 9) has only one $2 p$ orbital containing an unpaired electron. All of the electrons in the noble gas neon (atomic number 10) are paired, and all of the orbitals in the $n=1$ and the $n=2$ shells are filled. The electron configurations and orbital diagrams of these four elements are:

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the $3 s$ orbital, giving a $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ configuration. The electrons occupying the outermost shell orbital(s) (highest value of n) are called valence electrons, and those occupying the inner shell orbitals are called core electrons (Figure 11.5). Since the core electron shells correspond to noble gas electron configurations,
we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For our sodium example, the symbol [Ne] represents core electrons, $\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$ and our abbreviated or condensed configuration is [Ne$] 3 s^{1}$.

Watch on YouTube

Figure 11.5
A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as $[\mathrm{He}] 2 s^{1}$, where $[\mathrm{He}]$ represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

$$
\begin{aligned}
& \mathrm{Li}:[\mathrm{He}] 2 s^{1} \\
& \mathrm{Na}:[\mathrm{Ne}] 3 s^{1}
\end{aligned}
$$

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne$] 3 s^{2}$ configuration, is analogous to its family member beryllium, $[\mathrm{He}] 2 s^{2}$. Both atoms have a filled s subshell outside their filled inner shells. Aluminum
(atomic number 13), with 13 electrons and the electron configuration [Ne$] 3 s^{2} 3 p^{1}$, is analogous to its family member boron, $[\mathrm{He}] 2 s^{2} 2 p^{1}$.

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to $n=3$. Figure 11.6 shows the lowest energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the known elements.

Figure 11.6
This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the $3 d$ subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next electron is not added to the $3 d$ level but is, instead, added to the $4 s$ level (Figure 11.6). As discussed previously, the $3 d$ orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the $4 s$, which has three radial nodes. Thus, potassium has an electron configuration of [Ar$] 4 s^{1}$. Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the $4 s$ subshell and calcium has an electron configuration of $[\mathrm{Ar}] 4 s^{2}$. This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

Beginning with the transition metal scandium (atomic number 21), additional electrons are added successively to the $3 d$ subshell. This subshell is filled to its capacity with 10 electrons (remember that for $I=2$ [dorbitals], there are $2 /+1=5$ values of m_{l}, meaning that there are five d orbitals that have a combined capacity of 10 electrons). The $4 p$ subshell fills
next. Note that for three series of elements, scandium (Sc) through copper (Cu), yttrium (Y) through silver (Ag), and lutetium (Lu) through gold (Au), a total of $10 d$ electrons are successively added to the $(n-1)$ shell next to the n shell to bring that ($n-1$) shell from 8 to 18 electrons. For two series, lanthanum (La) through lutetium (Lu) and actinium (Ac) through lawrencium (Lr), $14 f$ electrons $\left(I=3,2 /+1=7 m_{l}\right.$ values; thus, seven orbitals with a combined capacity of 14 electrons) are successively added to the $(n-2)$ shell to bring that shell from 18 electrons to a total of 32 electrons.

Example 11.1

Quantum Numbers and Electron Configurations

What is the electron configuration and orbital diagram for a phosphorus atom? What are the four quantum numbers for the last electron added?

Solution

The atomic number of phosphorus is 15 . Thus, a phosphorus atom contains 15 electrons. The order of filling of the energy levels is $1 s, 2 s, 2 p, 3 s, 3 p, 4 s, \ldots$ The 15 electrons of the phosphorus atom will fill up to the $3 p$ orbital, which will contain three electrons:

The last electron added is a $3 p$ electron. Therefore, $n=3$ and, for a p-type orbital, $I=1$. The m, value could be -1 , 0 , or +1 . The three p orbitals are degenerate, so any of these m_{l} values is correct. For unpaired electrons, convention assigns the value of
$+\frac{1}{2}$
for the spin quantum number; thus,
$m_{s}=+\frac{1}{2}$.

Check Your Learning

Identify the atoms from the electron configurations given:
(a) $[\operatorname{Ar}] 4 s^{2} 3 d^{5}$
(b) $[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}$

Answer

(a) $\mathrm{Mn}(\mathrm{b}) \mathrm{Xe}$

The periodic table can be a powerful tool in predicting the electron configuration of an element. However, we do find exceptions to the order of filling of orbitals that are shown in Figure 11.3 or Figure 11.4. For instance, the electron configurations (shown in Figure 11.6) of the transition metals chromium (Cr ; atomic number 24) and copper (Cu; atomic
number 29), among others, are not those we would expect. In general, such exceptions involve subshells with very similar energy, and small effects can lead to changes in the order of filling.

In the case of Cr and Cu , we find that half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that an electron shifts from the $4 s$ into the $3 d$ orbital to gain the extra stability of a half-filled $3 d$ subshell (in Cr) or a filled $3 d$ subshell (in Cu). Other exceptions also occur. For example, niobium (Nb , atomic number 41) is predicted to have the electron configuration $[\mathrm{Kr}] 5 s^{2} 4 d^{\beta}$. Experimentally, we observe that its ground-state electron configuration is actually $[\mathrm{Kr}] 5 s^{1} 4 d^{4}$. We can rationalize this observation by saying that the electron-electron repulsions experienced by pairing the electrons in the $5 s$ orbital are larger than the gap in energy between the $5 s$ and $4 d$ orbitals. There is no simple method to predict the exceptions for atoms where the magnitude of the repulsions between electrons is greater than the small differences in energy between subshells.

Electron Configurations and the Periodic Table

As described earlier, the periodic table arranges atoms based on increasing atomic number so that elements with the same chemical properties recur periodically. When their electron configurations are added to the table (Figure 11.6), we also see a periodic recurrence of similar electron configurations in the outer shells of these elements. Because they are in the outer shells of an atom, valence electrons play the most important role in chemical reactions. The outer electrons have the highest energy of the electrons in an atom and are more easily lost or shared than the core electrons. Valence electrons are also the determining factor in some physical properties of the elements.

Elements in any one group (or column) have the same number of valence electrons; the alkali metals lithium and sodium each have only one valence electron, the alkaline earth metals beryllium and magnesium each have two, and the halogens fluorine and chlorine each have seven valence electrons. The similarity in chemical properties among elements of the same group occurs because they have the same number of valence electrons. It is the loss, gain, or sharing of valence electrons that defines how elements react.

It is important to remember that the periodic table was developed on the basis of the chemical behavior of the elements, well before any idea of their atomic structure was available. Now we can understand why the periodic table has the arrangement it has-the arrangement puts elements whose atoms have the same number of valence electrons in the same group. This arrangement is emphasized in Figure 11.6, which shows in periodic-table form the electron configuration of the last subshell to be filled by the Aufbau principle. The colored sections of Figure 11.6 show the three categories of elements classified by the orbitals being filled: main group, transition, and inner transition elements. These classifications determine which orbitals are counted in the valence shell, or highest energy level orbitals of an atom.

1. Main group elements (sometimes called representative elements) are those in which the last electron added enters an sor a p orbital in the outermost shell, shown in blue and red in Figure 11.6. This category includes all the nonmetallic elements, as well as many metals and the metalloids. The valence electrons for main group elements are those with the highest n level. For example, gallium (Ga , atomic number 31) has the electron configuration $[\operatorname{Ar}] \underline{4 s^{2}} 3 d^{10} \underline{4} p^{1}$, which contains three valence electrons (underlined). The completely filled d orbitals count as core, not valence, electrons.
2. Transition elements or transition metals. These are metallic elements in which the last electron added enters a d orbital. The valence electrons (those added after the last noble gas configuration) in these elements include the $n s$ and $(n-1) d$ electrons. The official IUPAC definition of transition elements specifies those with partially filled d orbitals. Thus, the elements with completely filled orbitals ($\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$, as well as Cu, Ag, and Au in Figure 11.6) are not technically transition elements. However, the term is frequently used to refer to the entire d block (colored yellow in Figure 11.6), and we will adopt this usage in this textbook.
3. Inner transition elements are metallic elements in which the last electron added occupies an f orbital. They are shown in green in Figure 11.6. The valence shells of the inner transition elements consist of the $(n-2) f$, the ($n-$ 1) d, and the $n s$ subshells. There are two inner transition series:
a. The lanthanide series: lanthanum (La) through lutetium (Lu)
b. The actinide series: actinium (Ac) through lawrencium (Lr)

Lanthanum and actinium, because of their similarities to the other members of the series, are included and used to name the series, even though they are transition metals with no f electrons.

Electron Configurations of Ions

Ions are formed when atoms gain or lose electrons. A cation (positively charged ion) forms when one or more electrons are removed from a parent atom. For main group elements, the electrons that were added last are the first electrons removed. For transition metals and inner transition metals, however, electrons in the sorbital are easier to remove than the d or f electrons, and so the highest $n s$ electrons are lost, and then the $(n-1) d$ or $(n-2) f$ electrons are removed. An anion (negatively charged ion) forms when one or more electrons are added to a parent atom. The added electrons fill in the order predicted by the Aufbau principle.

Watch on YouTube

Example 11.2

Predicting Electron Configurations of Ions

What is the electron configuration of:
(a) Na^{+}
(b) P^{3-}
(c) Al^{2+}
(d) Fe^{2+}
(e) Sm^{3+}

Solution

First, write out the electron configuration for each parent atom. We have chosen to show the full, unabbreviated configurations to provide more practice for students who want it, but listing the core-abbreviated electron configurations is also acceptable.
Next, determine whether an electron is gained or lost. Remember electrons are negatively charged, so ions with a positive charge have lost an electron. For main group elements, the last orbital gains or loses the electron. For transition metals, the last sorbital loses an electron before the d orbitals.
(a) $\mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$. Sodium cation loses one electron, so $\mathrm{Na}^{+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}=\mathrm{Na}^{+}: 1 s^{2} 2 s^{2} 2 p^{6}$.
(b) P: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$. Phosphorus trianion gains three electrons, so $\mathrm{P}^{3-}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$.
(c) AI: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$. Aluminum dication loses two electrons $\mathrm{Al}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}=$
$\mathrm{Al}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$.
(d) Fe: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$. Iron(II) loses two electrons and, since it is a transition metal, they are removed from the $4 s$ orbital $\mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$.
(e). Sm: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{6}$. Samarium trication loses three electrons. The first two will be lost from the $6 s$ orbital, and the final one is removed from the $4 f$ orbital. Sm^{3+} :
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{6}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 4 f^{5}$.

Check Your Learning

Which ion with a +2 charge has the electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{5}$? Which ion with a +3 charge has this configuration?

Answer

$$
\mathrm{Tc}^{2+}, \mathrm{Ru}^{3+}
$$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-4-electronic-structure-of-atoms-electron-configurations

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/electron_configurations.

Periodic Trends

Periodic Trends

Electron configurations allow us to understand many periodic trends. Covalent radius increases as we move down a group because the n level (orbital size) increases. Covalent radius mostly decreases as we move left to right across a period because the effective nuclear charge experienced by the electrons increases, and the electrons are pulled in tighter to the nucleus. Anionic radii are larger than the parent atom, while cationic radii are smaller, because the number of valence electrons has changed while the nuclear charge has remained constant. Ionization energy (the energy associated with forming a cation) decreases down a group and mostly increases across a period because it is easier to remove an electron from a larger, higher energy orbital. Electron affinity (the energy associated with forming an anion) is more favorable (exothermic) when electrons are placed into lower energy orbitals, closer to the nucleus. Therefore, electron affinity becomes increasingly negative as we move left to right across the periodic table and decreases as we move down a group. For both IE and electron affinity data, there are exceptions to the trends when dealing with completely filled or half-filled subshells.

12.1 Periodic Variations in Element Properties

Learning Objectives

By the end of this section, you will be able to:

- Describe and explain the observed trends in atomic size, ionization energy, and electron affinity of the elements

The elements in groups (vertical columns) of the periodic table exhibit similar chemical behavior. This similarity occurs because the members of a group have the same number and distribution of electrons in their valence shells. However, there are also other patterns in chemical properties on the periodic table. For example, as we move down a group, the metallic character of the atoms increases. Oxygen, at the top of group 16 (6A), is a colorless gas; in the middle of the group, selenium is a semiconducting solid; and, toward the bottom, polonium is a silver-grey solid that conducts electricity.

As we go across a period from left to right, we add a proton to the nucleus and an electron to the valence shell with each successive element. As we go down the elements in a group, the number of electrons in the valence shell remains
constant, but the principal quantum number increases by one each time. An understanding of the electronic structure of the elements allows us to examine some of the properties that govern their chemical behavior. These properties vary periodically as the electronic structure of the elements changes. They are (1) size (radius) of atoms and ions, (2) ionization energies, and (3) electron affinities.

Link to Learning

Explore visualizations of periodic trends discussed in this section (and many more trends). With just a few clicks, you can create three-dimensional versions of the periodic table showing atomic size or graphs of ionization energies from all measured elements.

Variation in Covalent Radius

The quantum mechanical picture makes it difficult to establish a definite size of an atom. However, there are several practical ways to define the radius of atoms and, thus, to determine their relative sizes that give roughly similar values. We will use the covalent radius (Figure 12.1), which is defined as one-half the distance between the nuclei of two identical atoms when they are joined by a covalent bond (this measurement is possible because atoms within molecules still retain much of their atomic identity). We know that as we scan down a group, the principal quantum number, n, increases by one for each element. Thus, the electrons are being added to a region of space that is increasingly distant from the nucleus. Consequently, the size of the atom (and its covalent radius) must increase as we increase the distance of the outermost electrons from the nucleus. This trend is illustrated for the covalent radii of the halogens in Table 12.1 and Figure 12.1. The trends for the entire periodic table can be seen in Figure 12.1.

Table 12.1

Covalent Radii of the Halogen Group Elements

Atom	Covalent radius (pm)	Nuclear charge
F	64	+9
Cl	99	+17
Br	114	+35
I	133	+53
At	148	+85

Figure 12.1
(a) The radius of an atom is defined as one-half the distance between the nuclei in a molecule consisting of two identical atoms joined by a covalent bond. The atomic radius for the halogens increases down the group as n increases.
(b) Covalent radii of the elements are shown to scale. The general trend is that radii increase down a group and decrease across a period.

Figure 12.2
Within each period, the trend in atomic radius decreases as Z increases; for example, from K to $K r$. Within each group (e.g., the alkali metals shown in purple), the trend is that atomic radius increases as Z increases.

As shown in Figure 12.2, as we move across a period from left to right, we generally find that each element has a smaller covalent radius than the element preceding it. This might seem counterintuitive because it implies that atoms with more electrons have a smaller atomic radius. This can be explained with the concept of effective nuclear charge, $Z_{\text {eff. }}$ This is the pull exerted on a specific electron by the nucleus, taking into account any electron-electron repulsions. For hydrogen, there is only one electron and so the nuclear charge (Z) and the effective nuclear charge $\left(Z_{\text {eff }}\right)$ are equal. For all other atoms, the inner electrons partially shield the outer electrons from the pull of the nucleus, and thus:
$Z_{\text {eff }}=Z-$ shielding

Shielding is determined by the probability of another electron being between the electron of interest and the nucleus, as well as by the electron-electron repulsions the electron of interest encounters. Core electrons are adept at shielding, while electrons in the same valence shell do not block the nuclear attraction experienced by each other as efficiently. Thus, each time we move from one element to the next across a period, Z increases by one, but the shielding increases only slightly. Thus, $Z_{\text {eff }}$ increases as we move from left to right across a period. The stronger pull (higher effective nuclear charge) experienced by electrons on the right side of the periodic table draws them closer to the nucleus, making the covalent radii smaller.

Thus, as we would expect, the outermost or valence electrons are easiest to remove because they have the highest energies, are shielded more, and are farthest from the nucleus. As a general rule, when the representative elements form cations, they do so by the loss of the $n s$ or $n p$ electrons that were added last in the Aufbau process. The transition elements, on the other hand, lose the $n s$ electrons before they begin to lose the $(n-1) d$ electrons, even though the $n s$ electrons are added first, according to the Aufbau principle.

Example 12.1

Sorting Atomic Radii

Predict the order of increasing covalent radius for $\mathrm{Ge}, \mathrm{Fl}, \mathrm{Br}, \mathrm{Kr}$.

Solution

Radius increases as we move down a group, so $\mathrm{Ge}<\mathrm{Fl}$ (Note: Fl is the symbol for flerovium, element 114, NOT fluorine). Radius decreases as we move across a period, so $\mathrm{Kr}<\mathrm{Br}<\mathrm{Ge}$. Putting the trends together, we obtain $\mathrm{Kr}<\mathrm{Br}<\mathrm{Ge}<\mathrm{Fl}$.
Check Your Learning
Give an example of an atom whose size is smaller than fluorine.

Answer

Ne or He

Variation in Ionic Radii

Ionic radius is the measure used to describe the size of an ion. A cation always has fewer electrons and the same number of protons as the parent atom; it is smaller than the atom from which it is derived (Figure 12.3). For example, the covalent radius of an aluminum atom $\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}\right)$ is 118 pm , whereas the ionic radius of an $\mathrm{Al}^{3+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$ is 68 pm . As electrons are removed from the outer valence shell, the remaining core electrons occupying smaller shells experience a greater effective nuclear charge $Z_{\text {eff }}$ (as discussed) and are drawn even closer to the nucleus.

Figure 12.3
The radius for a cation is smaller than the parent atom (Al), due to the lost electrons; the radius for an anion is larger than the parent (S), due to the gained electrons.

Cations with larger charges are smaller than cations with smaller charges (e.g., V^{2+} has an ionic radius of 79 pm , while that of V^{3+} is 64 pm). Proceeding down the groups of the periodic table, we find that cations of successive elements with the same charge generally have larger radii, corresponding to an increase in the principal quantum number, n.

An anion (negative ion) is formed by the addition of one or more electrons to the valence shell of an atom. This results in a greater repulsion among the electrons and a decrease in $Z_{\text {eff }}$ per electron. Both effects (the increased number of electrons and the decreased $Z_{\text {eff }}$) cause the radius of an anion to be larger than that of the parent atom (Figure 12.3). For example, a sulfur atom ($[\mathrm{Ne}] 3 s^{2} 3 p^{4}$) has a covalent radius of 104 pm , whereas the ionic radius of the sulfide anion ($[\mathrm{Ne}] 3 s^{2} 3 p^{6}$) is 170 pm . For consecutive elements proceeding down any group, anions have larger principal quantum numbers and, thus, larger radii.

Atoms and ions that have the same electron configuration are said to be isoelectronic. Examples of isoelectronic species are $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$, and $\mathrm{Al}^{3+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$. Another isoelectronic series is $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Ar}^{2}, \mathrm{~K}^{+}, \mathrm{Ca}^{2+}$,
and $\mathrm{Sc}^{3+}\left([\mathrm{Ne}] 3 s^{2} 3 p^{6}\right)$. For atoms or ions that are isoelectronic, the number of protons determines the size. The greater the nuclear charge, the smaller the radius in a series of isoelectronic ions and atoms.

Variation in Ionization Energies

The amount of energy required to remove the most loosely bound electron from a gaseous atom in its ground state is called its first ionization energy $\left(\mathrm{IE}_{1}\right)$. The first ionization energy for an element, X , is the energy required to form a cation with +1 charge:

$$
\mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-} \quad \mathrm{IE}_{1}
$$

The energy required to remove the second most loosely bound electron is called the second ionization energy (IE_{2}).
$\mathrm{X}^{+}(g) \longrightarrow \mathrm{X}^{2+}(g)+\mathrm{e}^{-} \quad \mathrm{IE}_{2}$

The energy required to remove the third electron is the third ionization energy, and so on. Energy is always required to remove electrons from atoms or ions, so ionization processes are endothermic and IE values are always positive. For larger atoms, the most loosely bound electron is located farther from the nucleus and so is easier to remove. Thus, as size (atomic radius) increases, the ionization energy should decrease. Relating this logic to what we have just learned about radii, we would expect first ionization energies to decrease down a group and to increase across a period.

Figure 12.4 graphs the relationship between the first ionization energy and the atomic number of several elements. The values of first ionization energy for the elements are given in Figure 12.4. Within a period, the IE_{1} generally increases with increasing Z. Down a group, the IE_{1} value generally decreases with increasing Z. There are some systematic deviations from this trend, however. Note that the ionization energy of boron (atomic number 5) is less than that of beryllium (atomic number 4) even though the nuclear charge of boron is greater by one proton. This can be explained because the energy of the subshells increases as /increases, due to penetration and shielding (as discussed previously in this chapter). Within any one shell, the s electrons are lower in energy than the p electrons. This means that an s electron is harder to remove from an atom than a p electron in the same shell. The electron removed during the ionization of beryllium ($[\mathrm{He}] 2 s^{2}$) is an s electron, whereas the electron removed during the ionization of boron ($[\mathrm{He}] 2 s^{2} 2 p^{1}$) is a p electron; this results in a lower first ionization energy for boron, even though its nuclear charge is greater by one proton. Thus, we see a small deviation from the predicted trend occurring each time a new subshell begins.

Figure 12.4
The first ionization energy of the elements in the first five periods are plotted against their atomic number.

Figure 12.4
This version of the periodic table shows the first ionization energy $\left(I E_{1}\right)$, in $\mathrm{kJ} / \mathrm{mol}$, of selected elements.

Another deviation occurs as orbitals become more than one-half filled. The first ionization energy for oxygen is slightly less than that for nitrogen, despite the trend in increasing $I E_{1}$ values across a period. Looking at the orbital diagram of oxygen, we can see that removing one electron will eliminate the electron-electron repulsion caused by pairing the electrons in the $2 p$ orbital and will result in a half-filled orbital (which is energetically favorable). Analogous changes occur in succeeding periods (note the dip for sulfur after phosphorus in Figure 12.5).

Removing an electron from a cation is more difficult than removing an electron from a neutral atom because of the greater electrostatic attraction to the cation. Likewise, removing an electron from a cation with a higher positive charge is more difficult than removing an electron from an ion with a lower charge. Thus, successive ionization energies for one element always increase. As seen in Table 12.2, there is a large increase in the ionization energies for each element. This jump corresponds to removal of the core electrons, which are harder to remove than the valence electrons. For example, Sc and Ga both have three valence electrons, so the rapid increase in ionization energy occurs after the third ionization.

Table 12.2

Successive Ionization Energies for Selected Elements (kJ/mol)

Element	$\mathbf{I E}$	$\mathbf{I E}_{\mathbf{1}}$	$\mathbf{I E}_{\mathbf{3}}$	$\mathbf{I E}_{\mathbf{4}}$	$\mathbf{I E}_{\mathbf{5}}$	$\mathbf{I E}_{\mathbf{6}}$	$\mathbf{I} \mathbf{E}_{\mathbf{7}}$
K	418.8	3051.8	4419.6	5876.9	7975.5	9590.6	11343
Ca	589.8	1145.4	4912.4	6490.6	8153.0	10495.7	12272.9
Sc	633.1	1235.0	2388.7	7090.6	8842.9	10679.0	13315.0
Ga	578.8	1979.4	2964.6	6180	8298.7	10873.9	13594.8
Ge	762.2	1537.5	3302.1	4410.6	9021.4	Not available	Not available
As	944.5	1793.6	2735.5	4836.8	6042.9	12311.5	Not available

Example 12.2

Ranking Ionization Energies

Predict the order of increasing energy for the following processes: $I E_{1}$ for $A I, I E_{1}$ for $T I, I E_{2}$ for $N a, I E_{3}$ for $A I$.

Solution

Removing the $6 p^{1}$ electron from TI is easier than removing the $3 p^{1}$ electron from Al because the higher n orbital is farther from the nucleus, so $\mathrm{IE}_{1}(\mathrm{TI})<\mathrm{IE}_{1}(\mathrm{Al})$. Ionizing the third electron from
$\mathrm{Al} \quad\left(\mathrm{Al}^{2+} \rightarrow \mathrm{Al}^{3+}+\mathrm{e}^{-}\right)$
requires more energy because the cation Al^{2+} exerts a stronger pull on the electron than the neutral Al atom, so $\mathrm{IE}_{1}(\mathrm{Al})<\mathrm{IE}(\mathrm{AI})$. The second ionization energy for sodium removes a core electron, which is a much higher energy process than removing valence electrons. Putting this all together, we obtain: $\mathrm{IE}_{1}(\mathrm{TI})<\mathrm{IE}_{1}(\mathrm{Al})<\mathrm{IE}_{3}(\mathrm{Al})<$ $\mathrm{IE}_{2}(\mathrm{Na})$.
Check Your Learning
Which has the lowest value for $\mathrm{IE}_{1}: \mathrm{O}, \mathrm{Po}, \mathrm{Pb}$, or Ba ?

Answer

Ba

Variation in Electron Affinities

The electron affinity (EA) is the energy change for the process of adding an electron to a gaseous atom to form an anion (negative ion).
$\mathrm{X}(g)+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(g) \quad \mathrm{EA}_{1}$

This process can be either endothermic or exothermic, depending on the element. The EA of some of the elements is given in Figure 12.6. You can see that many of these elements have negative values of EA, which means that energy is released when the gaseous atom accepts an electron. However, for some elements, energy is required for the atom to become negatively charged and the value of their EA is positive. Just as with ionization energy, subsequent EA values are associated with forming ions with more charge. The second EA is the energy associated with adding an electron to an anion to form a - 2 ion, and so on.

As we might predict, it becomes easier to add an electron across a series of atoms as the effective nuclear charge of the atoms increases. We find, as we go from left to right across a period, EAs tend to become more negative. The exceptions found among the elements of group $2(2 A)$, group $15(5 A)$, and group 18 (8 A) can be understood based on the electronic structure of these groups. The noble gases, group $18(8 A)$, have a completely filled shell and the incoming electron must be added to a higher n level, which is more difficult to do. Group $2(2 A)$ has a filled $n s$ subshell, and so the next electron added goes into the higher energy $n p$, so, again, the observed EA value is not as the trend would predict. Finally, group $15(5 A)$ has a half-filled $n p$ subshell and the next electron must be paired with an existing $n p$ electron. In all of these cases, the initial relative stability of the electron configuration disrupts the trend in EA.

We also might expect the atom at the top of each group to have the most negative EA; their first ionization potentials suggest that these atoms have the largest effective nuclear charges. However, as we move down a group, we see that the second element in the group most often has the most negative EA. This can be attributed to the small size of the $n=$ 2 shell and the resulting large electron-electron repulsions. For example, chlorine, with an EA value of $-348 \mathrm{~kJ} / \mathrm{mol}$, has the highest value of any element in the periodic table. The EA of fluorine is $-322 \mathrm{~kJ} / \mathrm{mol}$. When we add an electron to a fluorine atom to form a fluoride anion (F^{-}), we add an electron to the $n=2$ shell. The electron is attracted to the nucleus, but there is also significant repulsion from the other electrons already present in this small valence shell. The chlorine atom has the same electron configuration in the valence shell, but because the entering electron is going into the $n=3$ shell, it occupies a considerably larger region of space and the electron-electron repulsions are reduced. The entering electron does not experience as much repulsion and the chlorine atom accepts an additional electron more readily, resulting in a more negative EA.

Figure 12.6
This version of the periodic table displays the electron affinity values (in $\mathrm{kJ} / \mathrm{mol}$) for selected elements.

The properties discussed in this section (size of atoms and ions, effective nuclear charge, ionization energies, and electron affinities) are central to understanding chemical reactivity. For example, because fluorine has an energetically favorable EA and a large energy barrier to ionization (IE), it is much easier to form fluorine anions than cations. Metallic properties including conductivity and malleability (the ability to be formed into sheets) depend on having electrons that can be removed easily. Thus, metallic character increases as we move down a group and decreases across a period in the same trend observed for atomic size because it is easier to remove an electron that is farther away from the nucleus.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/3-5-periodic-variations-in-element-properties

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/periodic_trends.

Unit II

Molecules

Bonding
Nomenclature
Lewis Structures Part 1
Lewis Structures Part 2
Molecular Shape
Polarity
Organic Molecules
Isomers
Valence Bond Theory
Molecular Orbital Theory

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/unit_ii.

Bonding

Atom Periodic Table Electron Configurations Bonding

Metals (particularly those in groups 1 and 2) tend to lose the number of electrons that would leave them with the same number of electrons as in the preceding noble gas in the periodic table. By this means, a positively charged ion is formed. Similarly, nonmetals (especially those in groups 16 and 17, and, to a lesser extent, those in Group 15) can gain the number of electrons needed to provide atoms with the same number of electrons as in the next noble gas in the periodic table. Thus, nonmetals tend to form negative ions. Positively charged ions are called cations, and negatively charged ions are called anions. Ions can be either monatomic (containing only one atom) or polyatomic (containing more than one atom). Compounds that contain ions are called ionic compounds. Ionic compounds generally form from metals and nonmetals. Compounds that do not contain ions, but instead consist of atoms bonded tightly together in molecules (uncharged groups of atoms that behave as a single unit), are called covalent compounds. Covalent compounds usually form from two nonmetals. Atoms gain or lose electrons to form ions with particularly stable electron configurations. The charges of cations formed by the representative metals may be determined readily because, with few exceptions, the electronic structures of these ions have either a noble gas configuration or a completely filled electron shell. The charges of anions formed by the nonmetals may also be readily determined because these ions form when nonmetal atoms gain enough electrons to fill their valence shells. Covalent bonds form when electrons are shared between atoms and are attracted by the nuclei of both atoms. In pure covalent bonds, the electrons are shared equally. In polar covalent bonds, the electrons are shared unequally, as one atom exerts a stronger force of attraction on the electrons than the other. The ability of an atom to attract a pair of electrons in a chemical bond is called its electronegativity. The difference in electronegativity between two atoms determines how polar a bond will be. In a diatomic molecule with two identical atoms, there is no difference in electronegativity, so the bond is nonpolar or pure covalent. When the electronegativity difference is very large, as is the case between metals and nonmetals, the bonding is characterized as ionic.

13.1 Ionic and Molecular Compounds

Learning Objectives

By the end of this section, you will be able to:

- Define ionic and molecular (covalent) compounds
- Predict the type of compound formed from elements based on their location within the periodic table
- Determine formulas for simple ionic compounds

In ordinary chemical reactions, the nucleus of each atom (and thus the identity of the element) remains unchanged. Electrons, however, can be added to atoms by transfer from other atoms, lost by transfer to other atoms, or shared with other atoms. The transfer and sharing of electrons among atoms govern the chemistry of the elements. During the formation of some compounds, atoms gain or lose electrons, and form electrically charged particles called ions (Figure 13.1).

Figure 13.1
(a) A sodium atom (Na) has equal numbers of protons and electrons (11) and is uncharged. (b) A sodium cation (Na^{+}) has lost an electron, so it has one more proton (11) than electrons (10), giving it an overall positive charge, signified by a superscripted plus sign.

You can use the periodic table to predict whether an atom will form an anion or a cation, and you can often predict the charge of the resulting ion. Atoms of many main-group metals lose enough electrons to leave them with the same number of electrons as an atom of the preceding noble gas. To illustrate, an atom of an alkali metal (group 1) loses one electron and forms a cation with a 1+ charge; an alkaline earth metal (group 2) loses two electrons and forms a cation with a $2+$ charge, and so on. For example, a neutral calcium atom, with 20 protons and 20 electrons, readily loses two electrons. This results in a cation with 20 protons, 18 electrons, and a $2+$ charge. It has the same number of electrons as atoms of the preceding noble gas, argon, and is symbolized Ca^{2+}. The name of a metal ion is the same as the name of the metal atom from which it forms, so Ca^{2+} is called a calcium ion.

When atoms of nonmetal elements form ions, they generally gain enough electrons to give them the same number of electrons as an atom of the next noble gas in the periodic table. Atoms of group 17 gain one electron and form anions with a 1-charge; atoms of group 16 gain two electrons and form ions with a 2 - charge, and so on. For example, the neutral bromine atom, with 35 protons and 35 electrons, can gain one electron to provide it with 36 electrons. This results in an anion with 35 protons, 36 electrons, and a 1-charge. It has the same number of electrons as atoms of the next noble gas, krypton, and is symbolized Br^{-}. (A discussion of the theory supporting the favored status of noble gas electron numbers reflected in these predictive rules for ion formation is provided in a later chapter of this text.)

Note the usefulness of the periodic table in predicting likely ion formation and charge (Figure 13.2). Moving from the far left to the right on the periodic table, main-group elements tend to form cations with a charge equal to the group number. That is, group 1 elements form $1+$ ions; group 2 elements form $2+$ ions, and so on. Moving from the far right to the left on the periodic table, elements often form anions with a negative charge equal to the number of groups moved left from the noble gases. For example, group 17 elements (one group left of the noble gases) form 1-ions; group 16 elements (two groups left) form 2-ions, and so on. This trend can be used as a guide in many cases, but its predictive value decreases when moving toward the center of the periodic table. In fact, transition metals and some other metals often exhibit variable charges that are not predictable by their location in the table. For example, copper can form ions with a 1+ or 2+ charge, and iron can form ions with a $2+$ or $3+$ charge.

Figure 13.2
Some elements exhibit a regular pattern of ionic charge when they form ions.

Example 13.1

Composition of Ions

An ion found in some compounds used as antiperspirants contains 13 protons and 10 electrons. What is its symbol?

Solution

Because the number of protons remains unchanged when an atom forms an ion, the atomic number of the element must be 13 . Knowing this lets us use the periodic table to identify the element as Al (aluminum). The Al atom has lost three electrons and thus has three more positive charges (13) than it has electrons (10). This is the aluminum cation, Al^{3+}.

Check Your Learning

Give the symbol and name for the ion with 34 protons and 36 electrons.

Answer

Se^{2-}, the selenide ion

Example 13.2

Formation of Ions

Magnesium and nitrogen react to form an ionic compound. Predict which forms an anion, which forms a cation, and the charges of each ion. Write the symbol for each ion and name them.

Solution

Magnesium's position in the periodic table (group 2) tells us that it is a metal. Metals form positive ions (cations). A magnesium atom must lose two electrons to have the same number electrons as an atom of the previous noble gas, neon. Thus, a magnesium atom will form a cation with two fewer electrons than protons and a charge of $2+$. The symbol for the ion is Mg^{2+}, and it is called a magnesium ion.
Nitrogen's position in the periodic table (group 15) reveals that it is a nonmetal. Nonmetals form negative ions (anions). A nitrogen atom must gain three electrons to have the same number of electrons as an atom of the following noble gas, neon. Thus, a nitrogen atom will form an anion with three more electrons than protons and a charge of 3-. The symbol for the ion is N^{3-}, and it is called a nitride ion.

Check Your Learning

Aluminum and carbon react to form an ionic compound. Predict which forms an anion, which forms a cation, and the charges of each ion. Write the symbol for each ion and name them.

Answer

Al will form a cation with a charge of $3+: \mathrm{Al}^{3+}$, an aluminum ion. Carbon will form an anion with a charge of 4-: C^{4-}, a carbide ion.

The ions that we have discussed so far are called monatomic ions, that is, they are ions formed from only one atom. We also find many polyatomic ions. These ions, which act as discrete units, are electrically charged molecules (a group of bonded atoms with an overall charge). Some of the more important polyatomic ions are listed in Table 13.1. Oxyanions are polyatomic ions that contain one or more oxygen atoms. At this point in your study of chemistry, you should memorize the names, formulas, and charges of the most common polyatomic ions. Because you will use them repeatedly, they will soon become familiar.

Table 13.1

Common Polyatomic Ions

Name	Formula	Related Acid	Formula
ammonium	$\mathrm{NH}_{4}{ }^{+}$		
hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$		
peroxide	$\mathrm{O}_{2}{ }^{2-}$		
hydroxide	OH^{-}		$\mathrm{CH}_{3} \mathrm{COOH}$
acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	acetic acid	HCN
cyanide	CN^{-}	hydrocyanic acid	

Name	Formula	Related Acid	Formula
azide	$\mathrm{N}_{3}{ }^{-}$	hydrazoic acid	HN_{3}
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$
bicarbonate	$\mathrm{HCO}_{3}{ }^{-}$		
nitrate	$\mathrm{NO}_{3}{ }^{-}$	nitric acid	HNO_{3}
nitrite	$\mathrm{NO}_{2}{ }^{-}$	nitrous acid	HNO_{2}
sulfate	$\mathrm{SO}_{4}{ }^{2-}$	sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$		
sulfite	$\mathrm{SO}_{3}{ }^{2-}$	sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$
hydrogen sulfite	$\mathrm{HSO}_{3}{ }^{-}$		
phosphate	$\mathrm{PO}_{4}{ }^{3-}$	phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$
hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$		
dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$		
perchlorate	$\mathrm{ClO}_{4}{ }^{-}$	perchloric acid	HClO_{4}
chlorate	$\mathrm{ClO}_{3}{ }^{-}$	chloric acid	HClO_{3}
chlorite	$\mathrm{ClO}_{2}{ }^{-}$	chlorous acid	HClO_{2}
hypochlorite	ClO^{-}	hypochlorous acid	HClO
chromate	$\mathrm{CrO}_{4}{ }^{2-}$	chromic acid	$\mathrm{H}_{2} \mathrm{CrO}_{4}$
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromic acid	$\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
permanganate	$\mathrm{MnO}_{4}{ }^{-}$	permanganic acid	HMnO_{4}

Note that there is a system for naming some polyatomic ions; -ate and -ite are suffixes designating polyatomic ions containing more or fewer oxygen atoms. Per-(short for "hyper") and hypo- (meaning "under") are prefixes meaning more oxygen atoms than -ate and fewer oxygen atoms than -ite, respectively. For example, perchlorate is
$\mathrm{ClO}_{4}{ }^{-}$,
chlorate is
$\mathrm{ClO}_{3}{ }^{-}$,
chlorite is
$\mathrm{ClO}_{2}{ }^{-}$
and hypochlorite is ClO^{-}. Unfortunately, the number of oxygen atoms corresponding to a given suffix or prefix is not consistent; for example, nitrate is
$\mathrm{NO}_{3}{ }^{-}$
while sulfate is
$\mathrm{SO}_{4}{ }^{2-}$.

This will be covered in more detail later in the module on nomenclature.
The nature of the attractive forces that hold atoms or ions together within a compound is the basis for classifying chemical bonding. When electrons are transferred and ions form, ionic bonds result. lonic bonds are electrostatic forces of attraction, that is, the attractive forces experienced between objects of opposite electrical charge (in this case, cations and anions). When electrons are "shared" and molecules form, covalent bonds result. Covalent bonds are the attractive forces between the positively charged nuclei of the bonded atoms and one or more pairs of electrons that are located between the atoms. Compounds are classified as ionic or molecular (covalent) on the basis of the bonds present in them.

Ionic Compounds

When an element composed of atoms that readily lose electrons (a metal) reacts with an element composed of atoms that readily gain electrons (a nonmetal), a transfer of electrons usually occurs, producing ions. The compound formed by this transfer is stabilized by the electrostatic attractions (ionic bonds) between the ions of opposite charge present in the compound. For example, when each sodium atom in a sample of sodium metal (group 1) gives up one electron to form a sodium cation, Na^{+}, and each chlorine atom in a sample of chlorine gas (group 17) accepts one electron to form a chloride anion, Cl^{-}, the resulting compound, NaCl , is composed of sodium ions and chloride ions in the ratio of one Na^{+}ion for each Cl^{-}ion. Similarly, each calcium atom (group 2) can give up two electrons and transfer one to each of two chlorine atoms to form CaCl_{2}, which is composed of Ca^{2+} and Cl^{-}ions in the ratio of one Ca^{2+} ion to two Cl^{-}ions.

A compound that contains ions and is held together by ionic bonds is called an ionic compound. The periodic table can help us recognize many of the compounds that are ionic: When a metal is combined with one or more nonmetals, the compound is usually ionic. This guideline works well for predicting ionic compound formation for most of the compounds typically encountered in an introductory chemistry course. However, it is not always true (for example, aluminum chloride, AlCl_{3}, is not ionic).

You can often recognize ionic compounds because of their properties. Ionic compounds are solids that typically melt at high temperatures and boil at even higher temperatures. For example, sodium chloride melts at $801^{\circ} \mathrm{C}$ and boils at $1413^{\circ} \mathrm{C}$. (As a comparison, the molecular compound water melts at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$.) In solid form, an ionic compound is not electrically conductive because its ions are unable to flow ("electricity" is the flow of charged particles). When molten, however, it can conduct electricity because its ions are able to move freely through the liquid (Figure 13.3).

Figure 13.3
Sodium chloride melts at $801^{\circ} \mathrm{C}$ and conducts electricity when molten. (credit: modification of work by Mark Blaser and Matt Evans)

Link to Learning

To see salts melt and conduct electricity, watch this video that illustrates the conductivity of molten salt.

Watch on YouTube

In every ionic compound, the total number of positive charges of the cations equals the total number of negative charges of the anions. Thus, ionic compounds are electrically neutral overall, even though they contain positive and negative ions. We can use this observation to help us write the formula of an ionic compound. The formula of an ionic compound must have a ratio of ions such that the numbers of positive and negative charges are equal.

Example 13.3

Predicting the Formula of an Ionic Compound

The gemstone sapphire (Figure 13.4) is mostly a compound of aluminum and oxygen that contains aluminum cations, Al^{3+}, and oxygen anions, O^{2-}. What is the formula of this compound?
Figure 13.4
Although pure aluminum oxide is colorless, trace amounts of iron and titanium give blue sapphire its characteristic color. (credit: modification of work by Stanislav Doronenko)

Solution

Because the ionic compound must be electrically neutral, it must have the same number of positive and negative charges. Two aluminum ions, each with a charge of $3+$, would give us six positive charges, and three oxide ions, each with a charge of $2-$, would give us six negative charges. The formula would be $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Check Your Learning

Predict the formula of the ionic compound formed between the sodium cation, Na^{+}, and the sulfide anion, S^{2-}.

Answer

$\mathrm{Na}_{2} \mathrm{~S}$

Many ionic compounds contain polyatomic ions (Table 13.1) as the cation, the anion, or both. As with simple ionic compounds, these compounds must also be electrically neutral, so their formulas can be predicted by treating the polyatomic ions as discrete units. We use parentheses in a formula to indicate a group of atoms that behave as a unit. For example, the formula for calcium phosphate, one of the minerals in our bones, is $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. This formula indicates that there are three calcium ions $\left(\mathrm{Ca}^{2+}\right)$ for every two phosphate
$\left(\mathrm{PO}_{4}{ }^{3-}\right)$
groups. The
groups are discrete units, each consisting of one phosphorus atom and four oxygen atoms, and having an overall charge of $3-$. The compound is electrically neutral, and its formula shows a total count of three Ca , two P , and eight O atoms.

Example 13.4

Predicting the Formula of a Compound with a Polyatomic Anion

Baking powder contains calcium dihydrogen phosphate, an ionic compound composed of the ions Ca^{2+} and
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.

What is the formula of this compound?

Solution

The positive and negative charges must balance, and this ionic compound must be electrically neutral. Thus, we must have two negative charges to balance the $2+$ charge of the calcium ion. This requires a ratio of one Ca^{2+} ion to two
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
ions. We designate this by enclosing the formula for the dihydrogen phosphate ion in parentheses and adding a subscript 2. The formula is $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$.
Check Your Learning
Predict the formula of the ionic compound formed between the lithium ion and the peroxide ion,
$\mathrm{O}_{2}{ }^{2-}$
(Hint: Use the periodic table to predict the sign and the charge on the lithium ion.)

Answer

$\mathrm{Li}_{2} \mathrm{O}_{2}$

Because an ionic compound is not made up of single, discrete molecules, it may not be properly symbolized using a molecular formula. Instead, ionic compounds must be symbolized by a formula indicating the relative numbers of its constituent ions. For compounds containing only monatomic ions (such as NaCl) and for many compounds containing polyatomic ions (such as CaSO_{4}), these formulas are just the empirical formulas introduced earlier. However, the formulas for some ionic compounds containing polyatomic ions are not empirical formulas. For example, the ionic compound sodium oxalate is comprised of Na^{+}and
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
ions combined in a $2: 1$ ratio, and its formula is written as $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. The subscripts in this formula are not the smallestpossible whole numbers, as each can be divided by 2 to yield the empirical formula, NaCO_{2}. This is not the accepted formula for sodium oxalate, however, as it does not accurately represent the compound's polyatomic anion,
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$.

Molecular Compounds

Many compounds do not contain ions but instead consist solely of discrete, neutral molecules. These molecular compounds (covalent compounds) result when atoms share, rather than transfer (gain or lose), electrons. Covalent bonding is an important and extensive concept in chemistry, and it will be treated in considerable detail in a later chapter of this text. We can often identify molecular compounds on the basis of their physical properties. Under normal conditions, molecular compounds often exist as gases, low-boiling liquids, and low-melting solids, although many important exceptions exist.

Whereas ionic compounds are usually formed when a metal and a nonmetal combine, covalent compounds are usually formed by a combination of nonmetals. Thus, the periodic table can help us recognize many of the compounds that are covalent. While we can use the positions of a compound's elements in the periodic table to predict whether it is ionic or covalent at this point in our study of chemistry, you should be aware that this is a very simplistic approach that does not account for a number of interesting exceptions. Shades of gray exist between ionic and molecular compounds, and you'll learn more about those later.

Example 13.5

Predicting the Type of Bonding in Compounds

Predict whether the following compounds are ionic or molecular:
(a) KI, the compound used as a source of iodine in table salt
(b) $\mathrm{H}_{2} \mathrm{O}_{2}$, the bleach and disinfectant hydrogen peroxide
(c) CHCl_{3}, the anesthetic chloroform
(d) $\mathrm{Li}_{2} \mathrm{CO}_{3}$, a source of lithium in antidepressants

Solution

(a) Potassium (group 1) is a metal, and iodine (group 17) is a nonmetal; KI is predicted to be ionic.
(b) Hydrogen (group 1) is a nonmetal, and oxygen (group 16) is a nonmetal; $\mathrm{H}_{2} \mathrm{O}_{2}$ is predicted to be molecular.
(c) Carbon (group 14) is a nonmetal, hydrogen (group 1) is a nonmetal, and chlorine (group 17) is a nonmetal; CHCl_{3} is predicted to be molecular.
(d) Lithium (group 1) is a metal, and carbonate is a polyatomic ion; $\mathrm{Li}_{2} \mathrm{CO}_{3}$ is predicted to be ionic.

Check Your Learning

Using the periodic table, predict whether the following compounds are ionic or covalent:
(a) SO_{2}
(b) CaF_{2}
(c) $\mathrm{N}_{2} \mathrm{H}_{4}$
(d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer

(a) molecular; (b) ionic; (c) molecular; (d) ionic

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

13.2 Ionic Bonding

Learning Objectives

By the end of this section, you will be able to:

- Explain the formation of cations, anions, and ionic compounds
- Predict the charge of common metallic and nonmetallic elements, and write their electron configurations

As you have learned, ions are atoms or molecules bearing an electrical charge. A cation (a positive ion) forms when a neutral atom loses one or more electrons from its valence shell, and an anion (a negative ion) forms when a neutral atom gains one or more electrons in its valence shell.

Compounds composed of ions are called ionic compounds (or salts), and their constituent ions are held together by ionic bonds: electrostatic forces of attraction between oppositely charged cations and anions. The properties of ionic compounds shed some light on the nature of ionic bonds. Ionic solids exhibit a crystalline structure and tend to be rigid and brittle; they also tend to have high melting and boiling points, which suggests that ionic bonds are very strong. lonic solids are also poor conductors of electricity for the same reason-the strength of ionic bonds prevents ions from moving freely in the solid state. Most ionic solids, however, dissolve readily in water. Once dissolved or melted, ionic compounds are excellent conductors of electricity and heat because the ions can move about freely.

Neutral atoms and their associated ions have very different physical and chemical properties. Sodium atoms form sodium metal, a soft, silvery-white metal that burns vigorously in air and reacts explosively with water. Chlorine atoms form chlorine gas, Cl_{2}, a yellow-green gas that is extremely corrosive to most metals and very poisonous to animals and plants. The vigorous reaction between the elements sodium and chlorine forms the white, crystalline compound sodium chloride, common table salt, which contains sodium cations and chloride anions (Figure 13.5). The compound composed of these ions exhibits properties entirely different from the properties of the elements sodium and chlorine. Chlorine is poisonous, but sodium chloride is essential to life; sodium atoms react vigorously with water, but sodium chloride simply dissolves in water.

Figure 13.5
(a) Sodium is a soft metal that must be stored in mineral oil to prevent reaction with air or water. (b) Chlorine is a pale yellow-green gas. (c) When combined, they form white crystals of sodium chloride (table salt). (credit a: modification of work by "Jurii"/Wikimedia Commons)

The Formation of lonic Compounds

Binary ionic compounds are composed of just two elements: a metal (which forms the cations) and a nonmetal (which forms the anions). For example, NaCl is a binary ionic compound. We can think about the formation of such compounds in terms of the periodic properties of the elements. Many metallic elements have relatively low ionization potentials and lose electrons easily. These elements lie to the left in a period or near the bottom of a group on the periodic table. Nonmetal atoms have relatively high electron affinities and thus readily gain electrons lost by metal atoms, thereby filling their valence shells. Nonmetallic elements are found in the upper-right corner of the periodic table.

As all substances must be electrically neutral, the total number of positive charges on the cations of an ionic compound must equal the total number of negative charges on its anions. The formula of an ionic compound represents the simplest ratio of the numbers of ions necessary to give identical numbers of positive and negative charges. For example, the formula for aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, indicates that this ionic compound contains two aluminum cations, Al^{3+}, for every three oxide anions, O^{2-} [thus, (2
\times
$+3)+(3$
\times
$-2)=0]$.
It is important to note, however, that the formula for an ionic compound does not represent the physical arrangement of its ions. It is incorrect to refer to a sodium chloride (NaCl) "molecule" because there is not a single ionic bond, per se, between any specific pair of sodium and chloride ions. The attractive forces between ions are isotropic-the same in all directions-meaning that any particular ion is equally attracted to all of the nearby ions of opposite charge. This results in the ions arranging themselves into a tightly bound, three-dimensional lattice structure. Sodium chloride, for example, consists of a regular arrangement of equal numbers of Na^{+}cations and Cl^{-}anions (Figure 13.6).

Figure 13.6
The atoms in sodium chloride (common table salt) are arranged to (a) maximize opposite charges interacting. The smaller spheres represent sodium ions, the larger ones represent chloride ions. In the expanded view (b), the geometry can be seen more clearly. Note that each ion is "bonded" to all of the surrounding ions-six in this case.

The strong electrostatic attraction between Na^{+}and Cl^{-}ions holds them tightly together in solid NaCl . It requires 769 kJ of energy to dissociate one mole of solid NaCl into separate gaseous Na^{+}and Cl^{-}ions:

$$
\mathrm{NaCl}(s) \rightarrow \mathrm{Na}^{+}(g)+\mathrm{Cl}^{-}(g) \quad \Delta H=769 \mathrm{~kJ}
$$

Electronic Structures of Cations

When forming a cation, an atom of a main group element tends to lose all of its valence electrons, thus assuming the electronic structure of the noble gas that precedes it in the periodic table. For groups 1 (the alkali metals) and 2 (the alkaline earth metals), the group numbers are equal to the numbers of valence shell electrons and, consequently, to the charges of the cations formed from atoms of these elements when all valence shell electrons are removed. For example, calcium is a group 2 element whose neutral atoms have 20 electrons and a ground state electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$. When a Ca atom loses both of its valence electrons, the result is a cation with 18 electrons, a $2+$ charge, and an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$. The Ca^{2+} ion is therefore isoelectronic with the noble gas Ar.

For groups 13-17, the group numbers exceed the number of valence electrons by 10 (accounting for the possibility of full d subshells in atoms of elements in the fourth and greater periods). Thus, the charge of a cation formed by the loss of all valence electrons is equal to the group number minus 10. For example, aluminum (in group 13) forms $3+$ ions $\left(\mathrm{Al}^{3+}\right)$.

Exceptions to the expected behavior involve elements toward the bottom of the groups. In addition to the expected ions $\mathrm{Tl}^{3+}, \mathrm{Sn}^{4+}, \mathrm{Pb}^{4+}$, and Bi^{5+}, a partial loss of these atoms' valence shell electrons can also lead to the formation of Tl^{+}, $\mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$, and Bi^{3+} ions. The formation of these $1+, 2+$, and $3+$ cations is ascribed to the inert pair effect, which reflects the relatively low energy of the valence s-electron pair for atoms of the heavy elements of groups 13, 14, and 15 . Mercury (group 12) also exhibits an unexpected behavior: it forms a diatomic ion,
$\mathrm{Hg}_{2}{ }^{2+}$
(an ion formed from two mercury atoms, with an $\mathrm{Hg}-\mathrm{Hg}$ bond), in addition to the expected monatomic ion Hg^{2+} (formed from only one mercury atom).

Transition and inner transition metal elements behave differently than main group elements. Most transition metal cations have $2+$ or $3+$ charges that result from the loss of their outermost s electron(s) first, sometimes followed by the loss of one or two d electrons from the next-to-outermost shell. For example, iron ($1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$) forms the ion $\mathrm{Fe}^{2+}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}\right)$ by the loss of the $4 s$ electrons and the ion $\mathrm{Fe}^{3+}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}\right)$ by the loss of the $4 s$ electron and one of the $3 d$ electrons. Although the d orbitals of the transition elements are-according to the Aufbau principle-the last to fill when building up electron configurations, the outermost s electrons are the first to be lost when these atoms ionize. When the inner transition metals form ions, they usually have a $3+$ charge, resulting from the loss of their outermost s electrons and a d or f electron.

Example 13.6

Determining the Electronic Structures of Cations

There are at least 14 elements categorized as "essential trace elements" for the human body. They are called "essential" because they are required for healthy bodily functions, "trace" because they are required only in small amounts, and "elements" in spite of the fact that they are really ions. Two of these essential trace elements, chromium and zinc, are required as Cr^{3+} and Zn^{2+}. Write the electron configurations of these cations.

Solution

First, write the electron configuration for the neutral atoms:
$\mathrm{Zn}:[\mathrm{Ar}] 3 d^{10} 4 s^{2}$
Cr: $[\operatorname{Ar}] 3 d^{5} 4 s^{1}$

Next, remove electrons from the highest energy orbital. For the transition metals, electrons are removed from the s orbital first and then from the d orbital. For the p-block elements, electrons are removed from the p orbitals and then from the s orbital. Zinc is a member of group 12, so it should have a charge of $2+$, and thus loses only the two electrons in its s orbital. Chromium is a transition element and should lose its s electrons and then its d electrons when forming a cation. Thus, we find the following electron configurations of the ions:
$\mathrm{Zn}^{2+}:[\mathrm{Ar}] 3 d^{10}$
$\mathrm{Cr}^{3+}:[\mathrm{Ar}] 3 d^{3}$

Check Your Learning

Potassium and magnesium are required in our diet. Write the electron configurations of the ions expected from these elements.

Answer

```
K':[Ar], Mg }\mp@subsup{}{}{2+}:[\textrm{Ne}
```


Electronic Structures of Anions

Most monatomic anions form when a neutral nonmetal atom gains enough electrons to completely fill its outer s and p orbitals, thereby reaching the electron configuration of the next noble gas. Thus, it is simple to determine the charge on such a negative ion: The charge is equal to the number of electrons that must be gained to fill the s and p orbitals of the parent atom. Oxygen, for example, has the electron configuration $1 s^{2} 2 s^{2} 2 p^{4}$, whereas the oxygen anion has the electron
configuration of the noble gas neon $(\mathrm{Ne}), 1 s^{2} 2 s^{2} 2 p^{6}$. The two additional electrons required to fill the valence orbitals give the oxide ion the charge of $2-\left(\mathrm{O}^{2-}\right)$.

Example 13.7

Determining the Electronic Structure of Anions

Selenium and iodine are two essential trace elements that form anions. Write the electron configurations of the anions.
Solution
Se ${ }^{2-}:[\mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{6}$
$I^{-}:[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{6}$
Check Your Learning
Write the electron configurations of a phosphorus atom and its negative ion. Give the charge on the anion.

Answer

$\mathrm{P}:[\mathrm{Ne}] 3 s^{2} 3 p^{3} ; \mathrm{P}^{3-}:[\mathrm{Ne}] 3 s^{2} 3 p^{6}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

13.3 Covalent Bonding

Learning Objectives

By the end of this section, you will be able to:

- Describe the formation of covalent bonds
- Define electronegativity and assess the polarity of covalent bonds

Ionic bonding results from the electrostatic attraction of oppositely charged ions that are typically produced by the transfer of electrons between metallic and nonmetallic atoms. A different type of bonding results from the mutual attraction of atoms for a "shared" pair of electrons. Such bonds are called covalent bonds. Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). For example, two hydrogen atoms bond covalently
to form an H_{2} molecule; each hydrogen atom in the H_{2} molecule has two electrons stabilizing it, giving each atom the same number of valence electrons as the noble gas He .

Compounds that contain covalent bonds exhibit different physical properties than ionic compounds. Because the attraction between molecules, which are electrically neutral, is weaker than that between electrically charged ions, covalent compounds generally have much lower melting and boiling points than ionic compounds. In fact, many covalent compounds are liquids or gases at room temperature, and, in their solid states, they are typically much softer than ionic solids. Furthermore, whereas ionic compounds are good conductors of electricity when dissolved in water, most covalent compounds are insoluble in water; since they are electrically neutral, they are poor conductors of electricity in any state.

Formation of Covalent Bonds

Nonmetal atoms frequently form covalent bonds with other nonmetal atoms. For example, the hydrogen molecule, H_{2}, contains a covalent bond between its two hydrogen atoms. Figure 13.7 illustrates why this bond is formed. Starting on the far right, we have two separate hydrogen atoms with a particular potential energy, indicated by the red line. Along the x-axis is the distance between the two atoms. As the two atoms approach each other (moving left along the x-axis), their valence orbitals ($1 s$) begin to overlap. The single electrons on each hydrogen atom then interact with both atomic nuclei, occupying the space around both atoms. The strong attraction of each shared electron to both nuclei stabilizes the system, and the potential energy decreases as the bond distance decreases. If the atoms continue to approach each other, the positive charges in the two nuclei begin to repel each other, and the potential energy increases. The bond length is determined by the distance at which the lowest potential energy is achieved.

Figure 13.7

The potential energy of two separate hydrogen atoms (right) decreases as they approach each other, and the single electrons on each atom are shared to form a covalent bond. The bond length is the internuclear distance at which the lowest potential energy is achieved.

It is essential to remember that energy must be added to break chemical bonds (an endothermic process), whereas forming chemical bonds releases energy (an exothermic process). In the case of H_{2}, the covalent bond is very strong; a large amount of energy, 436 kJ , must be added to break the bonds in one mole of hydrogen molecules and cause the atoms to separate:
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) \quad \Delta H=436 \mathrm{~kJ}$

Conversely, the same amount of energy is released when one mole of H_{2} molecules forms from two moles of H atoms:

$$
2 \mathrm{H}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H=-436 \mathrm{~kJ}
$$

Pure vs. Polar Covalent Bonds

If the atoms that form a covalent bond are identical, as in $\mathrm{H}_{2}, \mathrm{Cl}_{2}$, and other diatomic molecules, then the electrons in the bond must be shared equally. We refer to this as a pure covalent bond. Electrons shared in pure covalent bonds have an equal probability of being near each nucleus.

In the case of Cl_{2}, each atom starts off with seven valence electrons, and each Cl shares one electron with the other, forming one covalent bond:
$\mathrm{Cl}+\mathrm{Cl} \longrightarrow \mathrm{Cl}_{2}$

The total number of electrons around each individual atom consists of six nonbonding electrons and two shared (i.e., bonding) electrons for eight total electrons, matching the number of valence electrons in the noble gas argon. Since the
bonding atoms are identical, Cl_{2} also features a pure covalent bond.
When the atoms linked by a covalent bond are different, the bonding electrons are shared, but no longer equally. Instead, the bonding electrons are more attracted to one atom than the other, giving rise to a shift of electron density toward that atom. This unequal distribution of electrons is known as a polar covalent bond, characterized by a partial positive charge on one atom and a partial negative charge on the other. The atom that attracts the electrons more strongly acquires the partial negative charge and vice versa. For example, the electrons in the $\mathrm{H}-\mathrm{Cl}$ bond of a hydrogen chloride molecule spend more time near the chlorine atom than near the hydrogen atom. Thus, in an HCl molecule, the chlorine atom carries a partial negative charge and the hydrogen atom has a partial positive charge. Figure 13.8 shows the distribution of electrons in the $\mathrm{H}-\mathrm{Cl}$ bond. Note that the shaded area around Cl is much larger than it is around H . Compare this to Figure 13.7, which shows the even distribution of electrons in the H_{2} nonpolar bond.

We sometimes designate the positive and negative atoms in a polar covalent bond using a lowercase Greek letter "delta," δ, with a plus sign or minus sign to indicate whether the atom has a partial positive charge ($\delta+$) or a partial negative charge ($\delta-$). This symbolism is shown for the $\mathrm{H}-\mathrm{Cl}$ molecule in Figure 13.8.

Figure 13.8
(a) The distribution of electron density in the HCl molecule is uneven. The electron density is greater around the chlorine nucleus. The small, black dots indicate the location of the hydrogen and chlorine nuclei in the molecule. (b) Symbols $\delta+$ and δ - indicate the polarity of the $\mathrm{H}-\mathrm{Cl}$ bond.

Electronegativity

Whether a bond is nonpolar or polar covalent is determined by a property of the bonding atoms called electronegativity. Electronegativity is a measure of the tendency of an atom to attract electrons (or electron density) towards itself. It determines how the shared electrons are distributed between the two atoms in a bond. The more strongly an atom attracts the electrons in its bonds, the larger its electronegativity. Electrons in a polar covalent bond are shifted toward the more electronegative atom; thus, the more electronegative atom is the one with the partial negative charge. The greater the difference in electronegativity, the more polarized the electron distribution and the larger the partial charges of the atoms.

Figure 13.9 shows the electronegativity values of the elements as proposed by one of the most famous chemists of the twentieth century: Linus Pauling (Figure 13.10). In general, electronegativity increases from left to right across a period in the periodic table and decreases down a group. Thus, the nonmetals, which lie in the upper right, tend to have the highest electronegativities, with fluorine the most electronegative element of all ($\mathrm{EN}=4.0$). Metals tend to be less electronegative elements, and the group 1 metals have the lowest electronegativities. Note that noble gases are excluded from this figure because these atoms usually do not share electrons with others atoms since they have a full
valence shell. (While noble gas compounds such as XeO_{2} do exist, they can only be formed under extreme conditions, and thus they do not fit neatly into the general model of electronegativity.)

Figure 13.9

The electronegativity values derived by Pauling follow predictable periodic trends, with the higher electronegativities toward the upper right of the periodic table.

Electronegativity versus Electron Affinity

We must be careful not to confuse electronegativity and electron affinity. The electron affinity of an element is a measurable physical quantity, namely, the energy released or absorbed when an isolated gas-phase atom acquires an electron, measured in $\mathrm{kJ} / \mathrm{mol}$. Electronegativity, on the other hand, describes how tightly an atom attracts electrons in a bond. It is a dimensionless quantity that is calculated, not measured. Pauling derived the first electronegativity values by comparing the amounts of energy required to break different types of bonds. He chose an arbitrary relative scale ranging from 0 to 4 .

Portrait of a Chemist

Linus Pauling

Linus Pauling, shown in Figure 13.10, is the only person to have received two unshared (individual) Nobel Prizes: one for chemistry in 1954 for his work on the nature of chemical bonds and one for peace in 1962 for his opposition to weapons of mass destruction. He developed many of the theories and concepts that are foundational to our current understanding of chemistry, including electronegativity and resonance structures.

Figure 13.10
Linus Pauling (1901-1994) made many important contributions to the field of chemistry. He was also a prominent activist, publicizing issues related to health and nuclear weapons.

Pauling also contributed to many other fields besides chemistry. His research on sickle cell anemia revealed the cause of the disease-the presence of a genetically inherited abnormal protein in the blood-and paved the way for the field of molecular genetics. His work was also pivotal in curbing the testing of nuclear weapons; he proved that radioactive fallout from nuclear testing posed a public health risk.

Electronegativity and Bond Type

The absolute value of the difference in electronegativity ($\triangle \mathrm{EN}$) of two bonded atoms provides a rough measure of the polarity to be expected in the bond and, thus, the bond type. When the difference is very small or zero, the bond is covalent and nonpolar. When it is large, the bond is polar covalent or ionic. The absolute values of the electronegativity differences between the atoms in the bonds $\mathrm{H}-\mathrm{H}, \mathrm{H}-\mathrm{Cl}$, and $\mathrm{Na}-\mathrm{Cl}$ are 0 (nonpolar), 0.9 (polar covalent), and 2.1 (ionic), respectively. The degree to which electrons are shared between atoms varies from completely equal (pure
covalent bonding) to not at all (ionic bonding). Figure 13.11 shows the relationship between electronegativity difference and bond type.

Figure 13.11
As the electronegativity difference increases between two atoms, the bond becomes more ionic.

A rough approximation of the electronegativity differences associated with covalent, polar covalent, and ionic bonds is shown in Figure 13.11. This table is just a general guide, however, with many exceptions. For example, the H and F atoms in HF have an electronegativity difference of 1.9, and the N and H atoms in NH_{3} a difference of 0.9 , yet both of these compounds form bonds that are considered polar covalent. Likewise, the Na and Cl atoms in NaCl have an electronegativity difference of 2.1, and the Mn and I atoms in MnI_{2} have a difference of 1.0, yet both of these substances form ionic compounds.

The best guide to the covalent or ionic character of a bond is to consider the types of atoms involved and their relative positions in the periodic table. Bonds between two nonmetals are generally covalent; bonding between a metal and a nonmetal is often ionic.

Some compounds contain both covalent and ionic bonds. The atoms in polyatomic ions, such as OH^{-},
$\mathrm{NO}_{3}{ }^{-}$,
and
$\mathrm{NH}_{4}{ }^{+}$,
are held together by polar covalent bonds. However, these polyatomic ions form ionic compounds by combining with ions of opposite charge. For example, potassium nitrate, KNO_{3}, contains the K^{+}cation and the polyatomic
$\mathrm{NO}_{3}{ }^{-}$
anion. Thus, bonding in potassium nitrate is ionic, resulting from the electrostatic attraction between the ions K^{+}and
$\mathrm{NO}_{3}{ }^{-}$,
as well as covalent between the nitrogen and oxygen atoms in
NO_{3}

Example 13.8

Electronegativity and Bond Polarity

Bond polarities play an important role in determining the structure of proteins. Using the electronegativity values in Figure 13.9, arrange the following covalent bonds-all commonly found in amino acids-in order of increasing polarity. Then designate the positive and negative atoms using the symbols $\delta+$ and $\delta-$:
C-H, C-N, C-O, N-H, O-H, S-H

Solution

The polarity of these bonds increases as the absolute value of the electronegativity difference increases. The atom with the δ - designation is the more electronegative of the two. Table 13.5 shows these bonds in order of increasing polarity.
Table 13.5

Bond Polarity and Electronegativity Difference

Bond	$\boldsymbol{\Delta E N}$	Polarity
$\mathrm{C}-\mathrm{H}$	0.4	$\stackrel{\delta-}{\mathrm{C}}-\stackrel{+}{\mathrm{H}}$
$\mathrm{S}-\mathrm{H}$	0.4	$\stackrel{\delta-}{\delta+}$
$\mathrm{C}-\mathrm{N}$		H
$\mathrm{N}-\mathrm{H}$	0.5	$\stackrel{\delta+}{\mathrm{C}}-\stackrel{-}{\mathrm{N}}$
$\mathrm{C}-\mathrm{O}$	0.9	$\stackrel{\delta-}{\mathrm{N}}-\stackrel{\delta+}{\mathrm{H}}$
$\mathrm{O}-\mathrm{H}$	1.0	$\stackrel{\delta+}{\mathrm{C}}-\stackrel{\delta-}{\mathrm{O}}$

Check Your Learning

Silicones are polymeric compounds containing, among others, the following types of covalent bonds: $\mathrm{Si}-\mathrm{O}, \mathrm{Si}-$ C, C-H, and C-C. Using the electronegativity values in Figure 13.9, arrange the bonds in order of increasing polarity and designate the positive and negative atoms using the symbols $\delta+$ and $\delta-$.

Answer

Bond	Electronegativity Difference	Polarity
C-C	0.0	nonpolar
$\mathrm{C}-\mathrm{H}$	0.4	$\stackrel{\delta-}{\mathrm{C}}-\stackrel{\delta+}{\mathrm{H}}$
$\mathrm{Si}-\mathrm{C}$	0.7	$\stackrel{\delta+}{\mathrm{Si}}+-{ }_{-}^{\delta-}$
$\mathrm{Si}-0$	1.7	$\stackrel{\delta+}{\mathrm{Si}}-\stackrel{\delta-}{\mathrm{O}}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/bonding.

14

Nomenclature

Nomenclature

Chemists use nomenclature rules to clearly name compounds. Ionic and molecular compounds are named using somewhat-different methods. Binary ionic compounds typically consist of a metal and a nonmetal. The name of the metal is written first, followed by the name of the nonmetal with its ending changed to -ide. For example, $\mathrm{K}_{2} \mathrm{O}$ is called potassium oxide. If the metal can form ions with different charges, a Roman numeral in parentheses follows the name of the metal to specify its charge. $\mathrm{Thus,}_{\mathrm{FeCl}}^{2}$ is iron(II) chloride and FeCl_{3} is iron(III) chloride. Some compounds contain polyatomic ions; the names of common polyatomic ions should be memorized. Molecular compounds can form compounds with different ratios of their elements, so prefixes are used to specify the numbers of atoms of each element in a molecule of the compound. Examples include $S F_{6}$ sulfur hexafluoride, and $\mathrm{N}_{2} \mathrm{O}_{4}$, dinitrogen tetroxide. Acids are an important class of compounds containing hydrogen and having special nomenclature rules. Binary acids are named using the prefix hydro-, changing the ide suffix to -ic, and adding "acid;" HCl is hydrochloric acid. Oxyacids are named by changing the ending of the anion (-ate to -ic and -ite to -ous), and adding "acid;" $\mathrm{H}_{2} \mathrm{CO}_{3}$ is carbonic acid.

14.1 Chemical Nomenclature

Learning Objectives

By the end of this section, you will be able to:

- Derive names for common types of inorganic compounds using a systematic approach

Nomenclature, a collection of rules for naming things, is important in science and in many other situations. This module describes an approach that is used to name simple ionic and molecular compounds, such as $\mathrm{NaCl}, \mathrm{CaCO}_{3}$, and $\mathrm{N}_{2} \mathrm{O}_{4}$. The simplest of these are binary compounds, those containing only two elements, but we will also consider how to name ionic compounds containing polyatomic ions, and one specific, very important class of compounds known as acids (subsequent chapters in this text will focus on these compounds in great detail). We will limit our attention here to inorganic compounds, compounds that are composed principally of elements other than carbon, and will follow the
nomenclature guidelines proposed by IUPAC. The rules for organic compounds, in which carbon is the principle element, will be treated in a later chapter on organic chemistry.

Ionic Compounds

To name an inorganic compound, we need to consider the answers to several questions. First, is the compound ionic or molecular? If the compound is ionic, does the metal form ions of only one type (fixed charge) or more than one type (variable charge)? Are the ions monatomic or polyatomic? If the compound is molecular, does it contain hydrogen? If so, does it also contain oxygen? From the answers we derive, we place the compound in an appropriate category and then name it accordingly.

Compounds Containing Only Monatomic Ions

The name of a binary compound containing monatomic ions consists of the name of the cation (the name of the metal) followed by the name of the anion (the name of the nonmetallic element with its ending replaced by the suffix -ide). Some examples are given in Table 14.1.

Table 14.1

Names of Some Ionic Compounds

NaCl, sodium chloride	$\mathrm{Na}_{2} \mathrm{O}$, sodium oxide
KBr, potassium bromide	CdS , cadmium sulfide
Cal_{2}, calcium iodide	$\mathrm{Mg}_{3} \mathrm{~N}_{2}$, magnesium nitride
CsF, cesium fluoride	$\mathrm{Ca}_{3} \mathrm{P}_{2}$, calcium phosphide
LiCl, lithium chloride	$\mathrm{Al}_{4} \mathrm{C}_{3}$, aluminum carbide

Compounds Containing Polyatomic Ions

Compounds containing polyatomic ions are named similarly to those containing only monatomic ions, i.e., by naming first the cation and then the anion. Examples are shown in Table 14.2.

Table 14.2

Names of Some Polyatomic Ionic Compounds

$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, potassium acetate	$\mathrm{NH}_{4} \mathrm{Cl}$, ammonium chloride
NaHCO_{3}, sodium bicarbonate	CaSO_{4}, calcium sulfate
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$, aluminum carbonate	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, magnesium phosphate

Chemistry in Everyday Life

Ionic Compounds in Your Cabinets

Every day you encounter and use a large number of ionic compounds. Some of these compounds, where they are found, and what they are used for are listed in Table 14.3. Look at the label or ingredients list on the various products that you use during the next few days, and see if you run into any of those in this table, or find other ionic compounds that you could now name or write as a formula.

Table 14.3

Everyday Ionic Compounds	
Ionic Compound	Use
NaCl , sodium chloride	ordinary table salt
KI , potassium iodide	added to "iodized" salt for thyroid health
NaF , sodium fluoride	ingredient in toothpaste
NaHCO_{3}, sodium bicarbonate	baking soda; used in cooking (and as antacid)
$\mathrm{Na}_{2} \mathrm{CO}_{3}$, sodium carbonate	washing soda; used in cleaning agents
NaOCl , sodium hypochlorite	active ingredient in household bleach
CaCO_{3} calcium carbonate	ingredient in antacids
$\mathrm{Mg}(\mathrm{OH})_{2}$, magnesium hydroxide	ingredient in antacids
$\mathrm{Al}(\mathrm{OH})_{3}$, aluminum hydroxide	ingredient in antacids
NaOH , sodium hydroxide	lye; used as drain cleaner
$\mathrm{K}_{3} \mathrm{PO}_{4}$, potassium phosphate	food additive (many purposes)
MgSO_{4}, magnesium sulfate	added to purified water
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$, sodium hydrogen phosphate	anti-caking agent; used in powdered products
$\mathrm{Na}_{2} \mathrm{SO}_{3}$, sodium sulfite	preservative

Compounds Containing a Metal Ion with a Variable Charge

Most of the transition metals and some main group metals can form two or more cations with different charges. Compounds of these metals with nonmetals are named with the same method as compounds in the first category, except the charge of the metal ion is specified by a Roman numeral in parentheses after the name of the metal. The charge of the metal ion is determined from the formula of the compound and the charge of the anion. For example, consider binary ionic compounds of iron and chlorine. Iron typically exhibits a charge of either 2+ or $3+$ (see Figure 14.1), and the two corresponding compound formulas are FeCl_{2} and FeCl_{3}. The simplest name, "iron chloride," will, in this case, be ambiguous, as it does not distinguish between these two compounds. In cases like this, the charge of the metal ion is included as a Roman numeral in parentheses immediately following the metal name. These two compounds are then unambiguously named iron(II) chloride and iron(III) chloride, respectively. Other examples are provided in Table 14.4.

Table 14.4

Some Ionic Compounds with Variably Charged Metal Ions

Compound	Name
FeCl_{2}	iron(II) chloride
FeCl_{3}	iron(III) chloride
$\mathrm{Hg}_{2} \mathrm{O}$	mercury(I) oxide
HgO	mercury(II) oxide
SnF_{2}	$\operatorname{tin}(\mathrm{II})$ fluoride
SnF_{4}	$\operatorname{tin}(\mathrm{IV})$ fluoride

Out-of-date nomenclature used the suffixes - ic and -ous to designate metals with higher and lower charges, respectively: Iron(III) chloride, FeCl_{3}, was previously called ferric chloride, and iron(II) chloride, FeCl_{2}, was known as ferrous chloride. Though this naming convention has been largely abandoned by the scientific community, it remains in use by some segments of industry. For example, you may see the words stannous fluoride on a tube of toothpaste. This represents the formula SnF_{2}, which is more properly named $\mathrm{tin}(\mathrm{II})$ fluoride. The other fluoride of tin is SnF_{4}, which was previously called stannic fluoride but is now named tin(IV) fluoride.

Ionic Hydrates

Ionic compounds that contain water molecules as integral components of their crystals are called hydrates. The name for an ionic hydrate is derived by adding a term to the name for the anhydrous (meaning "not hydrated") compound that indicates the number of water molecules associated with each formula unit of the compound. The added word begins with a Greek prefix denoting the number of water molecules (see Table 14.5) and ends with "hydrate." For example, the anhydrous compound copper(II) sulfate also exists as a hydrate containing five water molecules and named copper(II) sulfate pentahydrate. Washing soda is the common name for a hydrate of sodium carbonate containing 10 water molecules; the systematic name is sodium carbonate decahydrate.

Formulas for ionic hydrates are written by appending a vertically centered dot, a coefficient representing the number of water molecules, and the formula for water. The two examples mentioned in the previous paragraph are represented by the formulas

> copper(II) sulfate pentahydrate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
> sodium carbonate decahydrate $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Table 14.5

Nomenclature Prefixes

| Number | Prefix | Number | Prefix |
| :--- | :--- | :--- | :--- | :--- |
| 1 (sometimes omitted) | mono- | 6 | hexa- |
| 2 | di- | 7 | hepta- |
| 3 | tri- | 8 | octa- |
| 4 | tetra- | 9 | nona- |
| 5 | penta- | 10 | deca- |

Example 14.1

Naming Ionic Compounds

Name the following ionic compounds:
(a) $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
(b) CuSe
(c) GaN
(d) $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{Ti}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Solution

The anions in these compounds have a fixed negative charge $\left(\mathrm{S}^{2-}, \mathrm{Se}^{2-}, \mathrm{N}^{3-}\right.$, and
$\left.\mathrm{SO}_{4}{ }^{2-}\right)$,
and the compounds must be neutral. Because the total number of positive charges in each compound must equal the total number of negative charges, the positive ions must be $\mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}, \mathrm{Ga}^{3+}, \mathrm{Mg}^{2+}$, and Ti^{3+}. These charges are used in the names of the metal ions:
(a) iron(III) sulfide
(b) copper(II) selenide
(c) gallium(III) nitride
(d) magnesium sulfate heptahydrate
(e) titanium(III) sulfate

Check Your Learning

Write the formulas of the following ionic compounds:
(a) chromium(III) phosphide
(b) mercury(II) sulfide
(c) manganese(II) phosphate
(d) copper(I) oxide
(e) iron(III) chloride dihydrate

Answer

(a) CrP ; (b) HgS ; (c) $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$; (d) $\mathrm{Cu}_{2} \mathrm{O}$; (e) $\mathrm{FeCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Chemistry in Everyday Life

Erin Brokovich and Chromium Contamination

In the early 1990s, legal file clerk Erin Brockovich (Figure 14.2) discovered a high rate of serious illnesses in the small town of Hinckley, California. Her investigation eventually linked the illnesses to groundwater contaminated by $\mathrm{Cr}(\mathrm{VI})$ used by Pacific Gas \& Electric (PG\&E) to fight corrosion in a nearby natural gas pipeline. As dramatized in the film Erin Brokovich (for which Julia Roberts won an Oscar), Erin and lawyer Edward Masry sued PG\&E for contaminating the water near Hinckley in 1993. The settlement they won in 1996-\$333 millionwas the largest amount ever awarded for a direct-action lawsuit in the US at that time.

Figure 14.2
(a) Erin Brockovich found that $\operatorname{Cr}(V I)$, used by PG\&E, had contaminated the Hinckley, California, water supply. (b) The $\mathrm{Cr}(\mathrm{VI})$ ion is often present in water as the polyatomic ions chromate, $\mathrm{CrO}_{4}{ }^{2-}$ (left), and dichromate, $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (right).

Chromium compounds are widely used in industry, such as for chrome plating, in dye-making, as preservatives, and to prevent corrosion in cooling tower water, as occurred near Hinckley. In the environment, chromium exists primarily in either the Cr (III) or $\mathrm{Cr}(\mathrm{VI})$ forms. $\mathrm{Cr}(\mathrm{III})$, an ingredient of many vitamin and nutritional supplements, forms compounds that are not very soluble in water, and it has low toxicity. $\operatorname{But} \mathrm{Cr}(\mathrm{VI})$ is much more toxic and forms compounds that are reasonably soluble in water. Exposure to small amounts of $\mathrm{Cr}(\mathrm{VI})$ can lead to damage of the respiratory, gastrointestinal, and immune systems, as well as the kidneys, liver, blood, and skin.

Despite cleanup efforts, $\mathrm{Cr}(\mathrm{VI})$ groundwater contamination remains a problem in Hinckley and other locations across the globe. A 2010 study by the Environmental Working Group found that of 35 US cities tested, 31 had higher levels of $\mathrm{Cr}(\mathrm{VI})$ in their tap water than the public health goal of 0.02 parts per billion set by the California Environmental Protection Agency.

Molecular (Covalent) Compounds

The bonding characteristics of inorganic molecular compounds are different from ionic compounds, and they are named using a different system as well. The charges of cations and anions dictate their ratios in ionic compounds, so specifying the names of the ions provides sufficient information to determine chemical formulas. However, because covalent bonding allows for significant variation in the combination ratios of the atoms in a molecule, the names for molecular compounds must explicitly identify these ratios.

Compounds Composed of Two Elements

When two nonmetallic elements form a molecular compound, several combination ratios are often possible. For example, carbon and oxygen can form the compounds CO and CO_{2}. Since these are different substances with different properties, they cannot both have the same name (they cannot both be called carbon oxide). To deal with this situation, we use a naming method that is somewhat similar to that used for ionic compounds, but with added prefixes to specify the numbers of atoms of each element. The name of the more metallic element (the one farther to the left and/or bottom of the periodic table) is first, followed by the name of the more nonmetallic element (the one farther to the right and/or top) with its ending changed to the suffix - ide. The numbers of atoms of each element are designated by the Greek prefixes shown in Table 14.5.

When only one atom of the first element is present, the prefix mono- is usually deleted from that part. Thus, CO is named carbon monoxide, and CO_{2} is called carbon dioxide. When two vowels are adjacent, the a in the Greek prefix is usually dropped. Some other examples are shown in Table 14.6.

Table 14.6

Names of Some Molecular Compounds Composed of Two Elements

| Compound | Name | Compound | Name |
| :--- | :--- | :--- | :--- | :--- |
| SO_{2} | sulfur dioxide | BCl_{3} | boron trichloride |
| SO_{3} | sulfur trioxide | SF_{6} | sulfur hexafluoride |
| NO_{2} | nitrogen dioxide | PF_{5} | phosphorus pentafluoride |
| $\mathrm{N}_{2} \mathrm{O}_{4}$ | dinitrogen tetroxide | $\mathrm{P}_{4} \mathrm{O}_{10}$ | tetraphosphorus decaoxide |
| $\mathrm{N}_{2} \mathrm{O}_{5}$ | dinitrogen pentoxide | IF_{7} | iodine heptafluoride |

There are a few common names that you will encounter as you continue your study of chemistry. For example, although NO is often called nitric oxide, its proper name is nitrogen monoxide. Similarly, $\mathrm{N}_{2} \mathrm{O}$ is known as nitrous oxide even though our rules would specify the name dinitrogen monoxide. (And $\mathrm{H}_{2} \mathrm{O}$ is usually called water, not dihydrogen monoxide.) You should commit to memory the common names of compounds as you encounter them.

Example 14.2

Naming Covalent Compounds

Name the following covalent compounds:
(a) SF_{6}
(b) $\mathrm{N}_{2} \mathrm{O}_{3}$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(d) $\mathrm{P}_{4} \mathrm{O}_{6}$

Solution

Because these compounds consist solely of nonmetals, we use prefixes to designate the number of atoms of each element:
(a) sulfur hexafluoride
(b) dinitrogen trioxide
(c) dichlorine heptoxide
(d) tetraphosphorus hexoxide

Check Your Learning

Write the formulas for the following compounds:
(a) phosphorus pentachloride
(b) dinitrogen monoxide
(c) iodine heptafluoride
(d) carbon tetrachloride

Answer

(a) PCl_{5}; (b) $\mathrm{N}_{2} \mathrm{O}$; (c) $\mathrm{IF}_{7} ;$ (d) CCl_{4}

This flowchart may help you organize all the information about nomenclature.

Nomenclature Flowchart (formula to name)

Diatomic Elements: $\mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}$ "Brinclhof"

Nomenclature Flowchart (name to formula)

Binary Acids

Some compounds containing hydrogen are members of an important class of substances known as acids. The chemistry of these compounds is explored in more detail in later chapters of this text, but for now, it will suffice to note that many acids release hydrogen ions, H^{+}, when dissolved in water. To denote this distinct chemical property, a mixture of water with an acid is given a name derived from the compound's name. If the compound is a binary acid (comprised of hydrogen and one other nonmetallic element):

1. The word "hydrogen" is changed to the prefix hydro-
2. The other nonmetallic element name is modified by adding the suffix -ic
3. The word "acid" is added as a second word

For example, when the gas HCl (hydrogen chloride) is dissolved in water, the solution is called hydrochloric acid. Several other examples of this nomenclature are shown in Table 14.5.

Table 14.5

Names of Some Simple Acids

Name of Gas	Name of Acid
$\mathrm{HF}(g)$, hydrogen fluoride	$\mathrm{HF}(a q)$, hydrofluoric acid
$\mathrm{HCl}(g)$, hydrogen chloride	$\mathrm{HCl}(a q)$, hydrochloric acid
$\mathrm{HBr}(g)$, hydrogen bromide	$\mathrm{HBr}(a q)$, hydrobromic acid
$\mathrm{HI}(g)$, hydrogen iodide	$\mathrm{HI}(a q)$, hydroiodic acid
$\mathrm{H}_{2} \mathrm{~S}(g)$, hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}(a q)$, hydrosulfuric acid

Oxyacids

Many compounds containing three or more elements (such as organic compounds or coordination compounds) are subject to specialized nomenclature rules that you will learn later. However, we will briefly discuss the important compounds known as oxyacids, compounds that contain hydrogen, oxygen, and at least one other element, and are bonded in such a way as to impart acidic properties to the compound (you will learn the details of this in a later chapter). Typical oxyacids consist of hydrogen combined with a polyatomic, oxygen-containing ion. To name oxyacids:

1. Omit "hydrogen"
2. Start with the root name of the anion
3. Replace -ate with -ic, or -ite with -ous
4. Add "acid"

For example, consider $\mathrm{H}_{2} \mathrm{CO}_{3}$ (which you might be tempted to call "hydrogen carbonate"). To name this correctly, "hydrogen" is omitted; the -ate of carbonate is replace with -ic; and acid is added-so its name is carbonic acid. Other examples are given in Table 14.6. There are some exceptions to the general naming method (e.g., $\mathrm{H}_{2} \mathrm{SO}_{4}$ is called sulfuric acid, not sulfic acid, and $\mathrm{H}_{2} \mathrm{SO}_{3}$ is sulfurous, not sulfous, acid).

Table 14.6

Names of Common Oxyacids

Formula	Anion Name	Acid Name
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	acetate	acetic acid
HNO_{3}	nitrate	nitric acid
HNO_{2}	nitrite	nitrous acid
HClO_{4}	perchlorate	perchloric acid
$\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonate	carbonic acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfate	sulfuric acid
$\mathrm{H}_{2} \mathrm{SO}_{3}$	sulfite	sulfurous acid

Formula	Anion Name	Acid Name
$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphate	phosphoric acid

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

```
Open in Google Drive
```


Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-3-chemicalnomenclature

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/nomenclature.

15

Lewis Structures Part 1

Atom

Lewis Structures

Valence electronic structures can be visualized by drawing Lewis symbols (for atoms and monatomic ions) and Lewis structures (for molecules and polyatomic ions). Lone pairs, unpaired electrons, and single, double, or triple bonds are used to indicate where the valence electrons are located around each atom in a Lewis structure. Most structures-especially those containing second row elements-obey the octet rule, in which every atom (except H) is surrounded by eight electrons. Exceptions to the octet rule occur for odd-electron molecules (free radicals), electron-deficient molecules, and hypervalent molecules.

15.1 Lewis Symbols and Structures

Learning Objectives

By the end of this section, you will be able to:

- Write Lewis symbols for neutral atoms and ions
- Draw Lewis structures depicting the bonding in simple molecules

Thus far in this chapter, we have discussed the various types of bonds that form between atoms and/or ions. In all cases, these bonds involve the sharing or transfer of valence shell electrons between atoms. In this section, we will explore the typical method for depicting valence shell electrons and chemical bonds, namely Lewis symbols and Lewis structures.

Lewis Symbols

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. A Lewis symbol consists of an elemental symbol surrounded by one dot for each of its valence electrons:

-Ca•

Figure 15.1 shows the Lewis symbols for the elements of the third period of the periodic table.

Figure 15.1

Lewis symbols illustrating the number of valence electrons for each element in the third period of the periodic table.

Atoms	Electronic Configuration	Lewis Symbol
sodium	$[\mathrm{Ne}] 3 s^{1}$	$\mathrm{Na} \cdot$
magnesium	$[\mathrm{Ne}] 3 s^{2}$	$\cdot \mathrm{Mg} \cdot$
aluminum	$[\mathrm{Ne}] 3 s^{2} 3 p^{1}$	$\cdot \dot{\mathrm{Al}} \cdot$
silicon	$[\mathrm{Ne}] 3 s^{2} 3 p^{2}$	$\cdot \dot{\mathrm{~S}} \cdot$
phosphorus	$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$	$\ddot{\mathrm{P}} \cdot$
sulfur	$[\mathrm{Ne}] 3 s^{2} 3 p^{4}$	$: \ddot{\mathrm{S}} \cdot$
chlorine	$[\mathrm{Ne}] 3 s^{2} 3 p^{5}$	$: \ddot{\mathrm{C}} \cdot$
argon	$[\mathrm{Ne}] 3 s^{2} 3 p^{6}$	$: \ddot{\mathrm{Ar}}:$

Lewis symbols can also be used to illustrate the formation of cations from atoms, as shown here for sodium and calcium:
\(\underset{\substack{sodium

atom}}{\mathrm{Na} \cdot \mathrm{Na}^{+}+\mathrm{e}^{-}} \underset{\)| sodium |
| :---: |
| cation |$}{ } \longrightarrow \mathrm{Ca} \longrightarrow \underset{$| calcium |
| :---: |
| atom |$}{\mathrm{Ca}^{2+}}+\mathrm{Ce}^{-}$

Likewise, they can be used to show the formation of anions from atoms, as shown here for chlorine and sulfur:

Figure 15.2 demonstrates the use of Lewis symbols to show the transfer of electrons during the formation of ionic compounds.

Figure 15.2
Cations are formed when atoms lose electrons, represented by fewer Lewis dots, whereas anions are formed by atoms gaining electrons. The total number of electrons does not change.

Metal		Nonmetal	Ionic Compound
Na . sodium atom	$+$	$: \ddot{\mathrm{Cl}}$ chlorine atom	$\longrightarrow \begin{gathered} \mathrm{Na}^{+}[: \ddot{\mathrm{Cl}}:]^{-} \\ \text {sodium chloride } \\ \\ \\ \text { (sodium ion and chloride ion) } \end{gathered}$
$\cdot \mathrm{Mg} \cdot$ magnesium atom	+	oxygen atom	$\longrightarrow \underset{\substack{\text { magnesium oxide } \\ \text { (magnesium ion and oxide ion) }}}{\mathrm{Mg}^{2+}[: \ddot{\mathrm{O}}:]^{2-}}$
- Ca• calcium atom	+	$2: \ddot{F}$ fluorine atoms	$\mathrm{Ca}^{2+}[: \ddot{\mathrm{F}}:]_{2}^{-}$ calcium fluoride (calcium ion and two fluoride ions)

Lewis Structures

We also use Lewis symbols to indicate the formation of covalent bonds, which are shown in Lewis structures, drawings that describe the bonding in molecules and polyatomic ions. For example, when two chlorine atoms form a chlorine molecule, they share one pair of electrons:

The Lewis structure indicates that each Cl atom has three pairs of electrons that are not used in bonding (called lone pairs) and one shared pair of electrons (written between the atoms). A dash (or line) is sometimes used to indicate a shared pair of electrons:

A single shared pair of electrons is called a single bond. Each Cl atom interacts with eight valence electrons: the six in the lone pairs and the two in the single bond.

The Octet Rule

The other halogen molecules $\left(\mathrm{F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right.$, and At_{2}) form bonds like those in the chlorine molecule: one single bond between atoms and three lone pairs of electrons per atom. This allows each halogen atom to have a noble gas electron configuration. The tendency of main group atoms to form enough bonds to obtain eight valence electrons is known as the octet rule.

The number of bonds that an atom can form can often be predicted from the number of electrons needed to reach an octet (eight valence electrons); this is especially true of the nonmetals of the second period of the periodic table (C, N,

O, and F). For example, each atom of a group 14 element has four electrons in its outermost shell and therefore requires four more electrons to reach an octet. These four electrons can be gained by forming four covalent bonds, as illustrated here for carbon in CCl_{4} (carbon tetrachloride) and silicon in SiH_{4} (silane). Because hydrogen only needs two electrons to fill its valence shell, it is an exception to the octet rule. The transition elements and inner transition elements also do not follow the octet rule:

carbon tetrachloride
silane

Group 15 elements such as nitrogen have five valence electrons in the atomic Lewis symbol: one lone pair and three unpaired electrons. To obtain an octet, these atoms form three covalent bonds, as in NH_{3} (ammonia). Oxygen and other atoms in group 16 obtain an octet by forming two covalent bonds:

ammonia

Water

hydrogen fluoride

Double and Triple Bonds

As previously mentioned, when a pair of atoms shares one pair of electrons, we call this a single bond. However, a pair of atoms may need to share more than one pair of electrons in order to achieve the requisite octet. A double bond forms when two pairs of electrons are shared between a pair of atoms, as between the carbon and oxygen atoms in $\mathrm{CH}_{2} \mathrm{O}$ (formaldehyde) and between the two carbon atoms in $\mathrm{C}_{2} \mathrm{H}_{4}$ (ethylene):

formaldehyde

ethylene

A triple bond forms when three electron pairs are shared by a pair of atoms, as in carbon monoxide (CO) and the cyanide ion (CN^{-}):

Writing Lewis Structures with the Octet Rule

For very simple molecules and molecular ions, we can write the Lewis structures by merely pairing up the unpaired electrons on the constituent atoms. See these examples:

For more complicated molecules and molecular ions, it is helpful to follow the step-by-step procedure outlined here:

1. Determine the total number of valence (outer shell) electrons. For cations, subtract one electron for each positive charge. For anions, add one electron for each negative charge.
2. Draw a skeleton structure of the molecule or ion, arranging the atoms around a central atom. (Generally, the least electronegative element should be placed in the center.) Connect each atom to the central atom with a single bond (one electron pair).
3. Distribute the remaining electrons as lone pairs on the terminal atoms (except hydrogen), completing an octet around each atom.
4. Place all remaining electrons on the central atom.
5. Rearrange the electrons of the outer atoms to make multiple bonds with the central atom in order to obtain octets wherever possible.

Let us determine the Lewis structures of SiH_{4},
$\mathrm{CHO}_{2}{ }^{-}$,
NO^{+}, and OF_{2} as examples in following this procedure:

1. Determine the total number of valence (outer shell) electrons in the molecule or ion.

- For a molecule, we add the number of valence electrons on each atom in the molecule:
SiH_{4}
$\mathrm{Si}: 4$ valence electrons/atom $\times 1$ atom $=4$
$+\mathrm{H}: 1$ valence electron $/$ atom $\times 4$ atoms $=4$
$=8$ valence electrons
- For a negative ion, such as $\mathrm{CHO}_{2}{ }^{-}$, we add the number of valence electrons on the atoms to the number of negative charges on the ion (one electron is gained for each single negative charge):

$$
\begin{aligned}
& \mathrm{CHO}_{2}^{-} \\
& \mathrm{C}: 4 \text { valence electrons/atom } \times 1 \text { atom }=4 \\
& \mathrm{H}: 1 \text { valence electron/atom } \times 1 \text { atom }=1 \\
& \mathrm{O}: 6 \text { valence electrons/atom } \times 2 \text { atoms }=12 \\
& +\quad 1 \text { additional electron }=1 \\
& \\
& =18 \text { valence electrons }
\end{aligned}
$$

- For a positive ion, such as NO^{+}, we add the number of valence electrons on the atoms in the ion and then subtract the number of positive charges on the ion (one electron is lost for each single positive charge) from the total number of valence electrons:
NO^{+}
N : 5 valence electrons/atom $\times 1$ atom $=5$
O: 6 valence electron/atom $\times 1$ atom $=6$
+-1 electron (positive charge) $=-1$

$$
=10 \text { valence electrons }
$$

- Since OF_{2} is a neutral molecule, we simply add the number of valence electrons:
OF_{2}
O: 6 valence electrons/atom $\times 1$ atom $=6$
$+\mathrm{F}: 7$ valence electrons/atom $\times 2$ atoms $=14$
$=20$ valence electrons

2. Draw a skeleton structure of the molecule or ion, arranging the atoms around a central atom and connecting each atom to the central atom with a single (one electron pair) bond. (Note that we denote ions with brackets around the structure, indicating the charge outside the brackets:)

When several arrangements of atoms are possible, as for $\mathrm{CHO}_{2}{ }^{-}$, we must use experimental evidence to
choose the correct one. In general, the less electronegative elements are more likely to be central atoms. In $\mathrm{CHO}_{2}{ }^{-}$, the less electronegative carbon atom occupies the central position with the oxygen and hydrogen atoms surrounding it. Other examples include P in $\mathrm{POCl}_{3}, \mathrm{~S}$ in SO_{2}, and Cl in $\mathrm{ClO}_{4}{ }^{-}$. An exception is that hydrogen is almost never a central atom. As the most electronegative element, fluorine also cannot be a central atom.
3. Distribute the remaining electrons as lone pairs on the terminal atoms (except hydrogen) to complete their valence shells with an octet of electrons.

- There are no remaining electrons on SiH_{4}, so it is unchanged:

4. Place all remaining electrons on the central atom.

- For $\mathrm{SiH}_{4}, \mathrm{CHO}_{2}{ }^{-}$, and NO^{+}, there are no remaining electrons; we already placed all of the electrons determined in Step 1.
- For OF_{2}, we had 16 electrons remaining in Step 3, and we placed 12, leaving 4 to be placed on the central atom:

5. Rearrange the electrons of the outer atoms to make multiple bonds with the central atom in order to obtain octets wherever possible.

- SiH_{4} : Si already has an octet, so nothing needs to be done.
- $\mathrm{CHO}_{2}{ }^{-}$: We have distributed the valence electrons as lone pairs on the oxygen atoms, but the carbon atom lacks an octet:

gives

- NO^{+}: For this ion, we added eight valence electrons, but neither atom has an octet. We cannot add any more electrons since we have already used the total that we found in Step 1, so we must move electrons to form a multiple bond:

This still does not produce an octet, so we must move another pair, forming a triple bond:

$$
[: N \equiv \circ]^{+}
$$

- In OF_{2}, each atom has an octet as drawn, so nothing changes.

Watch on YouTube

Example 15.1

Writing Lewis Structures

NASA's Cassini-Huygens mission detected a large cloud of toxic hydrogen cyanide (HCN) on Titan, one of Saturn's moons. Titan also contains ethane $\left(\mathrm{H}_{3} \mathrm{CCH}_{3}\right)$, acetylene (HCCH), and ammonia $\left(\mathrm{NH}_{3}\right)$. What are the Lewis structures of these molecules?

Solution

1. Step 1. Calculate the number of valence electrons.
$\mathrm{HCN}:(1 \times 1)+(4 \times 1)+(5 \times 1)=10$
$\mathrm{H}_{3} \mathrm{CCH}_{3}:(1 \times 3)+(2 \times 4)+(1 \times 3)=14$
HCCH: $(1 \times 1)+(2 \times 4)+(1 \times 1)=10$
$\mathrm{NH}_{3}:(5 \times 1)+(3 \times 1)=8$
2. Step 2. Draw a skeleton and connect the atoms with single bonds. Remember that H is never a central atom:

3. Step 3. Where needed, distribute electrons to the terminal atoms:

HCN: six electrons placed on N
$\mathrm{H}_{3} \mathrm{CCH}_{3}$: no electrons remain
HCCH: no terminal atoms capable of accepting electrons
NH_{3} : no terminal atoms capable of accepting electrons
4. Step 4. Where needed, place remaining electrons on the central atom:

HCN: no electrons remain
$\mathrm{H}_{3} \mathrm{CCH}_{3}$: no electrons remain
HCCH : four electrons placed on carbon
NH_{3} : two electrons placed on nitrogen
5. Step 5. Where needed, rearrange electrons to form multiple bonds in order to obtain an octet on each atom: HCN : form two more $\mathrm{C}-\mathrm{N}$ bonds
$\mathrm{H}_{3} \mathrm{CCH}_{3}$: all atoms have the correct number of electrons
HCCH : form a triple bond between the two carbon atoms
NH_{3} : all atoms have the correct number of electrons

$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

Check Your Learning

Both carbon monoxide, CO , and carbon dioxide, CO_{2}, are products of the combustion of fossil fuels. Both of these gases also cause problems: CO is toxic and CO_{2} has been implicated in global climate change. What are
the Lewis structures of these two molecules?

Answer

How Sciences Interconnect

Fullerene Chemistry

Carbon, in various forms and compounds, has been known since prehistoric times, . Soot has been used as a pigment (often called carbon black) for thousands of years. Charcoal, high in carbon content, has likewise been critical to human development. Carbon is the key additive to iron in the steelmaking process, and diamonds have a unique place in both culture and industry. With all this usage came significant study, particularly with the emergence of organic chemistry. And even with all the known forms and functions of the element, scientists began to uncover the potential for even more varied and extensive carbon structures.

As early as the 1960s, chemists began to observe complex carbon structures, but they had little evidence to support their concepts, or their work did not make it into the mainstream. Eiji Osawa predicted a spherical form based on observations of a similar structure, but his work was not widely known outside Japan. In a similar manner, the most comprehensive advance was likely computational chemist Elena Galpern's, who in 1973 predicted a highly stable, 60-carbon molecule; her work was also isolated to her native Russia. Still later, Harold Kroto, working with Canadian radio astronomers, sought to uncover the nature of long carbon chains that had been discovered in interstellar space.

Kroto sought to use a machine developed by Richard Smalley's team at Rice University to learn more about these structures. Together with Robert Curl, who had introduced them, and three graduate students-James Heath, Sean O'Brien, and Yuan Liu-they performed an intensive series of experiments that led to a major discovery.

In 1996, the Nobel Prize in Chemistry was awarded to Richard Smalley (Figure 15.3), Robert Curl, and Harold Kroto for their work in discovering a new form of carbon, the C_{60} buckminsterfullerene molecule (Figure 15.4). An entire class of compounds, including spheres and tubes of various shapes, were discovered based on C_{60}. This type of molecule, called a fullerene, shows promise in a variety of applications. Because of their size and shape, fullerenes can encapsulate other molecules, so they have shown potential in various applications from hydrogen storage to targeted drug delivery systems. They also possess unique electronic and optical properties that have been put to good use in solar powered devices and chemical sensors.

Figure 15.4
Nicknamed "buckyballs," buckminsterfullerene molecules (C_{60}) contain only carbon atoms (left) arranged to form a geometric framework of hexagons and pentagons, similar to the pattern on a soccer ball (center). This molecular structure is named after architect R. Buckminster Fuller, whose innovative designs combined simple geometric shapes to create large, strong structures such as this weather radar dome near Tucson, Arizona

Figure 15.3
Richard Smalley (1943-2005), a professor of physics, chemistry, and astronomy at Rice University, was one of the leading advocates for fullerene chemistry. Upon his death in 2005, the US Senate honored him as the "Father of Nanotechnology." (credit: United States Department of Energy)

Exceptions to the Octet Rule

Many covalent molecules have central atoms that do not have eight electrons in their Lewis structures. These molecules fall into three categories:

- Odd-electron molecules have an odd number of valence electrons, and therefore have an unpaired electron.
- Electron-deficient molecules have a central atom that has fewer electrons than needed for a noble gas configuration.
- Hypervalent molecules have a central atom that has more electrons than needed for a noble gas configuration.

Odd-electron Molecules

We call molecules that contain an odd number of electrons free radicals. Nitric oxide, NO, is an example of an oddelectron molecule; it is produced in internal combustion engines when oxygen and nitrogen react at high temperatures.

To draw the Lewis structure for an odd-electron molecule like NO, we follow the same five steps we would for other molecules, but with a few minor changes:

1. Determine the total number of valence (outer shell) electrons. The sum of the valence electrons is 5 (from N) +6 $($ from 0$)=11$. The odd number immediately tells us that we have a free radical, so we know that not every atom can have eight electrons in its valence shell.
2. Draw a skeleton structure of the molecule. We can easily draw a skeleton with an $\mathrm{N}-\mathrm{O}$ single bond: $\mathrm{N}-\mathrm{O}$
3. Distribute the remaining electrons as lone pairs on the terminal atoms. In this case, there is no central atom, so we distribute the electrons around both atoms. We give eight electrons to the more electronegative atom in these situations; thus oxygen has the filled valence shell:

4. Place all remaining electrons on the central atom. Since there are no remaining electrons, this step does not apply.
5. Rearrange the electrons to make multiple bonds with the central atom in order to obtain octets wherever possible. We know that an odd-electron molecule cannot have an octet for every atom, but we want to get each atom as close to an octet as possible. In this case, nitrogen has only five electrons around it. To move closer to an octet for nitrogen, we take one of the lone pairs from oxygen and use it to form a NO double bond. (We cannot take another lone pair of electrons on oxygen and form a triple bond because nitrogen would then have nine electrons:)

$$
\dot{\mathrm{N}}=\ddot{\mathrm{O}}:
$$

Electron-deficient Molecules

We will also encounter a few molecules that contain central atoms that do not have a filled valence shell. Generally, these are molecules with central atoms from groups 2 and 13, outer atoms that are hydrogen, or other atoms that do not form multiple bonds. For example, in the Lewis structures of beryllium dihydride, BeH_{2}, and boron trifluoride, BF_{3}, the beryllium and boron atoms each have only four and six electrons, respectively. It is possible to draw a structure with a double bond between a boron atom and a fluorine atom in BF_{3}, satisfying the octet rule, but experimental evidence indicates the bond lengths are closer to that expected for $\mathrm{B}-\mathrm{F}$ single bonds. This suggests the best Lewis structure has three $B-F$ single bonds and an electron deficient boron. The reactivity of the compound is also consistent with an electron deficient boron. However, the $B-F$ bonds are slightly shorter than what is actually expected for $B-F$ single bonds, indicating that some double bond character is found in the actual molecule.

An atom like the boron atom in BF_{3}, which does not have eight electrons, is very reactive. It readily combines with a molecule containing an atom with a lone pair of electrons. For example, NH_{3} reacts with BF_{3} because the lone pair on nitrogen can be shared with the boron atom:

Hypervalent Molecules

Elements in the second period of the periodic table ($n=2$) can accommodate only eight electrons in their valence shell orbitals because they have only four valence orbitals (one $2 s$ and three $2 p$ orbitals). Elements in the third and higher periods $(n \geq 3)$ have more than four valence orbitals and can share more than four pairs of electrons with other atoms because they have empty d orbitals in the same shell. Molecules formed from these elements are sometimes called hypervalent molecules. Figure 15.6 shows the Lewis structures for two hypervalent molecules, PCl_{5} and SF_{6}.

Figure 15.6

In PCl_{5}, the central atom phosphorus shares five pairs of electrons. In SF_{6}, sulfur shares six pairs of electrons.

In some hypervalent molecules, such as IF_{5} and XeF_{4}, some of the electrons in the outer shell of the central atom are lone pairs:

When we write the Lewis structures for these molecules, we find that we have electrons left over after filling the valence shells of the outer atoms with eight electrons. These additional electrons must be assigned to the central atom.

(3) Expanded Octet BrF_{3}

Watch on YouTube

Example 15.2

Writing Lewis Structures: Octet Rule Violations

Xenon is a noble gas, but it forms a number of stable compounds. We examined XeF_{4} earlier. What are the Lewis structures of XeF_{2} and XeF_{6} ?

Solution

We can draw the Lewis structure of any covalent molecule by following the six steps discussed earlier. In this case, we can condense the last few steps, since not all of them apply.

1. Step 1. Calculate the number of valence electrons:
$\mathrm{XeF}_{2}: 8+(2 \times 7)=22$
$\mathrm{XeF}_{6}: 8+(6 \times 7)=50$
2. Step 2. Draw a skeleton joining the atoms by single bonds. Xenon will be the central atom because fluorine cannot be a central atom:

3. Step 3. Distribute the remaining electrons.
XeF_{2} : We place three lone pairs of electrons around each F atom, accounting for 12 electrons and giving each F atom 8 electrons. Thus, six electrons (three lone pairs) remain. These lone pairs must be placed on the Xe atom. This is acceptable because Xe atoms have empty valence shell d orbitals and can accommodate more than eight electrons. The Lewis structure of XeF_{2} shows two bonding pairs and three lone pairs of electrons around the Xe atom:

XeF_{6} : We place three lone pairs of electrons around each F atom, accounting for 36 electrons. Two electrons remain, and this lone pair is placed on the Xe atom:

Check Your Learning

The halogens form a class of compounds called the interhalogens, in which halogen atoms covalently bond to each other. Write the Lewis structures for the interhalogens BrCl_{3} and
$\mathrm{ICl}_{4}{ }^{-}$.

Answer

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-4-lewis-symbols-andstructures

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/lewis_structures_1.

Lewis Structures Part 2

Atom

Lewis Structures

In a Lewis structure, formal charges can be assigned to each atom by treating each bond as if one-half of the electrons are assigned to each atom. These hypothetical formal charges are a guide to determining the most appropriate Lewis structure. A structure in which the formal charges are as close to zero as possible is preferred. Resonance occurs in cases where two or more Lewis structures with identical arrangements of atoms but different distributions of electrons can be written. The actual distribution of electrons (the resonance hybrid) is an average of the distribution indicated by the individual Lewis structures (the resonance forms).

16.1 Formal Charges and Resonance

Learning Objectives

By the end of this section, you will be able to:

- Compute formal charges for atoms in any Lewis structure
- Use formal charges to identify the most reasonable Lewis structure for a given molecule
- Explain the concept of resonance and draw Lewis structures representing resonance forms for a given molecule

In the previous section, we discussed how to write Lewis structures for molecules and polyatomic ions. As we have seen, however, in some cases, there is seemingly more than one valid structure for a molecule. We can use the concept of formal charges to help us predict the most appropriate Lewis structure when more than one is reasonable.

Calculating Formal Charge

The formal charge of an atom in a molecule is the hypothetical charge the atom would have if we could redistribute the electrons in the bonds evenly between the atoms. Another way of saying this is that formal charge results when we take the number of valence electrons of a neutral atom, subtract the nonbonding electrons, and then subtract the number of bonds connected to that atom in the Lewis structure.

Thus, we calculate formal charge as follows:
formal charge $=\#$ valence shell electrons (free atom) $-\#$ lone pair electrons $-\frac{1}{2} \#$ bonding electron

We can double-check formal charge calculations by determining the sum of the formal charges for the whole structure. The sum of the formal charges of all atoms in a molecule must be zero; the sum of the formal charges in an ion should equal the charge of the ion.

We must remember that the formal charge calculated for an atom is not the actual charge of the atom in the molecule. Formal charge is only a useful bookkeeping procedure; it does not indicate the presence of actual charges.

Example 16.1

Calculating Formal Charge from Lewis Structures

Assign formal charges to each atom in the interhalogen ion
$\mathrm{ICl}_{4}{ }^{-}$.

Solution

1. Step 1. We divide the bonding electron pairs equally for all I-Cl bonds:

2. Step 2. We assign lone pairs of electrons to their atoms. Each Cl atom now has seven electrons assigned to it, and the I atom has eight.
3. Step 3. Subtract this number from the number of valence electrons for the neutral atom:

I: $7-8=-1$
Cl: $7-7=0$
The sum of the formal charges of all the atoms equals -1 , which is identical to the charge of the ion (-1).

Check Your Learning

Calculate the formal charge for each atom in the carbon monoxide molecule:

Answer

C $-1,0+1$

Example 16.2

Calculating Formal Charge from Lewis Structures

Assign formal charges to each atom in the interhalogen molecule BrCl_{3}.

Solution

1. Step 1. Assign one of the electrons in each $\mathrm{Br}-\mathrm{Cl}$ bond to the Br atom and one to the Cl atom in that bond:

2. Step 2. Assign the lone pairs to their atom. Now each Cl atom has seven electrons and the Br atom has seven electrons.
3. Step 3. Subtract this number from the number of valence electrons for the neutral atom. This gives the formal charge:
Br : $7-7=0$
Cl: $7-7=0$
All atoms in BrCl_{3} have a formal charge of zero, and the sum of the formal charges totals zero, as it must in a neutral molecule.

Check Your Learning

Determine the formal charge for each atom in NCl_{3}.

Answer

$\mathrm{N}: 0$; all three Cl atoms: 0

Using Formal Charge to Predict Molecular Structure

The arrangement of atoms in a molecule or ion is called its molecular structure. In many cases, following the steps for writing Lewis structures may lead to more than one possible molecular structure-different multiple bond and lone-pair electron placements or different arrangements of atoms, for instance. A few guidelines involving formal charge can be helpful in deciding which of the possible structures is most likely for a particular molecule or ion:

1. A molecular structure in which all formal charges are zero is preferable to one in which some formal charges are not zero.
2. If the Lewis structure must have nonzero formal charges, the arrangement with the smallest nonzero formal charges is preferable.
3. Lewis structures are preferable when adjacent formal charges are zero or of the opposite sign.
4. When we must choose among several Lewis structures with similar distributions of formal charges, the structure with the negative formal charges on the more electronegative atoms is preferable.

To see how these guidelines apply, let us consider some possible structures for carbon dioxide, CO_{2}. We know from our previous discussion that the less electronegative atom typically occupies the central position, but formal charges allow us to understand whythis occurs. We can draw three possibilities for the structure: carbon in the center and double bonds, carbon in the center with a single and triple bond, and oxygen in the center with double bonds:

Comparing the three formal charges, we can definitively identify the structure on the left as preferable because it has only formal charges of zero (Guideline 1).

As another example, the thiocyanate ion, an ion formed from a carbon atom, a nitrogen atom, and a sulfur atom, could have three different molecular structures: $\mathrm{NCS}^{-}, \mathrm{CNS}^{-}$, or CSN^{-}. The formal charges present in each of these molecular structures can help us pick the most likely arrangement of atoms. Possible Lewis structures and the formal charges for each of the three possible structures for the thiocyanate ion are shown here:

Note that the sum of the formal charges in each case is equal to the charge of the ion (-1). However, the first arrangement of atoms is preferred because it has the lowest number of atoms with nonzero formal charges (Guideline 2). Also, it places the least electronegative atom in the center, and the negative charge on the more electronegative element (Guideline 4).

Example 16.3

Using Formal Charge to Determine Molecular Structure

Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$, commonly known as laughing gas, is used as an anesthetic in minor surgeries, such as the routine extraction of wisdom teeth. Which is the more likely structure for nitrous oxide?

Solution

Determining formal charge yields the following:

The structure with a terminal oxygen atom best satisfies the criteria for the most stable distribution of formal charge:

The number of atoms with formal charges are minimized (Guideline 2), there is no formal charge with a magnitude greater than one (Guideline 2), the negative formal charge is on the more electronegative element (Guideline 4), and the less electronegative atom is in the center position.

Check Your Learning

Which is the most likely molecular structure for the nitrite
$\left(\mathrm{NO}_{2}{ }^{-}\right)$
ion?

Answer

ONO^{-}

Resonance

Notice that the more likely structure for the nitrite anion in Example 16.3 may actually be drawn in two different ways, distinguished by the locations of the $\mathrm{N}-\mathrm{O}$ and $\mathrm{N}=\mathrm{O}$ bonds:

If nitrite ions do indeed contain a single and a double bond, we would expect for the two bond lengths to be different. A double bond between two atoms is shorter (and stronger) than a single bond between the same two atoms. Experiments show, however, that both $\mathrm{N}-\mathrm{O}$ bonds in
$\mathrm{NO}_{2}{ }^{-}$
have the same strength and length, and are identical in all other properties.
It is not possible to write a single Lewis structure for
$\mathrm{NO}_{2}{ }^{-}$
in which nitrogen has an octet and both bonds are equivalent. Instead, we use the concept of resonance: if two or more Lewis structures with the same arrangement of atoms can be written for a molecule or ion, the actual distribution of electrons is an average of that shown by the various Lewis structures. The actual distribution of electrons in each of the nitrogen-oxygen bonds in
$\mathrm{NO}_{2}{ }^{-}$
is the average of a double bond and a single bond. We call the individual Lewis structures resonance forms. The actual electronic structure of the molecule (the average of the resonance forms) is called a resonance hybrid of the individual resonance forms. A double-headed arrow between Lewis structures indicates that they are resonance forms.

We should remember that a molecule described as a resonance hybrid never possesses an electronic structure described by either resonance form. It does not fluctuate between resonance forms; rather, the actual electronic structure is always the average of that shown by all resonance forms. George Wheland, one of the pioneers of resonance theory, used a historical analogy to describe the relationship between resonance forms and resonance hybrids. A medieval traveler, having never before seen a rhinoceros, described it as a hybrid of a dragon and a unicorn because it had many properties in common with both. Just as a rhinoceros is neither a dragon sometimes nor a unicorn at other times, a resonance hybrid is neither of its resonance forms at any given time. Like a rhinoceros, it is a real entity that experimental evidence has shown to exist. It has some characteristics in common with its resonance forms, but the resonance forms themselves are convenient, imaginary images (like the unicorn and the dragon).

The carbonate anion,
$\mathrm{CO}_{3}{ }^{2-}$,
provides a second example of resonance:

One oxygen atom must have a double bond to carbon to complete the octet on the central atom. All oxygen atoms, however, are equivalent, and the double bond could form from any one of the three atoms. This gives rise to three resonance forms of the carbonate ion. Because we can write three identical resonance structures, we know that the actual arrangement of electrons in the carbonate ion is the average of the three structures. Again, experiments show that all three $\mathrm{C}-\mathrm{O}$ bonds are exactly the same.

- multiple equivalent ways to aranye dectrons

Watch on YouTube

Link to Learning

Use this online quiz to practice your skills in drawing resonance structures and estimating formal charges.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-5-formal-charges-andresonance

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/lewis_structures_part_2s.

Molecular Shape

Atom
Lewis Structures

VSEPR theory predicts the three-dimensional arrangement of atoms in a molecule. It states that valence electrons will assume an electron-pair geometry that minimizes repulsions between areas of high electron density (bonds and/or lone pairs). Molecular structure, which refers only to the placement of atoms in a molecule and not the electrons, is equivalent to electron-pair geometry only when there are no lone electron pairs around the central atom.

17.1 Molecular Structure

Learning Objectives

By the end of this section, you will be able to:

- Predict the structures of small molecules using valence shell electron pair repulsion (VSEPR) theory

Thus far, we have used two-dimensional Lewis structures to represent molecules. However, molecular structure is actually three-dimensional, and it is important to be able to describe molecular bonds in terms of their distances, angles, and relative arrangements in space (Figure 17.1). A bond angle is the angle between any two bonds that include a common atom, usually measured in degrees. A bond distance (or bond length) is the distance between the nuclei of two bonded atoms along the straight line joining the nuclei. Bond distances are measured in Ångstroms ($1 \AA=10^{-10} \mathrm{~m}$) or picometers ($1 \mathrm{pm}=10^{-12} \mathrm{~m}, 100 \mathrm{pm}=1 \AA$).

Figure 17.1
Bond distances (lengths) and angles are shown for the formaldehyde molecule, $\mathrm{H}_{2} \mathrm{CO}$.

VSEPR Theory

Valence shell electron-pair repulsion theory (VSEPR theory) enables us to predict the molecular structure, including approximate bond angles around a central atom, of a molecule from an examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement that minimizes repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom form either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far from each other as possible.

VSEPR theory predicts the arrangement of electron pairs around each central atom and, usually, the correct arrangement of atoms in a molecule. We should understand, however, that the theory only considers electron-pair repulsions. Other interactions, such as nuclear-nuclear repulsions and nuclear-electron attractions, are also involved in the final arrangement that atoms adopt in a particular molecular structure.

As a simple example of VSEPR theory, let us predict the structure of a gaseous BeF_{2} molecule. The Lewis structure of BeF_{2} (Figure 17.2) shows only two electron pairs around the central beryllium atom. With two bonds and no lone pairs of electrons on the central atom, the bonds are as far apart as possible, and the electrostatic repulsion between these regions of high electron density is reduced to a minimum when they are on opposite sides of the central atom. The bond angle is 180° (Figure 17.2).

Figure 17.2
The BeF_{2} molecule adopts a linear structure in which the two bonds are as far apart as possible, on opposite sides of the Be atom.

Figure 17.3 illustrates this and other electron-pair geometries that minimize the repulsions among regions of high electron density (bonds and/or lone pairs). Two regions of electron density around a central atom in a molecule form a linear geometry; three regions form a trigonal planar geometry; four regions form a tetrahedral geometry; five regions form a trigonal bipyramidal geometry; and six regions form an octahedral geometry.

Figure 17.3
The basic electron-pair geometries predicted by VSEPR theory maximize the space around any region of electron density (bonds or lone pairs).

Number of regions	Two regions of high electron density (bonds and/or unshared pairs)	Three regions of high electron density (bonds and/or unshared pairs)	Four regions of high electron density (bonds and/or unshared pairs)	Five regions of high electron density (bonds and/or unshared pairs)	Six regions of high electron density (bonds and/or unshared pairs)
Spatial arrangement					
Line-dash-wedge notation	$\mathrm{H}-\mathrm{Be}-\mathrm{H}$				
Electron region geometry	Linear; 180° angle	Trigonal planar; all angles 120°	Tetrahedral; all angles 109.5°	Trigonal bipyramidal; angles of 90° or 120° An attached atom may be equatorial (in the plane of the triangle) or axial (above or below the plane of the triangle).	Octahedral; all angles 90° or 180°

Electron-pair Geometry versus Molecular Structure

It is important to note that electron-pair geometry around a central atom is not the same thing as its molecular structure. The electron-pair geometries shown in Figure 17.3 describe all regions where electrons are located, bonds as well as lone pairs. Molecular structure describes the location of the atoms, not the electrons.

We differentiate between these two situations by naming the geometry that includes all electron pairs the electron-pair geometry. The structure that includes only the placement of the atoms in the molecule is called the molecular structure. The electron-pair geometries will be the same as the molecular structures when there are no lone electron pairs around the central atom, but they will be different when there are lone pairs present on the central atom.

For example, the methane molecule, CH_{4}, which is the major component of natural gas, has four bonding pairs of electrons around the central carbon atom; the electron-pair geometry is tetrahedral, as is the molecular structure (Figure 17.4). On the other hand, the ammonia molecule, NH_{3}, also has four electron pairs associated with the nitrogen atom, and thus has a tetrahedral electron-pair geometry. One of these regions, however, is a lone pair, which is not included in the molecular structure, and this lone pair influences the shape of the molecule (Figure 17.5).

Figure 17.4

The molecular structure of the methane molecule, CH_{4}, is shown with a tetrahedral arrangement of the hydrogen atoms. VSEPR structures like this one are often drawn using the wedge and dash notation, in which solid lines represent bonds in the plane of the page, solid wedges represent bonds coming up out of the plane, and dashed lines represent bonds going down into the plane.

Figure 17.5
(a) The electron-pair geometry for the ammonia molecule is tetrahedral with one lone pair and three single bonds. (b) The trigonal pyramidal molecular structure is determined from the electron-pair geometry. (c) The actual bond angles deviate slightly from the idealized angles because the lone pair takes up a larger region of space than do the single bonds, causing the HNH angle to be slightly smaller than 109.5.

(a)

(b)

(c)

As seen in Figure 17.5, small distortions from the ideal angles in Figure 17.3 can result from differences in repulsion between various regions of electron density. VSEPR theory predicts these distortions by establishing an order of repulsions and an order of the amount of space occupied by different kinds of electron pairs. The order of electron-pair repulsions from greatest to least repulsion is:
lone pair-lone pair $>$ lone pair-bonding pair $>$ bonding pair-bonding pair

This order of repulsions determines the amount of space occupied by different regions of electrons. A lone pair of electrons occupies a larger region of space than the electrons in a triple bond; in turn, electrons in a triple bond occupy more space than those in a double bond, and so on. The order of sizes from largest to smallest is:
lone pair $>$ triple bond $>$ double bond $>$ single bond

Consider formaldehyde, $\mathrm{H}_{2} \mathrm{CO}$, which is used as a preservative for biological and anatomical specimens (Figure 17.1). This molecule has regions of high electron density that consist of two single bonds and one double bond. The basic geometry is trigonal planar with 120° bond angles, but we see that the double bond causes slightly larger angles $\left(121^{\circ}\right)$, and the angle between the single bonds is slightly smaller (118°).

In the ammonia molecule, the three hydrogen atoms attached to the central nitrogen are not arranged in a flat, trigonal planar molecular structure, but rather in a three-dimensional trigonal pyramid (Figure 17.5) with the nitrogen atom at the apex and the three hydrogen atoms forming the base. The ideal bond angles in a trigonal pyramid are based on the tetrahedral electron pair geometry. Again, there are slight deviations from the ideal because lone pairs occupy larger regions of space than do bonding electrons. The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angles in NH_{3} are slightly smaller than the 109.5° angle in a regular tetrahedron (Figure 17.3) because the lone pair-bonding pair repulsion is greater than the bonding pair-
bonding pair repulsion (Figure 17.5). Figure 17.6 illustrates the ideal molecular structures, which are predicted based on the electron-pair geometries for various combinations of lone pairs and bonding pairs.

Figure 17.6
The molecular structures are identical to the electron-pair geometries when there are no lone pairs present (first column). For a particular number of electron pairs (row), the molecular structures for one or more lone pairs are determined based on modifications of the corresponding electron-pair geometry.

Number of electron regions	Electron region geometries: 0 lone pair	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2	$x \overbrace{\mathrm{E}}^{180^{\circ}}$ Linear				
3	 Trigonal planar	 Bent or angular			
4	 Tetrahedral	 Trigonal pyramid	 Bent or angular		
5	 Trigonal bipyramid	 Sawhorse or seesaw	 T-shape	 Linear	
6	 Octahedral	Square pyramid	 Square planar	 T-shape	 Linear

According to VSEPR theory, the terminal atom locations (Xs in Figure 17.6) are equivalent within the linear, trigonal planar, and tetrahedral electron-pair geometries (the first three rows of the table). It does not matter which X is replaced with a lone pair because the molecules can be rotated to convert positions. For trigonal bipyramidal electron-pair geometries, however, there are two distinct X positions, as shown in Figure 17.7: an axial position (if we hold a model of a trigonal bipyramid by the two axial positions, we have an axis around which we can rotate the model) and an equatorial position (three positions form an equator around the middle of the molecule). As shown in Figure 17.6, the axial position is surrounded by bond angles of 90°, whereas the equatorial position has more space available because of the 120° bond angles. In a trigonal bipyramidal electron-pair geometry, lone pairs always occupy equatorial positions because these more spacious positions can more easily accommodate the larger lone pairs.

Theoretically, we can come up with three possible arrangements for the three bonds and two lone pairs for the ClF_{3} molecule (Figure 17.7). The stable structure is the one that puts the lone pairs in equatorial locations, giving a T-shaped molecular structure.

Figure 17.7
(a) In a trigonal bipyramid, the two axial positions are located directly across from one another, whereas the three equatorial positions are located in a triangular arrangement. (b-d) The two lone pairs (red lines) in ClF ${ }_{3}$ have several
possible arrangements, but the T-shaped molecular structure (b) is the one actually observed, consistent with the larger lone pairs both occupying equatorial positions.

When a central atom has two lone electron pairs and four bonding regions, we have an octahedral electron-pair geometry. The two lone pairs are on opposite sides of the octahedron (180° apart), giving a square planar molecular structure that minimizes lone pair-lone pair repulsions (Figure 17.6).

Predicting Electron Pair Geometry and Molecular Structure

The following procedure uses VSEPR theory to determine the electron pair geometries and the molecular structures:

1. Write the Lewis structure of the molecule or polyatomic ion.
2. Count the number of regions of electron density (lone pairs and bonds) around the central atom. A single, double, or triple bond counts as one region of electron density.
3. Identify the electron-pair geometry based on the number of regions of electron density: linear, trigonal planar, tetrahedral, trigonal bipyramidal, or octahedral (Figure 17.6, first column).
4. Use the number of lone pairs to determine the molecular structure (Figure 17.6). If more than one arrangement of lone pairs and chemical bonds is possible, choose the one that will minimize repulsions, remembering that lone pairs occupy more space than multiple bonds, which occupy more space than single bonds. In trigonal bipyramidal arrangements, repulsion is minimized when every lone pair is in an equatorial position. In an octahedral arrangement with two lone pairs, repulsion is minimized when the lone pairs are on opposite sides of the central atom.

The following examples illustrate the use of VSEPR theory to predict the molecular structure of molecules or ions that have no lone pairs of electrons. In this case, the molecular structure is identical to the electron pair geometry.

Example 17.1

Predicting Electron-pair Geometry and Molecular Structure: CO_{2} and BCl_{3}

Predict the electron-pair geometry and molecular structure for each of the following:
(a) carbon dioxide, CO_{2}, a molecule produced by the combustion of fossil fuels
(b) boron trichloride, BCl_{3}, an important industrial chemical

Solution

This shows us two regions of high electron density around the carbon atom-each double bond counts as one region, and there are no lone pairs on the carbon atom. Using VSEPR theory, we predict that the two regions of electron density arrange themselves on opposite sides of the central atom with a bond angle of 180°. The electron-pair geometry and molecular structure are identical, and CO_{2} molecules are linear.
(b) We write the Lewis structure of BCl_{3} as:

Thus we see that BCl_{3} contains three bonds, and there are no lone pairs of electrons on boron. The arrangement of three regions of high electron density gives a trigonal planar electron-pair geometry. The $\mathrm{B}-\mathrm{Cl}$ bonds lie in a plane with 120° angles between them. BCl_{3} also has a trigonal planar molecular structure (Figure 17.8).

Figure 17.8

The electron-pair geometry and molecular structure of BCl_{3} are both trigonal planar. Note that the VSEPR geometry indicates the correct bond angles $\left(120^{\circ}\right)$, unlike the Lewis structure shown above.

Check Your Learning

Carbonate,
$\mathrm{CO}_{3}{ }^{2-}$,
is a common polyatomic ion found in various materials from eggshells to antacids. What are the electron-pair geometry and molecular structure of this polyatomic ion?

Answer

The electron-pair geometry is trigonal planar and the molecular structure is trigonal planar. Due to resonance, all three $\mathrm{C}-\mathrm{O}$ bonds are identical. Whether they are single, double, or an average of the two, each bond counts as one region of electron density.

Example 17.2

Predicting Electron-pair Geometry and Molecular Structure: Ammonium

Two of the top 50 chemicals produced in the United States, ammonium nitrate and ammonium sulfate, both used as fertilizers, contain the ammonium ion. Predict the electron-pair geometry and molecular structure of the
$\mathrm{NH}_{4}{ }^{+}$
cation.
Solution
We write the Lewis structure of
$\mathrm{NH}_{4}{ }^{+}$
as:

We can see that
$\mathrm{NH}_{4}{ }^{+}$
contains four bonds from the nitrogen atom to hydrogen atoms and no lone pairs. We expect the four regions of high electron density to arrange themselves so that they point to the corners of a tetrahedron with the central nitrogen atom in the middle (Figure 17.6). Therefore, the electron pair geometry of
$\mathrm{NH}_{4}{ }^{+}$
is tetrahedral, and the molecular structure is also tetrahedral (Figure 17.9).

Figure 17.9

The ammonium ion displays a tetrahedral electron-pair geometry as well as a tetrahedral molecular structure.

Check Your Learning

Identify a molecule with trigonal bipyramidal molecular structure.

Answer

Any molecule with five electron pairs around the central atoms including no lone pairs will be trigonal bipyramidal. PF_{5} is a common example.

The next several examples illustrate the effect of lone pairs of electrons on molecular structure.

Example 17.3

Predicting Electron-pair Geometry and Molecular Structure: Lone Pairs on the Central Atom

Predict the electron-pair geometry and molecular structure of a water molecule.

Solution

The Lewis structure of $\mathrm{H}_{2} \mathrm{O}$ indicates that there are four regions of high electron density around the oxygen atom: two lone pairs and two chemical bonds:

We predict that these four regions are arranged in a tetrahedral fashion (Figure 17.10), as indicated in Figure 17.6. Thus, the electron-pair geometry is tetrahedral and the molecular structure is bent with an angle slightly less than 109.5°. In fact, the bond angle is 104.5°.

Figure 17.10
(a) $\mathrm{H}_{2} \mathrm{O}$ has four regions of electron density around the central atom, so it has a tetrahedral electron-pair geometry. (b) Two of the electron regions are lone pairs, so the molecular structure is bent.

Check Your Learning

The hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, forms when acids are dissolved in water. Predict the electron-pair geometry and molecular structure of this cation.

Answer

electron pair geometry: tetrahedral; molecular structure: trigonal pyramidal

Example 17.4

Predicting Electron-pair Geometry and Molecular Structure: SF 4

Sulfur tetrafluoride, SF_{4}, is extremely valuable for the preparation of fluorine-containing compounds used as herbicides (i.e., SF_{4} is used as a fluorinating agent). Predict the electron-pair geometry and molecular structure of a SF_{4} molecule.

Solution

The Lewis structure of SF_{4} indicates five regions of electron density around the sulfur atom: one lone pair and four bonding pairs:

We expect these five regions to adopt a trigonal bipyramidal electron-pair geometry. To minimize lone pair repulsions, the lone pair occupies one of the equatorial positions. The molecular structure (Figure 17.11) is that of a seesaw (Figure 17.6).

Figure 17.11
(a) SF4 has a trigonal bipyramidal arrangement of the five regions of electron density. (b) One of the regions is a lone pair, which results in a seesaw-shaped molecular structure.

Check Your Learning

Predict the electron pair geometry and molecular structure for molecules of XeF_{2}.

Answer

The electron-pair geometry is trigonal bipyramidal. The molecular structure is linear.

Example 17.5

Predicting Electron-pair Geometry and Molecular Structure: XeF_{4}

Of all the noble gases, xenon is the most reactive, frequently reacting with elements such as oxygen and fluorine. Predict the electron-pair geometry and molecular structure of the XeF_{4} molecule.

Solution

The Lewis structure of XeF_{4} indicates six regions of high electron density around the xenon atom: two lone pairs and four bonds:

These six regions adopt an octahedral arrangement (Figure 17.6), which is the electron-pair geometry. To minimize repulsions, the lone pairs should be on opposite sides of the central atom (Figure 17.12). The five atoms are all in the same plane and have a square planar molecular structure.

Figure 17.2
(a) XeF_{4} adopts an octahedral arrangement with two lone pairs (red lines) and four bonds in the electron-pair geometry. (b) The molecular structure is square planar with the lone pairs directly across from one another.

Check Your Learning

In a certain molecule, the central atom has three lone pairs and two bonds. What will the electron pair geometry and molecular structure be?

Answer

electron pair geometry: trigonal bipyramidal; molecular structure: linear

Molecular Structure for Multicenter Molecules

When a molecule or polyatomic ion has only one central atom, the molecular structure completely describes the shape of the molecule. Larger molecules do not have a single central atom, but are connected by a chain of interior atoms that each possess a "local" geometry. The way these local structures are oriented with respect to each other also influences the molecular shape, but such considerations are largely beyond the scope of this introductory discussion. For our purposes, we will only focus on determining the local structures.

Example 17.6

Predicting Structure in Multicenter Molecules

The Lewis structure for the simplest amino acid, glycine, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, is shown here. Predict the local geometry for the nitrogen atom, the two carbon atoms, and the oxygen atom with a hydrogen atom attached:

Solution

Consider each central atom independently. The electron-pair geometries:

- nitrogen--four regions of electron density; tetrahedral
- carbon $\left(\mathrm{CH}_{2}\right)$--four regions of electron density; tetrahedral
- carbon $\left(\mathrm{CO}_{2}\right)$-three regions of electron density; trigonal planar
- oxygen (O H)-four regions of electron density; tetrahedral

The local structures:

- nitrogen--three bonds, one lone pair; trigonal pyramidal
- carbon $\left(\mathrm{CH}_{2}\right)$-four bonds, no lone pairs; tetrahedral
- carbon (CO_{2})-three bonds (double bond counts as one bond), no lone pairs; trigonal planar
- oxygen (OH)-two bonds, two lone pairs; bent $\left(109^{\circ}\right)$

Check Your Learning

Another amino acid is alanine, which has the Lewis structure shown here. Predict the electron-pair geometry and local structure of the nitrogen atom, the three carbon atoms, and the oxygen atom with hydrogen attached:

Answer

electron-pair geometries: nitrogen--tetrahedral; carbon $(\underline{\mathrm{CH}})$-tetrahedral; carbon $\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$-tetrahedral; carbon $\left(\underline{C O}_{2}\right)$-trigonal planar; oxygen ($\underline{\mathrm{O}} \mathrm{H}$)-tetrahedral; local structures: nitrogen-trigonal pyramidal; carbon ($\underline{C} H$)-tetrahedral; carbon $\left(\underline{C H}_{3}\right)$-tetrahedral; carbon $\left(\underline{C O}_{2}\right)$-trigonal planar; oxygen $(\underline{O} H)$-bent (109 ${ }^{\circ}$)

Link to Learning

This molecular shape simulator lets you build various molecules and practice naming their electron-pair geometries and molecular structures.

Example 17.7

Molecular Simulation

Using the molecular shape simulator allows us to control whether bond angles and/or lone pairs are displayed by checking or unchecking the boxes under "Options" on the right. We can also use the "Name" checkboxes at bottom-left to display or hide the electron pair geometry (called "electron geometry" in the simulator) and/or molecular structure (called "molecular shape" in the simulator).
Build the molecule HCN in the simulator based on the following Lewis structure:

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}
$$

Click on each bond type or lone pair at right to add that group to the central atom. Once you have the complete molecule, rotate it to examine the predicted molecular structure. What molecular structure is this?

Solution

The molecular structure is linear.

Check Your Learning

Build a more complex molecule in the simulator. Identify the electron-group geometry, molecular structure, and bond angles. Then try to find a chemical formula that would match the structure you have drawn.

Answer

Answers will vary. For example, an atom with four single bonds, a double bond, and a lone pair has an octahedral electron-group geometry and a square pyramidal molecular structure. XeOF_{4} is a molecule that adopts this structure.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

```
Open in Google Drive
```

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-6-molecular-structure-and-polarity

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/lewis_structures_part_2.

18

Polarity

Atom Polarity

A dipole moment measures a separation of charge. For one bond, the bond dipole moment is determined by the difference in electronegativity between the two atoms. For a molecule, the overall dipole moment is determined by both the individual bond moments and how these dipoles are arranged in the molecular structure. Polar molecules (those with an appreciable dipole moment) interact with electric fields, whereas nonpolar molecules do not.

18.1 Molecular Polarity and Dipole Moment

Learning Objectives

- Explain the concepts of polar covalent bonds and molecular polarity
- Assess the polarity of a molecule based on its bonding and structure

As discussed previously, polar covalent bonds connect two atoms with differing electronegativities, leaving one atom with a partial positive charge ($\delta+$) and the other atom with a partial negative charge ($\delta-$), as the electrons are pulled toward the more electronegative atom. This separation of charge gives rise to a bond dipole moment. The magnitude of a bond dipole moment is represented by the Greek letter $\mathrm{mu}(\mu)$ and is given by the formula shown here, where Q is the magnitude of the partial charges (determined by the electronegativity difference) and r is the distance between the charges:

$$
\mu=\mathrm{Qr}
$$

This bond moment can be represented as a vector, a quantity having both direction and magnitude (Figure 18.1). Dipole vectors are shown as arrows pointing along the bond from the less electronegative atom toward the more electronegative atom. A small plus sign is drawn on the less electronegative end to indicate the partially positive end of
the bond. The length of the arrow is proportional to the magnitude of the electronegativity difference between the two atoms.

Figure 18.1
(a) There is a small difference in electronegativity between C and H, represented as a short vector. (b) The electronegativity difference between B and F is much larger, so the vector representing the bond moment is much longer.

A whole molecule may also have a separation of charge, depending on its molecular structure and the polarity of each of its bonds. If such a charge separation exists, the molecule is said to be a polar molecule (or dipole); otherwise the molecule is said to be nonpolar. The dipole moment measures the extent of net charge separation in the molecule as a whole. We determine the dipole moment by adding the bond moments in three-dimensional space, taking into account the molecular structure.

For diatomic molecules, there is only one bond, so its bond dipole moment determines the molecular polarity. Homonuclear diatomic molecules such as Br_{2} and N_{2} have no difference in electronegativity, so their dipole moment is zero. For heteronuclear molecules such as CO , there is a small dipole moment. For HF , there is a larger dipole moment because there is a larger difference in electronegativity.

When a molecule contains more than one bond, the geometry must be taken into account. If the bonds in a molecule are arranged such that their bond moments cancel (vector sum equals zero), then the molecule is nonpolar. This is the situation in CO_{2} (Figure 18.2). Each of the bonds is polar, but the molecule as a whole is nonpolar. From the Lewis structure, and using VSEPR theory, we determine that the CO_{2} molecule is linear with polar $\mathrm{C}=\mathrm{O}$ bonds on opposite sides of the carbon atom. The bond moments cancel because they are pointed in opposite directions. In the case of the water molecule (Figure 18.2), the Lewis structure again shows that there are two bonds to a central atom, and the electronegativity difference again shows that each of these bonds has a nonzero bond moment. In this case, however, the molecular structure is bent because of the lone pairs on 0 , and the two bond moments do not cancel. Therefore, water does have a net dipole moment and is a polar molecule (dipole).

Figure 18.2
The overall dipole moment of a molecule depends on the individual bond dipole moments and how they are arranged.
(a) Each CO bond has a bond dipole moment, but they point in opposite directions so that the net CO_{2} molecule is nonpolar. (b) In contrast, water is polar because the OH bond moments do not cancel out.

The OCS molecule has a structure similar to CO_{2}, but a sulfur atom has replaced one of the oxygen atoms. To determine if this molecule is polar, we draw the molecular structure. VSEPR theory predicts a linear molecule:

Bond moments

Overall dipole moment

The C-O bond is considerably polar. Although C and S have very similar electronegativity values, S is slightly more electronegative than C , and so the C -S bond is just slightly polar. Because oxygen is more electronegative than sulfur, the oxygen end of the molecule is the negative end.

Chloromethane, $\mathrm{CH}_{3} \mathrm{Cl}$, is a tetrahedral molecule with three slightly polar $\mathrm{C}-\mathrm{H}$ bonds and a more polar $\mathrm{C}-\mathrm{Cl}$ bond. The relative electronegativities of the bonded atoms is $\mathrm{H}<\mathrm{C}<\mathrm{Cl}$, and so the bond moments all point toward the Cl end of the molecule and sum to yield a considerable dipole moment (the molecules are relatively polar).

For molecules of high symmetry such as BF_{3} (trigonal planar), CH_{4} (tetrahedral), PF_{5} (trigonal bipyramidal), and SF_{6} (octahedral), all the bonds are of identical polarity (same bond moment) and they are oriented in geometries that yield nonpolar molecules (dipole moment is zero). Molecules of less geometric symmetry, however, may be polar even when all bond moments are identical. For these molecules, the directions of the equal bond moments are such that they sum to give a nonzero dipole moment and a polar molecule. Examples of such molecules include hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$ (nonlinear), and ammonia, NH_{3} (trigonal pyramidal).

To summarize, to be polar, a molecule must:

1. Contain at least one polar covalent bond.
2. Have a molecular structure such that the sum of the vectors of each bond dipole moment does not cancel.

Properties of Polar Molecules

Polar molecules tend to align when placed in an electric field with the positive end of the molecule oriented toward the negative plate and the negative end toward the positive plate (Figure 18.3). We can use an electrically charged object to attract polar molecules, but nonpolar molecules are not attracted. Also, polar solvents are better at dissolving polar substances, and nonpolar solvents are better at dissolving nonpolar substances.

Figure 18.3
(a) Molecules are always randomly distributed in the liquid state in the absence of an electric field. (b) When an electric field is applied, polar molecules like HF will align to the dipoles with the field direction.

Link to Learning

This moleculare polarity simulation provides many ways to explore dipole moments of bonds and molecules.

Example 18.1

Polarity Simulations

Open the molecule polarity simulation and select the "Three Atoms" tab at the top. This should display a molecule ABC with three electronegativity adjustors. You can display or hide the bond moments, molecular dipoles, and partial charges at the right. Turning on the Electric Field will show whether the molecule moves when exposed to a field, similar to Figure 18.3.
Use the electronegativity controls to determine how the molecular dipole will look for the starting bent molecule if:
(a) A and C are very electronegative and B is in the middle of the range.
(b) A is very electronegative, and B and C are not.

Solution

(a) Molecular dipole moment points immediately between A and C.
(b) Molecular dipole moment points along the A-B bond, toward A.

Check Your Learning

Determine the partial charges that will give the largest possible bond dipoles.

Answer

The largest bond moments will occur with the largest partial charges. The two solutions above represent how unevenly the electrons are shared in the bond. The bond moments will be maximized when the electronegativity difference is greatest. The controls for A and C should be set to one extreme, and B should be set to the opposite extreme. Although the magnitude of the bond moment will not change based on whether B is the most electronegative or the least, the direction of the bond moment will.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/4-6-molecular-structure-and-polarity

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/polarity.

Organic Molecules

Functional group

Strong, stable bonds between carbon atoms produce complex molecules containing chains, branches, and rings. The chemistry of these compounds is called organic chemistry. Hydrocarbons are organic compounds composed of only carbon and hydrogen. The alkanes are saturated hydrocarbons-that is, hydrocarbons that contain only single bonds. Alkenes contain one or more carbon-carbon double bonds. Alkynes contain one or more carbon-carbon triple bonds. Aromatic hydrocarbons contain ring structures with delocalized π electron systems. Functional groups related to the carbonyl group include the - CHO group of an aldehyde, the -COgroup of a ketone, the $-\mathrm{CO}_{2} \mathrm{H}$ group of a carboxylic acid, and the $-\mathrm{CO}_{2} \mathrm{R}$ group of an ester. The carbonyl group, a carbon-oxygen double bond, is the key structure in these classes of organic molecules. All of these compounds contain oxidized carbon atoms relative to the carbon atom of an alcohol group. The addition of nitrogen into an organic framework leads to two families of molecules. Compounds containing a nitrogen atom bonded in a hydrocarbon framework are classified as amines. Compounds that have a nitrogen atom bonded to one side of a carbonyl group are classified as amides. Amines are a basic functional group. Amines and carboxylic acids can combine in a condensation reaction to form amides.

19.1 Functional Groups

Learning Objectives

After completing this section, you will be able to:

- Explain why the properties of a given organic compound are largely dependent on the functional group or groups present in the compound.
- Identify the functional groups present in each of the following compound types: alkenes, alkynes, arenes, (alkyl and aryl) halides, alcohols, ethers, aldehydes, ketones, esters, carboxylic acids, (carboxylic) acid chlorides, amides, amines, nitriles, nitro compounds, sulfides and sulfoxides.
- Identify the functional groups present in an organic compound, given its structure.
- Given the structure of an organic compound containing a single functional group, identify which of the compound types listed under Objective 2, above, it belongs to.
- Draw the structure of a simple example of each of the compound types listed in Objective 2.

Functional groups are small groups of atoms that exhibit a characteristic reactivity. A particular functional group will almost always display its distinctive chemical behavior when it is present in a compound. Because of their importance in understanding organic chemistry, functional groups have specific names that often carry over in the naming of individual compounds incorporating the groups.

As we progress in our study of organic chemistry, it will become extremely important to be able to quickly recognize the most common functional groups, because they are the key structural elements that define how organic molecules react. For now, we will only worry about drawing and recognizing each functional group, as depicted by Lewis and line structures. Much of the remainder of your study of organic chemistry will be taken up with learning about how the different functional groups tend to behave in organic reactions.

Drawing abbreviated organic structures

Often when drawing organic structures, chemists find it convenient to use the letter 'R' to designate part of a molecule outside of the region of interest. If we just want to refer in general to a functional group without drawing a specific molecule, for example, we can use 'R groups' to focus attention on the group of interest:

a primary
 alcohol
a secondary alcohol

an aldehyde
a ketone

The ' R ' group is a convenient way to abbreviate the structures of large biological molecules, especially when we are interested in something that is occurring specifically at one location on the molecule.

Common Functional Groups

In the following sections, many of the common functional groups found in organic chemistry will be described. Tables of these functional groups can be found at the bottom of the page.

Hydrocarbons

The simplest functional group in organic chemistry (which is often ignored when listing functional groups) is called an alkane, characterized by single bonds between two carbons and between carbon and hydrogen. Some examples of alkanes include methane, CH_{4}, is the natural gas you may burn in your furnace or on a stove. Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, is a component of gasoline.
Alkanes

Abstract

Alkenes (sometimes called olefins) have carbon-carbon double bonds, and alkynes have carbon-carbon triple bonds. Ethene, the simplest alkene example, is a gas that serves as a cellular signal in fruits to stimulate ripening. (If you want bananas to ripen quickly, put them in a paper bag along with an apple - the apple emits ethene gas, setting off the ripening process in the bananas). Ethyne, commonly called acetylene, is used as a fuel in welding blow torches.

Alkenes and alkynes

Alkenes have trigonal planar electron geometry (due to sp^{2} hybrid orbitals at the alkene carbons) while alkynes have linear geometry (due to sp hybrid orbitals at the alkyne carbons). Furthermore, many alkenes can take two geometric forms: cis or trans (or Z and E which will be explained in detail in Chapter 7). The cis and trans forms of a given alkene are different molecules with different physical properties there is a very high energy barrier to rotation about a double bond. In the example below, the difference between cis and trans alkenes is readily apparent.

cis-alkene
CH_{3} groups on
the same side

trans -alkene
CH_{3} groups on opposite sides

Alkanes, alkenes, and alkynes are all classified as hydrocarbons, because they are composed solely of carbon and hydrogen atoms. Alkanes are said to be saturated hydrocarbons, because the carbons are bonded to the maximum possible number of hydrogens - in other words, they are saturated with hydrogen atoms. The double and triple-bonded carbons in alkenes and alkynes have fewer hydrogen atoms bonded to them - they are thus referred to as unsaturated hydrocarbons. Hydrogen can be added to double and triple bonds, in a type of reaction called 'hydrogenation'.

The aromatic group is exemplified by benzene (which used to be a commonly used solvent on the organic lab, but which was shown to be carcinogenic), and naphthalene, a compound with a distinctive 'mothball' smell. Aromatic groups are planar (flat) ring structures, and are widespread in nature.

Aromatics

naphthalene

Functional Groups with Carbon Single Bonds to other Atoms Halides

When the carbon of an alkane is bonded to one or more halogens, the group is referred to as a alkyl halide or haloalkane. The presence of a halogen atom ($\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I), is often represented by X due to the similar chemistry of halogens. Chloroform is a useful solvent in the laboratory, and was one of the earlier anesthetic drugs used in surgery. Chlorodifluoromethane was used as a refrigerant and in aerosol sprays until the late twentieth century, but its use was discontinued after it was found to have harmful effects on the ozone layer. Bromoethane is a simple alkyl halide often used in organic synthesis. Alkyl halides groups are quite rare in biomolecules.

dichlorodifluoromethane
(Freon-12)

bromoethane

Alcohols and Thiols

In the alcohol functional group, a carbon is single-bonded to an OH group (the OH group, by itself, is referred to as a hydroxyl). Except for methanol, all alcohols can be classified as primary, secondary, or tertiary. In a primary alcohol, the carbon bonded to the OH group is also bonded to only one other carbon. In a secondary alcohol and tertiary alcohol, the carbon is bonded to two or three other carbons, respectively. When the hydroxyl group is directly attached to an aromatic ring, the resulting group is called a phenol.

The sulfur analog of an alcohol is called a thiol (the prefix thio, derived from the Greek, refers to sulfur).

Ethers and sulfides

In an ether functional group, a central oxygen is bonded to two carbons. Below are the line and Lewis structures of diethyl ether, a common laboratory solvent and also one of the first medical anaesthesia agents.

In sulfides, the oxygen atom of an ether has been replaced by a sulfur atom.

Amines

Amines are characterized by nitrogen atoms with single bonds to hydrogen and carbon. Just as there are primary, secondary, and tertiary alcohols, there are primary, secondary, and tertiary amines. Ammonia is a special case with no carbon atoms.

ammonia

a primary
amine

a secondary amine

a tertiary amine

One of the most important properties of amines is that they are basic, and are readily protonated to form ammonium cations. In the case where a nitrogen has four bonds to carbon (which is somewhat unusual in biomolecules), it is called a quaternary ammonium ion.

ammonia
a primary amine

a secondary amine

a tertiary

ammonium
a primary ammonium ion

a quaternary ammonium ion

Note: Do not be confused by how the terms 'primary', 'secondary', and 'tertiary' are applied to alcohols and amines - the definitions are different. In alcohols, what matters is how many other carbons the alcohol carbon is bonded to, while in amines, what matters is how many carbons the nitrogen is bonded to.

a tertiary
nitrogen is bonded to one carbon
 a primary amine

Carbonyl Containing Functional Groups

Aldehydes and Ketones

There are a number of functional groups that contain a carbon-oxygen double bond, which is commonly referred to as a carbonyl. Ketones and aldehydes are two closely related carbonyl-based functional groups that react in very similar ways. In a ketone, the carbon atom of a carbonyl is bonded to two other carbons. In an aldehyde, the carbonyl carbon is bonded on one side to a hydrogen, and on the other side to a carbon. The exception to this definition is formaldehyde, in which the carbonyl carbon has bonds to two hydrogens.

formaldehyde

an aldehyde

a ketone

Carboxylic acids and acid derivatives

If a carbonyl carbon is bonded on one side to a carbon (or hydrogen) and on the other side to a heteroatom (in organic chemistry, this term generally refers to oxygen, nitrogen, sulfur, or one of the halogens), the functional group is considered to be one of the 'carboxylic acid derivatives', a designation that describes a grouping of several functional groups. The eponymous member of this grouping is the carboxylic acid functional group, in which the carbonyl is bonded to a hydroxyl (OH) group.

As the name implies, carboxylic acids are acidic, meaning that they are readily deprotonated to form the conjugate base form, called a carboxylate.

In amides, the carbonyl carbon is bonded to a nitrogen. The nitrogen in an amide can be bonded either to hydrogens, to carbons, or to both. Another way of thinking of an amide is that it is a carbonyl bonded to an amine.

In esters, the carbonyl carbon is bonded to an oxygen which is itself bonded to another carbon. Another way of thinking of an ester is that it is a carbonyl bonded to an alcohol. Thioesters are similar to esters, except a sulfur is in place of the oxygen.

In an acid anhydride, there are two carbonyl carbons with an oxygen in between. An acid anhydride is formed from combination of two carboxylic acids with the loss of water (anhydride).

an anhydride
In an acyl phosphate, the carbonyl carbon is bonded to the oxygen of a phosphate, and in an acid chloride, the carbonyl carbon is bonded to a chlorine.

an acyl
phosphate

an acid
chloride

Nitriles and Imines
In a nitrile group, a carbon is triple-bonded to a nitrogen. Nitriles are also often referred to as cyano groups.
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$:
a nitrile
Molecules with carbon-nitrogen double bonds are called imines, or Schiff bases.

imines

Phosphates

Phosphorus is a very important element in biological organic chemistry, and is found as the central atom in the phosphate group. Many biological organic molecules contain phosphate, diphosphate, and triphosphate groups, which are linked to a carbon atom by the phosphate ester functionality.

Because phosphates are so abundant in biological organic chemistry, it is convenient to depict them with the abbreviation ' P '. Notice that this ' P ' abbreviation includes the oxygen atoms and negative charges associated with the phosphate groups.

Molecules with Multiple Functional Groups

A single compound may contain several different functional groups. The six-carbon sugar molecules glucose and fructose, for example, contain aldehyde and ketone groups, respectively, and both contain five alcohol groups (a compound with several alcohol groups is often referred to as a 'polyol').

Capsaicin, the compound responsible for the heat in hot peppers, contains phenol, ether, amide, and alkene functional groups.

capsaicin
The male sex hormone testosterone contains ketone, alkene, and secondary alcohol groups, while acetylsalicylic acid (aspirin) contains aromatic, carboxylic acid, and ester groups.

While not in any way a complete list, this section has covered most of the important functional groups that we will encounter in biological and laboratory organic chemistry. The table found below provides a summary of all of the groups listed in this section, plus a few more that will be introduced later in the text.

Example 19.1

Identify the functional groups in the following organic compounds. State whether alcohols and amines are primary, secondary, or tertiary.
a)

b)

penicillin
c)

d)

Answer

a) carboxylate, sulfide, aromatic, two amide groups (one of which is cyclic)
b) tertiary alcohol, thioester
c) carboxylate, ketone
d) ether, primary amine, alkene

Draw one example each (there are many possible correct answers) of compounds fitting the descriptions below, using line structures. Be sure to designate the location of all non-zero formal charges. All atoms should have complete octets (phosphorus may exceed the octet rule).
a) a compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}$ that includes alkene, secondary amine, and primary alcohol functional groups
b) an ion with molecular formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{P}^{2-}$ that includes aldehyde, secondary alcohol, and phosphate functional groups.
c) A compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}$ that has an amide functional group, and does not have an alkene group.

Functional Group Tables

Exclusively Carbon Functional Groups

Group Formula	Class Name	Specific Example	IUPAC Name	Common Name
	alkene	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	ethene	ethylene
	arene	$\mathrm{C}_{6} \mathrm{H}_{6}$	ethyne	acetylene

Functional Groups with Single Bonds to Heteroatoms

Group Formula	Class Name	Specific Example	IUPAC Name	Common Name
$c-\ddot{x}:$	halide	$\mathrm{H}_{3} \mathrm{C}-1$	iodomethane	methyl iodide
$\mathrm{C}-\stackrel{\square}{\mathrm{O}} \mathrm{H}$	alcohol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	ethanol	ethyl alcohol
$\mathrm{c}-\ddot{\mathrm{O}} \mathrm{-}$-c	ether	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$	diethyl ether	ether
$C-N{ }^{\prime}:$	amine	$\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}$	aminomethane	methylamine
	nitro compound	$\mathrm{H}_{3} \mathrm{C}-\mathrm{NO}_{2}$	nitromethane	
C- $-\stackrel{\square}{\text { S }} \mathrm{H}$	thiol	$\mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$	methanethiol	methyl mercaptan
$c-\ddot{S}-\mathrm{C}$	sulfide	$\mathrm{H}_{3} \mathrm{C}-\mathrm{S}-\mathrm{CH}_{3}$	dimethyl sulfide	

Functional Groups with Multiple Bonds to Heteroatoms

Group Formula	Class Name	Specific Example	IUPAC Name	Common Name
$\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$:	nitrile	$\mathrm{H}_{3} \mathrm{C}-\mathrm{CN}$	ethanenitrile	acetonitrile
	aldehyde	$\mathrm{H}_{3} \mathrm{CCHO}$	ethanal	acetaldehyde
	ketone	$\mathrm{H}_{3} \mathrm{CCOCH}_{3}$	propanone	acetone
	carboxylic acid	$\mathrm{H}_{3} \mathrm{CCO}_{2} \mathrm{H}$	ethanoic Acid	acetic acid

	ester	$\mathrm{H}_{3} \mathrm{CCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	ethyl ethanoate	ethyl acetate
	acid halide	$\mathrm{H}_{3} \mathrm{CCOCl}$	ethanoyl chloride	acetyl chloride
	amide	$\mathrm{H}_{3} \mathrm{CCON}\left(\mathrm{CH}_{3}\right)_{2}$	N, N-dimethylethanamide	N, N-dimethylacetamide
	acid Anhydride	$\left(\mathrm{H}_{3} \mathrm{CCO}\right)_{2} \mathrm{O}$	ethanoic anhydride	acetic anhydride

Example 19.2

The following is the molecule for ATP, or the molecule responsible for energy in human cells. Identify the functional groups for ATP.

3-1qu.png

Answer

Files

Open in Google Drive

Previous Citation(s)

Kennepohl, D., Farmer, S., Soderberg, T., Morsch, L., \& Cunningham, K. (2021). Functional Groups. In Organic Chemistry (McMurray). LibreTexts.
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(McMurry)/03\%3A_Organic_Cor _Alkanes_and_Their_Stereochemistry/3.01\%3A_Functional_Groups

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/organic_molecules.

20

Isomers

Isomers Achiral Chiral Chiral Center plane of symmetry stereogenic center

This chapter addresses three main forms of isomerism: structural, optical, and geometric isomerism. Isomers are molecules that have the same chemical formula but different structures. A structural isomer, also known as a constitutional isomer, is one in which two or more organic compounds have the same molecular formulas but different connectivity of atoms. You will also learn to identify optical isomers, which occur when stereocenters, or tetrahedral carbons with four different substituent groups, are present in a molecule. Enantiomers can be differentiated by the configuration of substituent groups around their stereocenters. Cis-trans (geometric) isomerism exists when there is restricted rotation in a molecule and there are two nonidentical groups on each doubly bonded carbon atom.

20.1 Constitutional Isomers

Learning Objectives

The objective of this section is to introduce you to constitutional isomers using alkanes.

Evaluate the two molecules below.

Here are two alkanes for comparison. How are they the same? How are they different?
Two molecules which have the same molecular formula but different structural formulas, or bonding arrangements, are known as constitutional isomers.

Pentane is an alkane with five carbon atoms. It has three constitutional isomers, shown below.

Unbranched isomer of pentane
Branched constitutional isomer of pentane

Practice Questions

1. Draw three constitutional isomers of heptane.
2. Circle the constitutional isomers of hexane in the figure below. Why are the remaining molecules not considered to be constitutional isomers of hexane?

3. Draw the constitutional isomer of hexane that is missing.
4. What is the minimum number of carbons in the chain of an alkane to be able to have a constitutional isomer?

Citation of Previous Version

O’Donnell, R. (2020). Constitutional Isomers. In Organic Chemistry Nomenclature Workbook (O’Donnell). LibreTexts.
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book\%3A_Organic_Chemistry_Nomenclature_Work
\square

20.2 The Reason for Handedness in Molecules - Chirality

Learning Objectives

By the end of this section, you will be able to:

- Determine whether or not a compound is chiral, given its Kekulé, condensed or shorthand structure, with or without the aid of molecular models.
- Label the chiral centres (carbon atoms) in a given Kekulé, condensed or shorthand structure.

Symmetry and Chirality

Molecules that are nonsuperimposable mirror images of each other are said to be chiral (pronounced "ky-ral," from the Greek cheir, meaning "hand"). Examples of some familiar chiral objects are your hands. Your left and right hands are
nonsuperimposable mirror images. (Try putting your right shoe on your left foot-it just doesn't work.) An achiral object is one that can be superimposed on its mirror image, as shown by the superimposed flasks in the figure below.

Chiral objects

Achiral objects

An an important questions is why is one chiral and the other not? The answer is that the flask has a plane of symmetry and your hand does not. A plane of symmetry is a plane or a line through an object which divides the object into two halves that are mirror images of each other. When looking at the flask, a line can be drawn down the middle which separates it into two mirror image halves. However, a similar line down the middle of a hand separates it into two nonmirror image halves. This idea can be used to predict chirality. If an object or molecule has a plane of symmetry it is achiral. If if lacks a plane of symmetry it is chiral.

Plane of Symmetry (Achiral)

No plane of Symmetry (Chiral)

Symmetry can be used to explain why a carbon bonded to four different substituents is chiral. When a carbon is bonded to fewer than four different substituents it will have a plane of symmetry making it achiral. A carbon atom that is bonded to four different substituents loses all symmetry, and is often referred to as an asymmetric carbon. The lack of a plane of symmetry makes the carbon chiral. The presence of a single chiral carbon atom sufficient to render the molecule chiral, and modern terminology refers to such groupings as chiral centers or stereo centers.

An example is shown in the bromochlorofluoromethane molecule shown in part (a) of the figure below. This carbon, is attached to four different substituents making it chiral. which is often designated by an asterisk in structural drawings. If the bromine atom is replaced by another chlorine to make dichlorofluoromethane, as shown in part (b) below, the molecule and its mirror image can now be superimposed by simple rotation. Thus the carbon is no longer a chiral center. Upon comparison, bromochlorofluoromethane lacks a plane of symmetry while dichlorofluoromethane has a plane of symmetry.
(a) bromochlorofluoromethane

(b) dichlorofluoromethane

Identifying Chiral carbons

Identifying chiral carbons in a molecule is an important skill for organic chemists. The presence of a chiral carbon presents the possibility of a molecule having multiple stereoisomers. Most of the chiral centers we shall discuss in this chapter are asymmetric carbon atoms, but it should be recognized that other tetrahedral or pyramidal atoms may become chiral centers if appropriately substituted. Also, when more than one chiral center is present in a molecular structure, care must be taken to analyze their relationship before concluding that a specific molecular configuration is chiral or achiral. This aspect of stereoisomerism will be treated later. Because an carbon requires four different substituents to become asymmertric, it can be said, with few exceptions, that sp^{2} and sp hybridized carbons involved in multiple bonds are achiral. Also, any carbon with more than one hydrogen, such as a - CH_{3} or $-\mathrm{CH}_{2}$ - group, are also achiral.

Looking for planes of symmetry in a molecule is useful, but often difficult in practice. It is difficult to illustrate on the two dimensional page, but you will see if you build models of these achiral molecules that, in each case, there is at least one plane of symmetry, where one side of the plane is the mirror image of the other. In most cases, the easiest way to decide whether a molecule is chiral or achiral is to look for one or more stereocenters - with a few rare exceptions, the general rule is that molecules with at least one stereocenter are chiral, and molecules with no stereocenters are achiral.

Determining if a carbon is bonded to four distinctly different substituents can often be difficult to ascertain. Remember even the slightest difference makes a substituent unique. Often these difference can be distant from the chiral carbon itself. Careful consideration and often the building of molecular models may be required. A good example is shown below. It may appear that the molecule is achiral, however, when looking at the groups directly attached to the possible chiral carbon, it is clear that they all different. The two alkyl groups are differ by a single $-\mathrm{CH}_{2}$ - group which is enough to consider them different.

Example 20.1

Predict if the following molecule would be chiral or achiral:

Answer

Achiral. When determining the chirality of a molecule, it best to start by locating any chiral carbons. An obvious candidate is the ring carbon attached to the methyl substituent. The question then becomes: does the ring as two different substituents making the substituted ring carbon chiral? With an uncertainty such as this, it is then helpful try to identify any planes of symmetry in the molecule. This molecule does have a plane of symmetry making the molecule achiral. The plane of symmetry would be easier see if the molecule were view from above. Typically, monosubstituted cycloalkanes have a similar plane of symmetry making them all achiral.

Example 20.2

Determine if each of the following molecules are chiral or achiral. For chiral molecules indicate any chiral carbons.

a

b

c

g

d

e

f

h

Answer

a

b

c

d

e

f

g

h

Explanation

Structures F and G are achiral. The former has a plane of symmetry passing through the chlorine atom and bisecting the opposite carbon-carbon bond. The similar structure of compound E does not have such a symmetry plane, and the carbon bonded to the chlorine is a chiral center (the two ring segments connecting this carbon are not identical). Structure G is essentially flat. All the carbons except that of the methyl group are $s p^{2}$ hybridized, and therefore trigonal-planar in configuration. Compounds C, D \& H have more than one chiral center, and are also chiral.

Something Extra

In the 1960's, a drug called thalidomide was widely prescribed in the Western Europe to alleviate morning sickness in pregnant women.

thalidomide
Thalidomide had previously been used in other countries as an antidepressant, and was believed to be safe and effective for both purposes. The drug was not approved for use in the U.S.A. It was not long, however, before doctors realized that something had gone horribly wrong: many babies born to women who had taken thalidomide during pregnancy suffered from severe birth defects.

Researchers later realized the problem lay in the fact that thalidomide was being provided as a mixture of two different isomeric forms.

One of the isomers is an effective medication, the other caused the side effects. Both isomeric forms have the same molecular formula and the same atom-to-atom connectivity, so they are not constitutional isomers. Where they differ is in the arrangement in three-dimensional space about one tetrahedral, sp^{3}-hybridized carbon. These two forms of thalidomide are stereoisomers. If you make models of the two stereoisomers of thalidomide, you will see that they too are mirror images, and cannot be superimposed.

As a historical note, thalidomide was never approved for use in the United States. This was thanks in large part to the efforts of Dr. Frances Kelsey, a Food and Drug officer who, at peril to her career, blocked its approval due to her concerns about the lack of adequate safety studies, particularly with regard to the drug's ability to enter the bloodstream of a developing fetus. Unfortunately, though, at that time clinical trials for new drugs involved widespread and unregulated distribution to doctors and their patients across the country, so families in the U.S. were not spared from the damage caused.

Very recently a close derivative of thalidomide has become legal to prescribe again in the United States, with strict safety measures enforced, for the treatment of a form of blood cancer called multiple myeloma. In Brazil, thalidomide is used in the treatment of leprosy_- but despite safety measures, children are still being born with thalidomide-related defects.

Example 20.3

Label the molecules below as chiral or achiral, and locate all stereocenters.

fumarate
(a citric acid cycle intermediate)
b)

malate
(a citric acid cycle intermediate)

c)

ibuprofen
d)

acetylsalicylic acid (aspirin)

acetaminophen (active ingredient in Tylenol)

Answer

a)

fumarate (achiral)
b)

malate (chiral)

c)

ibuprofen (chiral)
d)

acetylsalicylic acid (achiral)
e)

acetaminophen (achiral)

Example 20.4

1) For the following compounds, star (*) each chiral center, if any.
(a)

(b)

(c)

(d)

(e)

(f)

2) Explain why the following compound is chiral.

3) Determine which of the following objects is chiral.
a) A Glove.
b) A nail.
c) A pair of sunglasses.
d) The written word "Chiral".
4) Place an "*" by all of the chrial carbons in the following molecules.
a)

Erythrose, a four carbon sugar.

b) Isoflurane, an anestetic. Bright green = Chlorine, Pale green = Fluorine .

Answer

1)

(a)

(b)

(c)

(d)

(e)
(f)

2) Though the molecule does not contain a chiral carbon, it is chiral as it is non-superimposable on its mirror image due to its twisted nature (the twist comes from the structure of the double bonds needing to be at 90° angles to each other, preventing the molecule from being planar).
3)
a) Just as hands are chiral a glove must also be chiral.
b) A nail has a plane of symmetry which goes down the middle making it a achiral.
c) A pair of sunglasses has a plane of symmetry which goes through the nose making it achiral.
d) Most written words are chiral. Look one in a mirror to confirm this.

4
a)

b)

Example 20.5

Circle all of the carbon stereocenters in the molecules below.
a)

b)

serine
c)

threonine

Answer

a)

b)

serine
c)

threonine

Example 20.6

Circle all of the carbon stereocenters in the molecules below.
a)

2-methylerythritol-4-phopshate
b)

biotin
c)

dihydroorotate

Answer

a)

2-methylerythritol-4-phopshate
b)

biotin
c)

dihydroorotate

Here are some more examples of chiral molecules that exist as pairs of enantiomers. In each of these examples, there is a single stereocenter, indicated with an arrow. (Many molecules have more than one stereocenter, but we will get to that that a little later!)

glyceraldehyde
alanine

lactate

amphetamine

Here are some examples of molecules that are achiral (not chiral). Notice that none of these molecules has a stereocenter.

It is difficult to illustrate on the two dimensional page, but you will see if you build models of these achiral molecules that, in each case, there is at least one plane of symmetry, where one side of the plane is the mirror image of the other. Chirality is tied conceptually to the idea of asymmetry, and any molecule that has a plane of symmetry cannot be chiral. When looking for a plane of symmetry, however, we must consider all possible conformations that a molecule could adopt. Even a very simple molecule like ethane, for example, is asymmetric in many of its countless potential conformations - but it has obvious symmetry in both the eclipsed and staggered conformations, and for this reason it is achiral.

Looking for planes of symmetry in a molecule is useful, but often difficult in practice. In most cases, the easiest way to decide whether a molecule is chiral or achiral is to look for one or more stereocenters - with a few rare exceptions (see section 3.7B), the general rule is that molecules with at least one stereocenter are chiral, and molecules with no stereocenters are achiral. Carbon stereocenters are also referred to quite frequently as chiral carbons.

When evaluating a molecule for chirality, it is important to recognize that the question of whether or not the dashed/solid wedge drawing convention is used is irrelevant. Chiral molecules are sometimes drawn without using wedges (although obviously this means that stereochemical information is being omitted). Conversely, wedges may be used on carbons that are not stereocenters - look, for example, at the drawings of glycine and citrate in the figure above. Just because you see dashed and solid wedges in a structure, do not automatically assume that you are looking at a stereocenter.

Other elements in addition to carbon can be stereocenters. The phosphorus center of phosphate ion and organic phosphate esters, for example, is tetrahedral, and thus is potentially a stereocenter.

hosphate (achiral)

labeled phosphate ester (chiral)

a chiral phosphate triester

We will see in chapter 10 how researchers, in order to investigate the stereochemistry of reactions at the phosphate center, incorporated sulfur and/or ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ isotopes of oxygen (the 'normal' isotope is ${ }^{16} \mathrm{O}$) to create chiral phosphate groups. Phosphate triesters are chiral if the three substituent groups are different.

Asymmetric quaternary ammonium groups are also chiral. Amines, however, are not chiral, because they rapidly invert, or turn 'inside out', at room temperature.

a chiral quaternary ammonium

the rapid inversion of amines makes them chiral
$R_{R^{\prime \prime \prime}} \ddot{\sim}^{\circ} \ddot{N}_{R^{\prime}}$

Example 20.7

Label the molecules below as chiral or achiral, and circle all stereocenters.
a) fumarate (a citric acid cycle intermediate)

b) malate (a citric acid cycle intermediate)

b) malate (a citric acid cycle intermediate)

Answer

a) achiral (no stereocenters)

b) chiral

c) chiral

Example 20.8

Label the molecules below as chiral or achiral, and circle all stereocenters.
a) acetylsalicylic acid (aspirin)

b) acetaminophen (active ingredient in Tylenol)

c) thalidomide (drug that caused birth defects in pregnant mothers in the 1960's)

Answer

a) achiral (no stereocenters)

b) achiral (no stereocenters)

c) chiral

Example 20.9

Draw both enantiomers of the following chiral amino acids.
a) Cysteine

b) Proline

Answer

a)

$+$

b)

Example 20.10

Draw both enantiomers of the following compounds from the given names.
a) 2-bromobutane
b) 2,3-dimethyl-3-pentanol

Answer

b)

$+$

Example 20.11

Which of the following body parts are chiral?
a) Hands b) Eyes c) Feet d) Ears

Answer

a) Hands- chiral since the mirror images cannot be superimposed (think of the example in the beginning of the section)
b) Eyes- achiral since mirror images that are superimposable
c) Feet- chiral since the mirror images cannot be superimposed (Does your right foot fit in your left shoe?)
d) Ears- chiral since the mirror images cannot be superimposed

Example 20.12

Circle the chiral centers in the following compounds.
a)

b)

c)

Answer
a)

b)
c)

Example 20.13

Identify the chiral centers in the following compounds.
a)

b)

c)

Answer

a)

b)

Citation of Previous Version

Kennepohl, D., Farmer, S., Reusch, W., Soderberg, T., Clark, J., Sharrett, Z., Morsch, L., \& Cunningham, K. (2022). The Reason for Handedness in Molecules - Chirality. In Organic Chemistry (McMurry). LibreTexts. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(McMurry)/05\%3A_Stereochen _Chirality

20.3 Cis-Trans Isomers (Geometric Isomers)

Learning Objectives

By the end of this section, you will be able to:

- Recognize that alkenes that can exist as cis-trans isomers.
- Classify isomers as cis or trans.
- Draw structures for cis-trans isomers given their names.

There is free rotation about the carbon-to-carbon single bonds (C-C) in alkanes. In contrast, the structure of alkenes requires that the carbon atoms of a double bond and the two atoms bonded to each carbon atom all lie in a single plane, and that each doubly bonded carbon atom lies in the center of a triangle. This part of the molecule's structure is rigid; rotation about doubly bonded carbon atoms is not possible without rupturing the bond. Look at the two chlorinated hydrocarbons in the figure below.

Table 20.1: Rotation about Bonds. In 1,2-dichloroethane (a), free rotation about the $C-C$ bond allows the two structures to be interconverted by a twist of one end relative to the other. In 1,2-dichloroethene (b), restricted rotation about the double bond means that the relative positions of substituent groups above or below the double bond are significant.

In 1,2-dichloroethane (part (a) of the figure above), there is free rotation about the $\mathrm{C}-\mathrm{C}$ bond. The two models shown represent exactly the same molecule; they are not isomers. You can draw structural formulas that look different, but if you bear in mind the possibility of this free rotation about single bonds, you should recognize that these two structures represent the same molecule:

In 1,2-dichloroethene, however, restricted rotation about the double bond means that the relative positions of substituent groups above or below the double bond become significant. This leads to a special kind of isomerism. The isomer in which the two chlorine (CI) atoms lie on the same side of the molecule is called the cis isomer (Latin cis, meaning "on this side") and is named cis-1,2-dichloroethene. The isomer with the two Cl atoms on opposite sides of the molecule is the trans isomer (Latin trans, meaning "across") and is named trans-1,2-dichloroethene. These two compounds are cis-trans isomers (or geometric isomers), compounds that have different configurations (groups permanently in different places in space) because of the presence of a rigid structure in their molecule.

Consider the alkene with the condensed structural formula $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$. We could name it 2-butene, but there are actually two such compounds; the double bond results in cis-trans isomerism.

Ball-and-Spring Models of (a) Cis-2-Butene and (b) Trans-2-Butene. Cis-trans isomers have different physical, chemical, and physiological properties.

Cis-2-butene has both methyl groups on the same side of the molecule. Trans-2-butene has the methyl groups on opposite sides of the molecule. Their structural formulas are as follows:

cis-2-butene

trans-2-butene

Models of (left) Cis-2-Butene and (right) Trans-2-Butene.
Note, however, that the presence of a double bond does not necessarily lead to cis-trans isomerism. We can draw two seemingly different propenes:

Different views of the propene molecule (flip vertically). These are not isomers.
However, these two structures are not really different from each other. If you could pick up either molecule from the page and flip it over top to bottom, you would see that the two formulas are identical. Thus there are two requirements for cis-trans isomerism:

1. Rotation must be restricted in the molecule.
2. There must be two nonidentical groups on each doubly bonded carbon atom.

In these propene structures, the second requirement for cis-trans isomerism is not fulfilled. One of the doubly bonded carbon atoms does have two different groups attached, but the rules require that both carbon atoms have two different groups. In general, the following statements hold true in cis-trans isomerism:

- Alkenes with a $\mathrm{C}=\mathrm{CH}_{2}$ unit do not exist as cis-trans isomers.
- Alkenes with a $\mathrm{C}=\mathrm{CR}_{2}$ unit, where the two R groups are the same, do not exist as cis-trans isomers.
- Alkenes of the type $\mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{R}$ can exist as cis and trans isomers; cis if the two R groups are on the same side of the carbon-to-carbon double bond, and trans if the two R groups are on opposite sides of the carbon-to-carbon double bond.

Advanced Note: E/Z Isomerization

If a molecule has a $\mathrm{C}=\mathrm{C}$ bond with one non-hydrogen group attached to each of the carbons, cis/trans nomenclature descried above is enough to describe it. However, if you have three different groups (or four), then the cis/trans approach is insufficient to describe the different isomers, since we do not know which two of the three groups are being described. For example, if you have a $\mathrm{C}=\mathrm{C}$ bond, with a methyl group and a bromine on one carbon, and an ethyl group on the other, it is neither trans nor cis, since it is not clear whether the ethyl group is trans to the bromine or the methyl. This is addressed with a more advanced E/Z nomenclature discussed elsewhere.

Cis-trans isomerism also occurs in cyclic compounds. In ring structures, groups are unable to rotate about any of the ring carbon-carbon bonds. Therefore, groups can be either on the same side of the ring (cis) or on opposite sides of the ring (trans). For our purposes here, we represent all cycloalkanes as planar structures, and we indicate the positions of the groups, either above or below the plane of the ring.

Cis-1,2-dimethylcyclopropane

Trans-1,2-dimethylcyclopropane

Example 20.14

Which compounds can exist as cis-trans (geometric) isomers? Draw them.

1. $\mathrm{CHCl}=\mathrm{CHBr}$
2. $\mathrm{CH}_{2}=\mathrm{CBrCH}_{3}$
3. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
4. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

Answer

All four structures have a double bond and thus meet rule 1 for cis-trans isomerism.

1. This compound meets rule 2; it has two nonidentical groups on each carbon atom (H and Cl on one and H and Br on the other). It exists as both cis and trans isomers:

2. This compound has two hydrogen atoms on one of its doubly bonded carbon atoms; it fails rule 2 and does not exist as cis and trans isomers.
3. This compound has two methyl $\left(\mathrm{CH}_{3}\right)$ groups on one of its doubly bonded carbon atoms. It fails rule 2 and does not exist as cis and trans isomers.
4. This compound meets rule 2 ; it has two nonidentical groups on each carbon atom and exists as both cis and trans isomers:

Concept Review Exercises

1. What are cis-trans (geometric) isomers? What two types of compounds can exhibit cis-trans isomerism?
2. Classify each compound as a cis isomer, a trans isomer, or neither.
3.

2.

3.

4.

Answer

1. Cis-trans isomers are compounds that have different configurations (groups permanently in different places in space) because of the presence of a rigid structure in their molecule. Alkenes and cyclic compounds can exhibit cis-trans isomerism.
2. 3. trans (the two hydrogen atoms are on opposite sides)
1. cis (the two hydrogen atoms are on the same side, as are the two ethyl groups)
2. cis (the two ethyl groups are on the same side)
3. neither (fliping the bond does not change the molecule. There are no isomers for this molecule)

Supplemental Exercises

1. Draw the structures of the cis-trans isomers for each compound. Label them cis and trans. If no cis-trans isomers exist, write none.
2. 2-bromo-2-pentene
3. 3-hexene
4. 4-methyl-2-pentene
5. 1,1-dibromo-1-butene
6. 2-butenoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}\right)$
7. Draw the structures of the cis-trans isomers for each compound. Label them cis and trans. If no cis-trans isomers exist, write none.
8. 2,3-dimethyl-2-pentene
9. 1,1-dimethyl-2-ethylcyclopropane
10. 1,2-dimethylcyclohexane
11. 5-methyl-2-hexene
12. 1,2,3-trimethylcyclopropane

Answer

1. a: none. There are two distinct geometric isomers, but since there are there are four different groups off the double bond, these are both cis/trans isomers (they are technically E/Z isomers discussed elsewhere).
b:

cis
C:

d:

cis
e:

cis

trans

trans

trans

Citation of Previous Version

LibreTexts. (2022). Cis-Trans Isomers (Geometric Isomers). In CHEM 121: Concepts for a Molecular View of Biology II (Cunningham). LibreTexts. https://chem.libretexts.org/Courses/Case_Western_Reserve_University/CHEM_121\%3A_Concepts_for_a_Molecı Trans_Isomers_(Geometric_Isomers)

Files

Open in Google Drive

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/isomers.

Valence Bond Theory

Theory Atom Orbitals Bonding Valence Bond Theory

Valence bond theory describes bonding as a consequence of the overlap of two separate atomic orbitals on different atoms that creates a region with one pair of electrons shared between the two atoms. When the orbitals overlap along an axis containing the nuclei, they form a σ bond. When they overlap in a fashion that creates a node along this axis, they form a π bond. Dipole moments can be used to determine partial separations of charges between atoms. We can use hybrid orbitals, which are mathematical combinations of some or all of the valence atomic orbitals, to describe the electron density around covalently bonded atoms. These hybrid orbitals either form sigma (σ) bonds directed toward other atoms of the molecule or contain lone pairs of electrons. We can determine the type of hybridization around a central atom from the geometry of the regions of electron density about it. Two such regions imply sp hybridization; three, $s p^{2}$ hybridization; four, $s p^{3}$ hybridization; five, $s p^{3} d$ hybridization; and six, $s p^{3} d^{2}$ hybridization. Pi (π) bonds are formed from unhybridized atomic orbitals (p or d orbitals). Multiple bonds consist of a σ bond located along the axis between two atoms and one or two π bonds. The σ bonds are usually formed by the overlap of hybridized atomic orbitals, while the π bonds are formed by the side-by-side overlap of unhybridized orbitals. Resonance occurs when there are multiple unhybridized orbitals with the appropriate alignment to overlap, so the placement of π bonds can vary.

21.1 Valence Bond Theory

Learning Objectives

By the end of this section, you will be able to:

- Describe the formation of covalent bonds in terms of atomic orbital overlap
- Define and give examples of σ and π bonds

As we know, a scientific theory is a strongly supported explanation for observed natural laws or large bodies of experimental data. For a theory to be accepted, it must explain experimental data and be able to predict behavior. For example, VSEPR theory has gained widespread acceptance because it predicts three-dimensional molecular shapes that are consistent with experimental data collected for thousands of different molecules. However, VSEPR theory does not provide an explanation of chemical bonding.

Atomic Orbital Overlap

There are successful theories that describe the electronic structure of atoms. We can use quantum mechanics to predict the specific regions around an atom where electrons are likely to be located: A spherical shape for an sorbital, a dumbbell shape for a p orbital, and so forth. However, these predictions only describe the orbitals around free atoms. When atoms bond to form molecules, atomic orbitals are not sufficient to describe the regions where electrons will be located in the molecule. A more complete understanding of electron distributions requires a model that can account for the electronic structure of molecules. One popular theory holds that a covalent bond forms when a pair of electrons is shared by two atoms and is simultaneously attracted by the nuclei of both atoms. In the following sections, we will discuss how such bonds are described by valence bond theory and hybridization.

Valence bond theory describes a covalent bond as the overlap of half-filled atomic orbitals (each containing a single electron) that yield a pair of electrons shared between the two bonded atoms. We say that orbitals on two different atoms overlap when a portion of one orbital and a portion of a second orbital occupy the same region of space. According to valence bond theory, a covalent bond results when two conditions are met: (1) an orbital on one atom overlaps an orbital on a second atom and (2) the single electrons in each orbital combine to form an electron pair. The mutual attraction between this negatively charged electron pair and the two atoms' positively charged nuclei serves to physically link the two atoms through a force we define as a covalent bond. The strength of a covalent bond depends on the extent of overlap of the orbitals involved. Orbitals that overlap extensively form bonds that are stronger than those that have less overlap.

The energy of the system depends on how much the orbitals overlap. Figure 21.1 illustrates how the sum of the energies of two hydrogen atoms (the colored curve) changes as they approach each other. When the atoms are far apart there is no overlap, and by convention we set the sum of the energies at zero. As the atoms move together, their orbitals begin to overlap. Each electron begins to feel the attraction of the nucleus in the other atom. In addition, the electrons begin to repel each other, as do the nuclei. While the atoms are still widely separated, the attractions are slightly stronger than the repulsions, and the energy of the system decreases. (A bond begins to form.) As the atoms move closer together, the overlap increases, so the attraction of the nuclei for the electrons continues to increase (as do the repulsions among electrons and between the nuclei). At some specific distance between the atoms, which varies depending on the atoms involved, the energy reaches its lowest (most stable) value. This optimum distance between the two bonded nuclei is the bond distance between the two atoms. The bond is stable because at this point, the attractive and repulsive forces combine to create the lowest possible energy configuration. If the distance between the nuclei were to decrease further, the repulsions between nuclei and the repulsions as electrons are confined in closer proximity to each other would become stronger than the attractive forces. The energy of the system would then rise (making the system destabilized), as shown at the far left of Figure 21.1.

Figure 21.1

(a) The interaction of two hydrogen atoms changes as a function of distance. (b) The energy of the system changes as the atoms interact. The lowest (most stable) energy occurs at a distance of 74 pm, which is the bond length observed for the H_{2} molecule.

In addition to the distance between two orbitals, the orientation of orbitals also affects their overlap (other than for two s orbitals, which are spherically symmetric). Greater overlap is possible when orbitals are oriented such that they overlap on a direct line between the two nuclei. Figure 21.2 illustrates this for two p orbitals from different atoms; the overlap is greater when the orbitals overlap end to end rather than at an angle.

Figure 21.2

(a) The overlap of two p orbitals is greatest when the orbitals are directed end to end. (b) Any other arrangement results in less overlap. The dots indicate the locations of the nuclei.

(a)

(b)

The overlap of two s orbitals (as in H_{2}), the overlap of an s orbital and a p orbital (as in HCl), and the end-to-end overlap of two p orbitals (as in Cl_{2}) all produce sigma bonds (σ bonds), as illustrated in Figure 21.3. A σ bond is a covalent bond in which the electron density is concentrated in the region along the internuclear axis; that is, a line between the nuclei would pass through the center of the overlap region. Single bonds in Lewis structures are described as σ bonds in valence bond theory.

Figure 21.3

Sigma (σ) bonds form from the overlap of the following: (a) two sorbitals, (b) an sorbital and a porbital, and (c) two p orbitals. The dots indicate the locations of the nuclei.

A pi bond (π bond) is a type of covalent bond that results from the side-by-side overlap of two p orbitals, as illustrated in Figure 21.4. In a π bond, the regions of orbital overlap lie on opposite sides of the internuclear axis. Along the axis itself, there is a node, that is, a plane with no probability of finding an electron.

Figure 21.4
Pi (π) bonds form from the side-by-side overlap of two p orbitals. The dots indicate the location of the nuclei.

While all single bonds are σ bonds, multiple bonds consist of both σ and π bonds. As the Lewis structures below suggest, O_{2} contains a double bond, and N_{2} contains a triple bond. The double bond consists of one σ bond and one π bond, and the triple bond consists of one σ bond and two π bonds. Between any two atoms, the first bond formed will always be a σ bond, but there can only be one σ bond in any one location. In any multiple bond, there will be one σ bond, and the remaining one or two bonds will be π bonds. These bonds are described in more detail later in this chapter.

One σ bond
 No π bonds

: N三N:
One σ bond
Two π bonds

Example 21.1

Counting σ and π Bonds

Butadiene, $\mathrm{C}_{4} \mathrm{H}_{6}$, is used to make synthetic rubber. Identify the number of σ and π bonds contained in this molecule.

Solution

There are six $\sigma \mathrm{C}-\mathrm{H}$ bonds and one $\sigma \mathrm{C}-\mathrm{C}$ bond, for a total of seven from the single bonds. There are two double bonds that each have a π bond in addition to the σ bond. This gives a total nine σ and two π bonds overall.

Check Your Learning

Identify each illustration as depicting a σ or π bond:
(a) side-by-side overlap of a $4 p$ and a $2 p$ orbital
(b) end-to-end overlap of a $4 p$ and $4 p$ orbital
(c) end-to-end overlap of a $4 p$ and a $2 p$ orbital

(a)

(b)

(c)

Answer

(a) is a π bond with a node along the axis connecting the nuclei while (b) and (c) are σ bonds that overlap along the axis.

Dipole Moments and Ionic Character

Now that we have seen the importance of understanding the connection between the location of electrons in atoms and the properties of elements, we can expand our understanding of the connection between atoms. This will be an introduction to more advanced aspects of the chemical bond, which is the very heart of chemistry itself. With the sole exception of the noble gases, atoms by themselves do not possess the most stable possible electron configuration.

That is where the concept of chemical bonding comes into its own: atoms can attain a stable configuration by exchanging electrons with another atom, resulting in the formation of ions.

Ions, in turn, can associate by charge - simple Coulombic attraction - resulting in the formation of compounds we call ionic compounds. We will look at the ionic nature of bonds first, from a simple positive-negative attraction standpoint. Just as important is that some atoms bond by sharing rather than exchanging electrons; the sharing of electrons gives rise to the covalent bond. To add just one more dimension, some chemical species are neither completely ionic nor completely covalent; these species possess a permanent dipole, and are classified as polar.

In your introductory physics course, you will likely discuss the concept of Coulombic interactions in much more rigorous detail than we will do here. We are interested primarily in the differences in properties between species that arise from their relative covalent, ionic, or polar nature - not in a rigorous model of those properties. We are concerned with the connection between potential energy and force and the relative separation (or lack of separation) between charges. We begin by defining the electric or Coulomb force as the product of the charges divided by the square of the distance between those charges:
$F=\frac{Q_{1} Q_{2}}{d^{2}}$

Here, Q is taken to be the fundamental constant of electron charge: one electron has a charge of
$1.60218 \times 10^{-19} \mathrm{C}$
. (We will work exclusively in the SI system, so distances will be measured in meters (m)).
And as you may recall, energy is force times distance, so
$E=\frac{Q_{1} Q_{2}}{d}$

To illustrate the trend in attractive force, we will consider first the attractive force between two ions of single charge separated by a distance of $2 d$:
$F=\frac{(1)(-1)}{(2 d)^{2}}=-\frac{1}{4 d^{2}}$

And then the attractive force between two ions of double charge separated by a distance d :
$F=\frac{(2)(-2)}{(d)^{2}}=-\frac{4}{d^{2}}$

The force of attraction increases with the charge and decreases with increased distance. If all matter were composed of ions that would be the end of the story, but it clearly is not. There are molecules for which the charge - either positive or negative - is permanently concentrated more on one atom than the other. Notice we say atom, because these compounds are not composed of ions but rather of atoms sharing electrons through covalent bonds.

Bond Dipole Moments

The concept of a bond dipole moment allows us to examine the partial separation of charge between atoms. It is a simple model when applied to diatomic molecules, which will be more than sufficient for our purposes. The dipole moment of a bond is defined as the charge times the distance - charge once again being measured in multiples of the charge on an electron, or coulombs. The distance will always be in meters. Because we are considering very small charges and distances, and because it is the relative separation of charge rather than the actual value for it that we are interested in, we will introduce a new unit called the Debye, named after the physical chemist Peter Debye:

```
1 Debye \((D)=3.336 \times 10^{-30} \mathrm{C}-\mathrm{m} \quad \mu=Q \times d\)
```

The usefulness of the Debye unit will be shown by example:
For HCl , the bond dipole moment is known to be 1.08 D
For HI , the bond dipole moment is known to be 0.44 D
Comparing the two, we can see that HI is less polar than HCl , which is what we would expect based on electronegativity values.

We have now made a transition between the concept of an ionic compound and a partially ionic one. Of course, the partially ionic compound must also by definition be partially covalent.

Partial Ionic Character

The concept of the bond dipole moment helps bridge the concepts of ionic and covalent bonding. Because there is a separation of charge that is less complete than it is in an ionic bond, we can refer to polar bonds as being partially ionic in nature. In contrast to sodium chloride, hydrogen chloride shows partial charges (indicated with a delta notation) on the hydrogen and chlorine. As you would expect from the electronegativity values, hydrogen carries a partial positive charge, while chlorine carries a partial negative charge. Where do these charges come from?

It is easy to come up with the partial charges by comparing the actual dipole moments (which can be obtained experimentally, using spectroscopy) with the dipole expected in the limiting case (that is, if we were to consider the molecule ionic). The actual dipole moment is 1.03 D .

Example 21.2

Finding the Partial Ionic Character

What are the partial charges of an HCl molecule, whose bond length is 0.127 nm ?

Solution

The bond dipole moment is
$\left(1.60218 \times 10^{-19} \mathrm{C}\right)\left(0.127 \times 10^{-9} \mathrm{~m}\right)$
or
$2.03 \times 10^{-29} \mathrm{C}-\mathrm{m}$

Converted to D, this is
$\left(2.03 \times 10^{-29} \mathrm{C}-\mathrm{m}\right)\left(\frac{1 \text { Debye }}{3.336 \times 10^{-30} \mathrm{C}-\mathrm{m}}\right)$
or 6.09 D . Were HCl completely ionic, this would be its molecular dipole moment. To get the partial ionic character, we divide the experimentally measured bond moment by this limiting value:
$\%$ ionic character $\left.=\frac{\mu_{\exp }}{\mu_{\lim }} \times 100 \%=\frac{(1.03}{(6.09} \mathrm{D}\right) \times 100 \%=17 \%$
. This means the bond is about 17% ionic - or, put another way, the positive charge in H is +0.17 and the partial negative charge on chlorine, -0.17 .
Check Your Learning
Repeat the calculation for HI , which has a dipole moment of 0.42 D and a bond length of 0.161 nm . Answer: Calculated 7.73, percent 5.43

What does the result suggest about the relative polarity of the HI bond vs. that of the HCl bond? Does the calculated dipole and percent ionic character reconcile with the difference in electronegativity between Cl and I ?

The electron configuration of an atom or ion is key to understanding the chemical behavior of an element. The atoms that make up the element combine in various ways, ranging from the mostly ionic (NaCl) to the partially ionic (HCl) to what we will call purely covalent. At the most fundamental level, all chemical bonds involve electrons, and a significant percentage of chemical and physical properties can be explained by considering the location and separation of charge in a species. By understanding the structure of matter at the atomic level, we can begin to build an understanding of the behavior of matter at both the microscopic and macroscopic levels.

An understanding of dipoles and partial ionic character is fundamental to understanding the interactions between particles, which we will examine in the chapter on liquids and solids. These intermolecular forces become important in the liquid and solid states of matter.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

21.2 Hybrid Atomic Orbitals

Learning Objectives

By the end of this section, you will be able to:

- Explain the concept of atomic orbital hybridization
- Determine the hybrid orbitals associated with various molecular geometries

Thinking in terms of overlapping atomic orbitals is one way for us to explain how chemical bonds form in diatomic molecules. However, to understand how molecules with more than two atoms form stable bonds, we require a more detailed model. As an example, let us consider the water molecule, in which we have one oxygen atom bonding to two hydrogen atoms. Oxygen has the electron configuration $1 s^{2} 2 s^{2} 2 p^{4}$, with two unpaired electrons (one in each of the two $2 p$ orbitals). Valence bond theory would predict that the two $\mathrm{O}-\mathrm{H}$ bonds form from the overlap of these two $2 p$ orbitals with the $1 s$ orbitals of the hydrogen atoms. If this were the case, the bond angle would be 90°, as shown in Figure 21.5, because p orbitals are perpendicular to each other. Experimental evidence shows that the bond angle is 104.5°, not 90°. The prediction of the valence bond theory model does not match the real-world observations of a water molecule; a different model is needed.

Figure 21.5
The hypothetical overlap of two of the $2 p$ orbitals on an oxygen atom (red) with the 1 s orbitals of two hydrogen atoms (blue) would produce a bond angle of 90°. This is not consistent with experimental evidence. ${ }^{1}$

Quantum-mechanical calculations suggest why the observed bond angles in $\mathrm{H}_{2} \mathrm{O}$ differ from those predicted by the overlap of the 1 s orbital of the hydrogen atoms with the $2 p$ orbitals of the oxygen atom. The mathematical expression known as the wave function, ψ, contains information about each orbital and the wavelike properties of electrons in an isolated atom. When atoms are bound together in a molecule, the wave functions combine to produce new
mathematical descriptions that have different shapes. This process of combining the wave functions for atomic orbitals is called hybridization and is mathematically accomplished by the linear combination of atomic orbitals, LCAO, (a technique that we will encounter again later). The new orbitals that result are called hybrid orbitals. The valence orbitals in an isolated oxygen atom are a $2 s$ orbital and three $2 p$ orbitals. The valence orbitals in an oxygen atom in a water molecule differ; they consist of four equivalent hybrid orbitals that point approximately toward the corners of a tetrahedron (Figure 21.6). Consequently, the overlap of the O and H orbitals should result in a tetrahedral bond angle $\left(109.5^{\circ}\right)$. The observed angle of 104.5° is experimental evidence for which quantum-mechanical calculations give a useful explanation: Valence bond theory must include a hybridization component to give accurate predictions.

Figure 21.6
(a) A water molecule has four regions of electron density, so VSEPR theory predicts a tetrahedral arrangement of hybrid orbitals. (b) Two of the hybrid orbitals on oxygen contain lone pairs, and the other two overlap with the 1s orbitals of hydrogen atoms to form the $\mathrm{O}-\mathrm{H}$ bonds in $\mathrm{H}_{2} \mathrm{O}$. This description is more consistent with the experimental structure.

The following ideas are important in understanding hybridization:

1. Hybrid orbitals do not exist in isolated atoms. They are formed only in covalently bonded atoms.
2. Hybrid orbitals have shapes and orientations that are very different from those of the atomic orbitals in isolated atoms.
3. A set of hybrid orbitals is generated by combining atomic orbitals. The number of hybrid orbitals in a set is equal to the number of atomic orbitals that were combined to produce the set.
4. All orbitals in a set of hybrid orbitals are equivalent in shape and energy.
5. The type of hybrid orbitals formed in a bonded atom depends on its electron-pair geometry as predicted by the VSEPR theory.
6. Hybrid orbitals overlap to form σ bonds. Unhybridized orbitals overlap to form π bonds.

In the following sections, we shall discuss the common types of hybrid orbitals.

$s p$ Hybridization

The beryllium atom in a gaseous BeCl_{2} molecule is an example of a central atom with no lone pairs of electrons in a linear arrangement of three atoms. There are two regions of valence electron density in the BeCl_{2} molecule that correspond to the two covalent $\mathrm{Be}-\mathrm{Cl}$ bonds. To accommodate these two electron domains, two of the Be atom's four valence orbitals will mix to yield two hybrid orbitals. This hybridization process involves mixing of the valence sorbital with one of the valence p orbitals to yield two equivalent $s p$ hybrid orbitals that are oriented in a linear geometry (Figure
21.7). In this figure, the set of $s p$ orbitals appears similar in shape to the original p orbital, but there is an important difference. The number of atomic orbitals combined always equals the number of hybrid orbitals formed. The p orbital is one orbital that can hold up to two electrons. The $s p$ set is two equivalent orbitals that point 180° from each other. The two electrons that were originally in the s orbital are now distributed to the two $s p$ orbitals, which are half filled. In gaseous BeCl_{2}, these half-filled hybrid orbitals will overlap with orbitals from the chlorine atoms to form two identical σ bonds.

Figure 21.7
Hybridization of an s orbital (blue) and a p orbital (red) of the same atom produces two sp hybrid orbitals (yellow). Each hybrid orbital is oriented primarily in just one direction. Note that each sp orbital contains one lobe that is significantly larger than the other. The set of two sp orbitals are oriented at 180°, which is consistent with the geometry for two domains.
 Hybridization

Gives a linear arrangement

We illustrate the electronic differences in an isolated Be atom and in the bonded Be atom in the orbital energy-level diagram in Figure 21.8. These diagrams represent each orbital by a horizontal line (indicating its energy) and each electron by an arrow. Energy increases toward the top of the diagram. We use one upward arrow to indicate one electron in an orbital and two arrows (up and down) to indicate two electrons of opposite spin.

Figure 21.8
This orbital energy-level diagram shows the sp hybridized orbitals on Be in the linear BeCl_{2} molecule. Each of the two sp hybrid orbitals holds one electron and is thus half filled and available for bonding via overlap with a Cl 3p orbital.

When atomic orbitals hybridize, the valence electrons occupy the newly created orbitals. The Be atom had two valence electrons, so each of the $s p$ orbitals gets one of these electrons. Each of these electrons pairs up with the unpaired electron on a chlorine atom when a hybrid orbital and a chlorine orbital overlap during the formation of the $\mathrm{Be}-\mathrm{Cl}$ bonds.

Any central atom surrounded by just two regions of valence electron density in a molecule will exhibit $s p$ hybridization. Other examples include the mercury atom in the linear HgCl_{2} molecule, the zinc atom in $\mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}$, which contains a linear $\mathrm{C}-\mathrm{Zn}-\mathrm{C}$ arrangement, and the carbon atoms in HCCH and CO_{2}.

Link to Learning

Learn to visualize hybrid orbitals in three dimensions from the University of Wisconsin-Oshkosh.

$s p^{2}$ Hybridization

The valence orbitals of a central atom surrounded by three regions of electron density consist of a set of three $s p^{2}$ hybrid orbitals and one unhybridized p orbital. This arrangement results from $s p^{2}$ hybridization, the mixing of one s orbital and two p orbitals to produce three identical hybrid orbitals oriented in a trigonal planar geometry (Figure 21.9).

Figure 21.9
The hybridization of an s orbital (blue) and two p orbitals (red) produces three equivalent sp2 hybridized orbitals (yellow) oriented at 120° with respect to each other. The remaining unhybridized p orbital is not shown here, but is located along the z axis.

Although quantum mechanics yields the "plump" orbital lobes as depicted in Figure 21.9, sometimes for clarity these orbitals are drawn thinner and without the minor lobes, as in Figure 21.10, to avoid obscuring other features of a given illustration. We will use these "thinner" representations whenever the true view is too crowded to easily visualize.

Figure 21.10

This alternate way of drawing the trigonal planar $s p^{2}$ hybrid orbitals is sometimes used in more crowded figures.

The observed structure of the borane molecule, BH_{3}, suggests $s p^{2}$ hybridization for boron in this compound. The molecule is trigonal planar, and the boron atom is involved in three bonds to hydrogen atoms (Figure 21.11). We can illustrate the comparison of orbitals and electron distribution in an isolated boron atom and in the bonded atom in BH_{3} as shown in the orbital energy level diagram in Figure 21.12. We redistribute the three valence electrons of the boron atom in the three $s p^{2}$ hybrid orbitals, and each boron electron pairs with a hydrogen electron when $\mathrm{B}-\mathrm{H}$ bonds form.

Figure 21.11
BH_{3} is an electron-deficient molecule with a trigonal planar structure.

Figure 12.12
In an isolated B atom, there are one $2 s$ and three $2 p$ valence orbitals. When boron is in a molecule with three regions of electron density, three of the orbitals hybridize and create a set of three $s p^{2}$ orbitals and one unhybridized $2 p$ orbital. The three half-filled hybrid orbitals each overlap with an orbital from a hydrogen atom to form three σ bonds in BH_{3}.

Orbitals in the $s p^{2}$ hybridized B atom in BH_{3}

$\xrightarrow{\text { Hybridization }}$

Any central atom surrounded by three regions of electron density will exhibit $s p^{2}$ hybridization. This includes molecules with a lone pair on the central atom, such as CINO (Figure 21.13), or molecules with two single bonds and a double bond connected to the central atom, as in formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$, and ethene, $\mathrm{H}_{2} \mathrm{CCH}_{2}$.

Figure 21.13
The central atom(s) in each of the structures shown contain three regions of electron density and are spabybridized. As we know from the discussion of VSEPR theory, a region of electron density contains all of the electrons that point in one direction. A lone pair, an unpaired electron, a single bond, or a multiple bond would each count as one region of electron density.

$s p^{3}$ Hybridization

The valence orbitals of an atom surrounded by a tetrahedral arrangement of bonding pairs and lone pairs consist of a set of four $s p^{3}$ hybrid orbitals. The hybrids result from the mixing of one s orbital and all three p orbitals that produces four identical $s p^{3}$ hybrid orbitals (Figure 21.14). Each of these hybrid orbitals points toward a different corner of a tetrahedron.

Figure 21.14
The hybridization of an s orbital (blue) and three porbitals (red) produces four equivalent spabridized orbitals (yellow) oriented at 109.5° with respect to each other.

A molecule of methane, CH_{4}, consists of a carbon atom surrounded by four hydrogen atoms at the corners of a tetrahedron. The carbon atom in methane exhibits $s p^{3}$ hybridization. We illustrate the orbitals and electron distribution in an isolated carbon atom and in the bonded atom in CH_{4} in Figure 21.15. The four valence electrons of the carbon atom are distributed equally in the hybrid orbitals, and each carbon electron pairs with a hydrogen electron when the C H bonds form.

Figure 21.15
The four valence atomic orbitals from an isolated carbon atom all hybridize when the carbon bonds in a molecule like CH_{4} with four regions of electron density. This creates four equivalent $s p^{3}$ hybridized orbitals. Overlap of each of the hybrid orbitals with a hydrogen orbital creates a $\mathrm{C}-\mathrm{H} \sigma$ bond.

In a methane molecule, the $1 s$ orbital of each of the four hydrogen atoms overlaps with one of the four $s p^{3}$ orbitals of the carbon atom to form a sigma (σ) bond. This results in the formation of four strong, equivalent covalent bonds between the carbon atom and each of the hydrogen atoms to produce the methane molecule, CH_{4}.

The structure of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, is similar to that of methane in that each carbon in ethane has four neighboring atoms arranged at the corners of a tetrahedron-three hydrogen atoms and one carbon atom (Figure 21.16). However, in ethane an $s p^{3}$ orbital of one carbon atom overlaps end to end with an $s p^{3}$ orbital of a second carbon atom to form a σ bond between the two carbon atoms. Each of the remaining $s p^{3}$ hybrid orbitals overlaps with an s orbital of a hydrogen atom to form carbon-hydrogen σ bonds. The structure and overall outline of the bonding orbitals of ethane are shown in Figure 21.16. The orientation of the two CH_{3} groups is not fixed relative to each other. Experimental evidence shows that rotation around σ bonds occurs easily.

Figure 21.16
(a) In the ethane molecule, $\mathrm{C}_{2} \mathrm{H}_{6}$, each carbon has four $s p^{3}$ orbitals. (b) These four orbitals overlap to form seven σ bonds.

An $s p^{3}$ hybrid orbital can also hold a lone pair of electrons. For example, the nitrogen atom in ammonia is surrounded by three bonding pairs and a lone pair of electrons directed to the four corners of a tetrahedron. The nitrogen atom is $s p^{3}$ hybridized with one hybrid orbital occupied by the lone pair.

The molecular structure of water is consistent with a tetrahedral arrangement of two lone pairs and two bonding pairs of electrons. Thus we say that the oxygen atom is $s p^{3}$ hybridized, with two of the hybrid orbitals occupied by lone pairs and two by bonding pairs. Since lone pairs occupy more space than bonding pairs, structures that contain lone pairs have bond angles slightly distorted from the ideal. Perfect tetrahedra have angles of 109.5°, but the observed angles in ammonia (107.3 $)$ and water (104.5°) are slightly smaller. Other examples of $s p^{3}$ hybridization include $\mathrm{CCl}_{4}, \mathrm{PCl}_{3}$, and NCl_{3}.

$s p^{3} d$ and $s p^{3} d^{2}$ Hybridization

To describe the five bonding orbitals in a trigonal bipyramidal arrangement, we must use five of the valence shell atomic orbitals (the s orbital, the three p orbitals, and one of the d orbitals), which gives five $s p^{3} d$ hybrid orbitals. With an octahedral arrangement of six hybrid orbitals, we must use six valence shell atomic orbitals (the s orbital, the three p orbitals, and two of the d orbitals in its valence shell), which gives six $s p^{3} d^{2}$ hybrid orbitals. These hybridizations are only possible for atoms that have d orbitals in their valence subshells (that is, not those in the first or second period).

In a molecule of phosphorus pentachloride, PCl_{5}, there are five $\mathrm{P}-\mathrm{Cl}$ bonds (thus five pairs of valence electrons around the phosphorus atom) directed toward the corners of a trigonal bipyramid. We use the $3 s$ orbital, the three $3 p$ orbitals, and one of the $3 d$ orbitals to form the set of five $s p^{3} d$ hybrid orbitals (Figure 21.18) that are involved in the $\mathrm{P}-\mathrm{Cl}$ bonds. Other atoms that exhibit $s p^{3} d$ hybridization include the sulfur atom in SF_{4} and the chlorine atoms in ClF_{3} and in
$\mathrm{ClF}_{4}{ }^{+}$.
(The electrons on fluorine atoms are omitted for clarity.)
Figure 21.17

The three compounds pictured exhibit $s p^{3} d$ hybridization in the central atom and a trigonal bipyramid form. SF_{4} and $\mathrm{ClF}_{4}{ }^{+}$have one lone pair of electrons on the central atom, and CIF_{3} has two lone pairs giving it the T-shape shown.

Figure 21.18
(a) The five regions of electron density around phosphorus in PCl_{5} require five hybrid $s p^{3} d$ orbitals. (b) These orbitals combine to form a trigonal bipyramidal structure with each large lobe of the hybrid orbital pointing at a vertex. As before, there are also small lobes pointing in the opposite direction for each orbital (not shown for clarity).

(a)

(b)

The sulfur atom in sulfur hexafluoride, SF_{6}, exhibits $s p^{3} d^{2}$ hybridization. A molecule of sulfur hexafluoride has six bonding pairs of electrons connecting six fluorine atoms to a single sulfur atom. There are no lone pairs of electrons on the central atom. To bond six fluorine atoms, the $3 s$ orbital, the three $3 p$ orbitals, and two of the $3 d$ orbitals form six equivalent $s p^{3} d^{2}$ hybrid orbitals, each directed toward a different corner of an octahedron. Other atoms that exhibit $s p^{3} d^{2}$ hybridization include the phosphorus atom in
$\mathrm{PCl}_{6}{ }^{-}$,
the iodine atom in the interhalogens
$\mathrm{IF}_{6}{ }^{+}$,
IF_{5},
$\mathrm{ICl}_{4}{ }^{-}$,
$\mathrm{IF}_{4}{ }^{-}$
and the xenon atom in XeF_{4}.
Figure 21.19
(a) Sulfur hexafluoride, $S F_{6}$, has an octahedral structure that requires $s p^{3} d^{2}$ hybridization. (b) The six $s p^{3} d^{2}$ orbitals form an octahedral structure around sulfur. Again, the minor lobe of each orbital is not shown for clarity.

(a)
(b)

Assignment of Hybrid Orbitals to Central Atoms

The hybridization of an atom is determined based on the number of regions of electron density that surround it. The geometrical arrangements characteristic of the various sets of hybrid orbitals are shown in Figure 21.20. These arrangements are identical to those of the electron-pair geometries predicted by VSEPR theory. VSEPR theory predicts the shapes of molecules, and hybrid orbital theory provides an explanation for how those shapes are formed. To find the hybridization of a central atom, we can use the following guidelines:

1. Determine the Lewis structure of the molecule.
2. Determine the number of regions of electron density around an atom using VSEPR theory, in which single bonds, multiple bonds, radicals, and lone pairs each count as one region.
3. Assign the set of hybridized orbitals from Figure 21.20 that corresponds to this geometry.

Figure 21.20

The shapes of hybridized orbital sets are consistent with the electron-pair geometries. For example, an atom surrounded by three regions of electron density is $s p^{2}$ hybridized, and the three $s p^{2}$ orbitals are arranged in a trigonal planar fashion.

It is important to remember that hybridization was devised to rationalize experimentally observed molecular geometries. The model works well for molecules containing small central atoms, in which the valence electron pairs are close together in space. However, for larger central atoms, the valence-shell electron pairs are farther from the nucleus, and there are fewer repulsions. Their compounds exhibit structures that are often not consistent with VSEPR theory, and hybridized orbitals are not necessary to explain the observed data. For example, we have discussed the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}, 104.5^{\circ}$, which is more consistent with $s p^{3}$ hybrid orbitals (109.5°) on the central atom than with $2 p$ orbitals $\left(90^{\circ}\right)$. Sulfur is in the same group as oxygen, and $\mathrm{H}_{2} \mathrm{~S}$ has a similar Lewis structure. However, it has a much smaller bond angle $\left(92.1^{\circ}\right)$, which indicates much less hybridization on sulfur than oxygen. Continuing down the group, tellurium is even larger than sulfur, and for $\mathrm{H}_{2} \mathrm{Te}$, the observed bond angle $\left(90^{\circ}\right)$ is consistent with overlap of the $5 p$ orbitals, without invoking hybridization. We invoke hybridization where it is necessary to explain the observed structures.

Example 21.3

Assigning Hybridization

Ammonium sulfate is important as a fertilizer. What is the hybridization of the sulfur atom in the sulfate ion,
$\mathrm{SO}_{4}{ }^{2-}$?

Solution

The Lewis structure of sulfate shows there are four regions of electron density. The hybridization is $s p^{3}$.

Check Your Learning

What is the hybridization of the selenium atom in SeF_{4} ?

Answer

The selenium atom is $s p^{3} d$ hybridized.

Example 21.4

Assigning Hybridization

Urea, $\mathrm{NH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$, is sometimes used as a source of nitrogen in fertilizers. What is the hybridization of the carbon atom in urea?

Solution

The Lewis structure of urea is

The carbon atom is surrounded by three regions of electron density, positioned in a trigonal planar arrangement. The hybridization in a trigonal planar electron pair geometry is $s p^{2}$ (Figure 21.20), which is the hybridization of the carbon atom in urea.

Check Your Learning

Acetic acid, $\mathrm{H}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{OH}$, is the molecule that gives vinegar its odor and sour taste. What is the hybridization of the two carbon atoms in acetic acid?

Answer

$\mathrm{H}_{3} \underline{\mathrm{C}}, s p^{3} ; \underline{\mathrm{C}}(\mathrm{O}) \mathrm{OH}, s p^{2}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

21.3 Multiple Bonds

Learning Objectives

By the end of this section, you will be able to:

- Describe multiple covalent bonding in terms of atomic orbital overlap
- Relate the concept of resonance to π-bonding and electron delocalization

The hybrid orbital model appears to account well for the geometry of molecules involving single covalent bonds. Is it also capable of describing molecules containing double and triple bonds? We have already discussed that multiple bonds consist of σ and π bonds. Next we can consider how we visualize these components and how they relate to hybrid orbitals. The Lewis structure of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, shows us that each carbon atom is surrounded by one other carbon atom and two hydrogen atoms.

The three bonding regions form a trigonal planar electron-pair geometry. Thus we expect the σ bonds from each carbon atom are formed using a set of $s p^{2}$ hybrid orbitals that result from hybridization of two of the $2 p$ orbitals and the $2 s$ orbital (Figure 21.21). These orbitals form the $\mathrm{C}-\mathrm{H}$ single bonds and the σ bond in the

$\mathrm{C}=\mathrm{C}$

double bond (Figure 21.22). The π bond in the

$\mathrm{C}=\mathrm{C}$

double bond results from the overlap of the third (remaining) $2 p$ orbital on each carbon atom that is not involved in hybridization. This unhybridized p orbital (lobes shown in red and blue in Figure 21.22) is perpendicular to the plane of the $s p^{2}$ hybrid orbitals. Thus the unhybridized $2 p$ orbitals overlap in a side-by-side fashion, above and below the internuclear axis (Figure 21.22) and form a π bond.

Figure 21.21
In ethene, each carbon atom is $s p^{2}$ hybridized, and the $s p^{2}$ orbitals and the p orbital are singly occupied. The hybrid orbitals overlap to form σ bonds, while the p orbitals on each carbon atom overlap to form a π bond.

Figure 21.22
In the ethene molecule, $\mathrm{C}_{2} \mathrm{H}_{4}$, there are (a) five σ bonds. One $C-C \sigma$ bond results from overlap of $s p^{2}$ hybrid orbitals on the carbon atom with one $s p^{2}$ hybrid orbital on the other carbon atom. Four $C-H$ bonds result from the overlap between the C atoms' s^{2} orbitals with s orbitals on the hydrogen atoms. (b) The π bond is formed by the side-by-side overlap of the two unhybridized p orbitals in the two carbon atoms. The two lobes of the π bond are above and below the plane of the σ system.

In an ethene molecule, the four hydrogen atoms and the two carbon atoms are all in the same plane. If the two planes of $s p^{2}$ hybrid orbitals tilted relative to each other, the p orbitals would not be oriented to overlap efficiently to create the π bond. The planar configuration for the ethene molecule occurs because it is the most stable bonding arrangement. This is a significant difference between σ and π bonds; rotation around single (σ) bonds occurs easily because the end-to-end orbital overlap does not depend on the relative orientation of the orbitals on each atom in the bond. In other words, rotation around the internuclear axis does not change the extent to which the σ bonding orbitals overlap because the bonding electron density is symmetric about the axis. Rotation about the internuclear axis is much more difficult for multiple bonds; however, this would drastically alter the off-axis overlap of the π bonding orbitals, essentially breaking the π bond.

In molecules with $s p$ hybrid orbitals, two unhybridized p orbitals remain on the atom (Figure 21.23). We find this situation in acetylene,

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$,

which is a linear molecule. The $s p$ hybrid orbitals of the two carbon atoms overlap end to end to form a σ bond between the carbon atoms (Figure 21.24). The remaining $s p$ orbitals form σ bonds with hydrogen atoms. The two unhybridized p orbitals per carbon are positioned such that they overlap side by side and, hence, form two π bonds. The two carbon atoms of acetylene are thus bound together by one σ bond and two π bonds, giving a triple bond.

Figure 21.23
Diagram of the two linear sp hybrid orbitals of a carbon atom, which lie in a straight line, and the two unhybridized p orbitals at perpendicular angles.

Figure 21.24
(a) In the acetylene molecule, $\mathrm{C}_{2} \mathrm{H}_{2}$, there are two $\mathrm{C}-\mathrm{H} \sigma$ bonds and a $\mathrm{C} \equiv \mathrm{C}$ triple bond involving one $\mathrm{C}-\mathrm{C} \sigma$ bond and two $C-C \pi$ bonds. The dashed lines, each connecting two lobes, indicate the side-by-side overlap of the four unhybridized p orbitals. (b) This shows the overall outline of the bonds in $\mathrm{C}_{2} \mathrm{H}_{2}$. The two lobes of each of the π bonds are positioned across from each other around the line of the $C-C \sigma$ bond.

Hybridization involves only σ bonds, lone pairs of electrons, and single unpaired electrons (radicals). Structures that account for these features describe the correct hybridization of the atoms. However, many structures also include resonance forms. Remember that resonance forms occur when various arrangements of π bonds are possible. Since the arrangement of π bonds involves only the unhybridized orbitals, resonance does not influence the assignment of hybridization.

For example, molecule benzene has two resonance forms (Figure 21.25). We can use either of these forms to determine that each of the carbon atoms is bonded to three other atoms with no lone pairs, so the correct hybridization is $s p^{2}$. The electrons in the unhybridized p orbitals form π bonds. Neither resonance structure completely describes the electrons in the π bonds. They are not located in one position or the other, but in reality are delocalized throughout the
ring. Valence bond theory does not easily address delocalization. Bonding in molecules with resonance forms is better described by molecular orbital theory. (See the next module.)

Figure 21.25
Each carbon atom in benzene, $C_{6} H_{6}$, is $s p^{2}$ hybridized, independently of which resonance form is considered. The electrons in the π bonds are not located in one set of p orbitals or the other, but rather delocalized throughout the molecule.

Example 21.5

Assignment of Hybridization Involving Resonance

Some acid rain results from the reaction of sulfur dioxide with atmospheric water vapor, followed by the formation of sulfuric acid. Sulfur dioxide, SO_{2}, is a major component of volcanic gases as well as a product of the combustion of sulfur-containing coal. What is the hybridization of the S atom in SO_{2} ?

Solution

The resonance structures of SO_{2} are

The sulfur atom is surrounded by two bonds and one lone pair of electrons in either resonance structure. Therefore, the electron-pair geometry is trigonal planar, and the hybridization of the sulfur atom is $s p^{2}$.

Check Your Learning

Another acid in acid rain is nitric acid, HNO_{3}, which is produced by the reaction of nitrogen dioxide, NO_{2}, with atmospheric water vapor. What is the hybridization of the nitrogen atom in NO_{2} ? (Note: the lone electron on nitrogen occupies a hybridized orbital just as a lone pair would.)

Answer

```
    sp
```


Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnote

1. Note that orbitals may sometimes be drawn in an elongated "balloon" shape rather than in a more realistic "plump" shape in order to make the geometry easier to visualize.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/5-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/valence_bond_theory.

22

Molecular Orbital Theory

Orbitals Bonding Lewis Structures Valence Bond Theory Molecular Orbital Theory

Molecular orbital (MO) theory describes the behavior of electrons in a molecule in terms of combinations of the atomic wave functions. The resulting molecular orbitals may extend over all the atoms in the molecule. Bonding molecular orbitals are formed by in-phase combinations of atomic wave functions, and electrons in these orbitals stabilize a molecule. Antibonding molecular orbitals result from out-of-phase combinations of atomic wave functions and electrons in these orbitals make a molecule less stable. Molecular orbitals located along an internuclear axis are called σ MOs. They can be formed from s orbitals or from p orbitals oriented in an end-toend fashion. Molecular orbitals formed from p orbitals oriented in a side-by-side fashion have electron density on opposite sides of the internuclear axis and are called π orbitals. We can describe the electronic structure of diatomic molecules by applying molecular orbital theory to the valence electrons of the atoms. Electrons fill molecular orbitals following the same rules that apply to filling atomic orbitals; Hund's rule and the Aufbau principle tell us that lower-energy orbitals will fill first, electrons will spread out before they pair up, and each orbital can hold a maximum of two electrons with opposite spins. Materials with unpaired electrons are paramagnetic and attracted to a magnetic field, while those with all-paired electrons are diamagnetic and repelled by a magnetic field. Correctly predicting the magnetic properties of molecules is in advantage of molecular orbital theory over Lewis structures and valence bond theory.

22.1 Molecular Orbital Theory

Learning Objectives

By the end of this section, you will be able to:

- Outline the basic quantum-mechanical approach to deriving molecular orbitals from atomic orbitals
- Describe traits of bonding and antibonding molecular orbitals
- Calculate bond orders based on molecular electron configurations
- Write molecular electron configurations for first- and second-row diatomic molecules
- Relate these electron configurations to the molecules' stabilities and magnetic properties

For almost every covalent molecule that exists, we can now draw the Lewis structure, predict the electron-pair geometry, predict the molecular geometry, and come close to predicting bond angles. However, one of the most
important molecules we know, the oxygen molecule O_{2}, presents a problem with respect to its Lewis structure. We would write the following Lewis structure for O_{2} :

This electronic structure adheres to all the rules governing Lewis theory. There is an $0=0$ double bond, and each oxygen atom has eight electrons around it. However, this picture is at odds with the magnetic behavior of oxygen. By itself, O_{2} is not magnetic, but it is attracted to magnetic fields. Thus, when we pour liquid oxygen past a strong magnet, it collects between the poles of the magnet and defies gravity, as in Figure 22.1. Such attraction to a magnetic field is called paramagnetism, and it arises in molecules that have unpaired electrons. And yet, the Lewis structure of O_{2} indicates that all electrons are paired. How do we account for this discrepancy?

Figure 22.1
Oxygen molecules orient randomly most of the time, as shown in the top magnified view. However, when we pour liquid oxygen through a magnet, the molecules line up with the magnetic field, and the attraction allows them to stay suspended between the poles of the magnet where the magnetic field is strongest. Other diatomic molecules (like N_{2}) flow past the magnet. The detailed explanation of bonding described in this chapter allows us to understand this phenomenon. (credit: modification of work by Jefferson Lab)

Magnetic susceptibility measures the force experienced by a substance in a magnetic field. When we compare the weight of a sample to the weight measured in a magnetic field (Figure 22.2), paramagnetic samples that are attracted to the magnet will appear heavier because of the force exerted by the magnetic field. We can calculate the number of unpaired electrons based on the increase in weight.

Figure 22.2
A Gouy balance compares the mass of a sample in the presence of a magnetic field with the mass with the electromagnet turned off to determine the number of unpaired electrons in a sample.

Experiments show that each O_{2} molecule has two unpaired electrons. The Lewis-structure model does not predict the presence of these two unpaired electrons. Unlike oxygen, the apparent weight of most molecules decreases slightly in the presence of an inhomogeneous magnetic field. Materials in which all of the electrons are paired are diamagnetic and weakly repel a magnetic field. Paramagnetic and diamagnetic materials do not act as permanent magnets. Only in the presence of an applied magnetic field do they demonstrate attraction or repulsion.

Link to Learning

Water, like most molecules, contains all paired electrons. Living things contain a large percentage of water, so they demonstrate diamagnetic behavior. If you place a frog near a sufficiently large magnet, it will levitate. Look at diamagnetic floating frogs, strawberries, and more.

Molecular orbital theory (MO theory) provides an explanation of chemical bonding that accounts for the paramagnetism of the oxygen molecule. It also explains the bonding in a number of other molecules, such as violations of the octet rule and more molecules with more complicated bonding (beyond the scope of this text) that are difficult to describe with Lewis structures. Additionally, it provides a model for describing the energies of electrons in a molecule and the probable location of these electrons. Unlike valence bond theory, which uses hybrid orbitals that are assigned to one specific atom, MO theory uses the combination of atomic orbitals to yield molecular orbitals that are delocalized over the entire molecule rather than being localized on its constituent atoms. MO theory also helps us understand why some substances are electrical conductors, others are semiconductors, and still others are insulators. Table 22.1 summarizes the main points of the two complementary bonding theories. Both theories provide different, useful ways of describing molecular structure.

Table 22.1

Comparison of Bonding Theories

Valence Bond Theory	Molecular Orbital Theory
considers bonds as localized between one pair of atoms	considers electrons delocalized throughout the entire molecule
creates bonds from overlap of atomic orbitals $(s, p, d \ldots)$ and hybrid orbitals $\left(s p, s p^{2}, s p^{3} \ldots\right)$	combines atomic orbitals to form molecular orbitals (σ, $\left.\sigma^{*}, \pi, \pi^{*}\right)$
forms σ or π bonds	creates bonding and antibonding interactions based on which orbitals are filled
predicts molecular shape based on the number of regions of electron density	predicts the arrangement of electrons in molecules

Molecular orbital theory describes the distribution of electrons in molecules in much the same way that the distribution of electrons in atoms is described using atomic orbitals. Using quantum mechanics, the behavior of an electron in a molecule is still described by a wave function, Ψ, analogous to the behavior in an atom. Just like electrons around isolated atoms, electrons around atoms in molecules are limited to discrete (quantized) energies. The region of space in which a valence electron in a molecule is likely to be found is called a molecular orbital (ψ^{2}). Like an atomic orbital, a molecular orbital is full when it contains two electrons with opposite spin.

We will consider the molecular orbitals in molecules composed of two identical atoms (H_{2} or Cl_{2}, for example). Such molecules are called homonuclear diatomic molecules. In these diatomic molecules, several types of molecular orbitals occur.

The mathematical process of combining atomic orbitals to generate molecular orbitals is called the linear combination of atomic orbitals (LCAO). The wave function describes the wavelike properties of an electron. Molecular orbitals are combinations of atomic orbital wave functions. Combining waves can lead to constructive interference, in which peaks line up with peaks, or destructive interference, in which peaks line up with troughs (Figure 22.2). In orbitals, the waves are three dimensional, and they combine with in-phase waves producing regions with a higher probability of electron density and out-of-phase waves producing nodes, or regions of no electron density.

Figure 22.2
(a) When in-phase waves combine, constructive interference produces a wave with greater amplitude. (b) When out-ofphase waves combine, destructive interference produces a wave with less (or no) amplitude.

There are two types of molecular orbitals that can form from the overlap of two atomic s orbitals on adjacent atoms. The two types are illustrated in Figure 22.3. The in-phase combination produces a lower energy σ_{s} molecular orbital (read as "sigma-s") in which most of the electron density is directly between the nuclei. The out-of-phase addition
(which can also be thought of as subtracting the wave functions) produces a higher energy
σ_{s}^{*}
molecular orbital (read as "sigma-s-star") molecular orbital in which there is a node between the nuclei. The asterisk signifies that the orbital is an antibonding orbital. Electrons in a σ_{s} orbital are attracted by both nuclei at the same time and are more stable (of lower energy) than they would be in the isolated atoms. Adding electrons to these orbitals creates a force that holds the two nuclei together, so we call these orbitals bonding orbitals. Electrons in the
σ_{s}^{*}
orbitals are located well away from the region between the two nuclei. The attractive force between the nuclei and these electrons pulls the two nuclei apart. Hence, these orbitals are called antibonding orbitals. Electrons fill the lower-energy bonding orbital before the higher-energy antibonding orbital, just as they fill lower-energy atomic orbitals before they fill higher-energy atomic orbitals.

Figure 22.3

Sigma (σ) and sigma-star (σ^{*}) molecular orbitals are formed by the combination of two s atomic orbitals. The dots (•) indicate the locations of nuclei.

Link to Learning

You can watch animations visualizing the calculated atomic orbitals combining to form various molecular orbitals at the Orbitron website.

Watch on YouTube

In p orbitals, the wave function gives rise to two lobes with opposite phases, analogous to how a two-dimensional wave has both parts above and below the average. We indicate the phases by shading the orbital lobes different colors. When orbital lobes of the same phase overlap, constructive wave interference increases the electron density. When regions of opposite phase overlap, the destructive wave interference decreases electron density and creates nodes. When p orbitals overlap end to end, they create σ and σ^{*} orbitals (Figure 22.4). If two atoms are located along the x-axis in a Cartesian coordinate system, the two p_{x} orbitals overlap end to end and form $\sigma_{p x}$ (bonding) and
$\sigma_{p x}^{*}$
(antibonding) (read as "sigma-p-x" and "sigma-p-x star," respectively). Just as with s-orbital overlap, the asterisk indicates the orbital with a node between the nuclei, which is a higher-energy, antibonding orbital.

Figure 22.4
Combining wave functions of two p atomic orbitals along the internuclear axis creates two molecular orbitals, σ_{p} and σ_{p}^{*}.

The side-by-side overlap of two p orbitals gives rise to a pi (π) bonding molecular orbital and a π^{\star} antibonding molecular orbital, as shown in Figure 22.5. In valence bond theory, we describe π bonds as containing a nodal plane containing the internuclear axis and perpendicular to the lobes of the p orbitals, with electron density on either side of the node. In molecular orbital theory, we describe the π orbital by this same shape, and a π bond exists when this orbital contains electrons. Electrons in this orbital interact with both nuclei and help hold the two atoms together, making it a bonding orbital. For the out-of-phase combination, there are two nodal planes created, one along the internuclear axis and a perpendicular one between the nuclei.

Figure 22.5
Side-by-side overlap of each two p orbitals results in the formation of two π molecular orbitals. Combining the out-ofphase orbitals results in an antibonding molecular orbital with two nodes. One contains the internuclear axis, and one is perpendicular to the axis. Combining the in-phase orbitals results in a bonding orbital. There is a node (blue) containing the internuclear axis with the two lobes of the orbital located above and below this node.

In the molecular orbitals of diatomic molecules, each atom also has two sets of p orbitals oriented side by side (p_{y} and p_{z}), so these four atomic orbitals combine pairwise to create two π orbitals and two π^{*} orbitals. The $\pi_{p y}$ and
$\pi_{p y}^{*}$
orbitals are oriented at right angles to the $\pi_{p z}$ and
$\pi_{p z}^{*}$
orbitals. Except for their orientation, the $\pi_{p y}$ and $\pi_{p z}$ orbitals are identical and have the same energy; they are degenerate orbitals. The
$\pi_{p y}^{*}$
and
$\pi_{p z}^{*}$
antibonding orbitals are also degenerate and identical except for their orientation. A total of six molecular orbitals results from the combination of the six atomic p orbitals in two atoms: $\sigma_{p x}$ and
$\sigma_{p x}^{*}$
$\pi_{p y}$ and
$\pi_{p y}^{*}$,
$\pi_{p z}$ and
$\pi_{p z}^{*}$.

Example 22.1

Molecular Orbitals

Predict what type (if any) of molecular orbital would result from adding the wave functions so each pair of orbitals shown overlap. The orbitals are all similar in energy.

Solution

(a) is an in-phase combination, resulting in a $\sigma_{3 p}$ orbital
(b) will not result in a new orbital because the in-phase component (bottom) and out-of-phase component (top) cancel out. Only orbitals with the correct alignment can combine.
(c) is an out-of-phase combination, resulting in a
$\pi_{3 p}^{*}$
orbital.

Check Your Learning

Label the molecular orbital shown as σ or π, bonding or antibonding and indicate where the node occurs.

Answer

The orbital is located along the internuclear axis, so it is a σ orbital. There is a node bisecting the internuclear axis, so it is an antibonding orbital.

Portrait of a Chemist

Walter Kohn: Nobel Laureate

Walter Kohn (Figure 22.6) is a theoretical physicist who studies the electronic structure of solids. His work combines the principles of quantum mechanics with advanced mathematical techniques. This technique, called density functional theory, makes it possible to compute properties of molecular orbitals, including their shape and energies. Kohn and mathematician John Pople were awarded the Nobel Prize in Chemistry in 1998 for their contributions to our understanding of electronic structure. Kohn also made significant contributions to the physics of semiconductors.

Figure 22.6
Walter Kohn developed methods to describe molecular orbitals. (credit: image courtesy of Walter Kohn)

Kohn's biography has been remarkable outside the realm of physical chemistry as well. He was born in Austria, and during World War II he was part of the Kindertransport program that rescued 10,000 children from the Nazi regime. His summer jobs included discovering gold deposits in Canada and helping Polaroid explain how its instant film worked. Dr. Kohn passed away in 2016 at the age of 93.

How Sciences Interconnect

Computational Chemistry in Drug Design

While the descriptions of bonding described in this chapter involve many theoretical concepts, they also have many practical, real-world applications. For example, drug design is an important field that uses our understanding of chemical bonding to develop pharmaceuticals. This interdisciplinary area of study uses biology (understanding diseases and how they operate) to identify specific targets, such as a binding site that is involved in a disease pathway. By modeling the structures of the binding site and potential drugs, computational chemists can predict which structures can fit together and how effectively they will bind (see Figure 22.7). Thousands of potential candidates can be narrowed down to a few of the most promising candidates. These candidate molecules are then carefully tested to determine side effects, how effectively they can be transported through the body, and other factors. Dozens of important new pharmaceuticals have been discovered with the aid of computational chemistry, and new research projects are underway.

Figure 22.7
The molecule shown, HIV-1 protease, is an important target for pharmaceutical research. By designing molecules that bind to this protein, scientists are able to drastically inhibit the progress of the disease.

Molecular Orbital Energy Diagrams

The relative energy levels of atomic and molecular orbitals are typically shown in a molecular orbital diagram (Figure 22.8). For a diatomic molecule, the atomic orbitals of one atom are shown on the left, and those of the other atom are shown on the right. Each horizontal line represents one orbital that can hold two electrons. The molecular orbitals formed by the combination of the atomic orbitals are shown in the center. Dashed lines show which of the atomic orbitals combine to form the molecular orbitals. For each pair of atomic orbitals that combine, one lower-energy (bonding) molecular orbital and one higher-energy (antibonding) orbital result. Thus we can see that combining the six $2 p$ atomic orbitals results in three bonding orbitals (one σ and two π) and three antibonding orbitals (one σ^{*} and two π^{\star}).

We predict the distribution of electrons in these molecular orbitals by filling the orbitals in the same way that we fill atomic orbitals, by the Aufbau principle. Lower-energy orbitals fill first, electrons spread out among degenerate orbitals before pairing, and each orbital can hold a maximum of two electrons with opposite spins (Figure 22.8). Just as we write electron configurations for atoms, we can write the molecular electronic configuration by listing the orbitals with superscripts indicating the number of electrons present. For clarity, we place parentheses around molecular orbitals with the same energy. In this case, each orbital is at a different energy, so parentheses separate each orbital. Thus we would expect a diatomic molecule or ion containing seven electrons (such as
$\mathrm{Be}_{2}{ }^{+}$)
would have the molecular electron configuration
$\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{1}$.

It is common to omit the core electrons from molecular orbital diagrams and configurations and include only the valence electrons.

Figure 22.8
This is the molecular orbital diagram for the homonuclear diatomic $\mathrm{Be}_{2}{ }^{+}$, showing the molecular orbitals of the valence shell only. The molecular orbitals are filled in the same manner as atomic orbitals, using the Aufbau principle and Hund's rule.

Bond Order
The filled molecular orbital diagram shows the number of electrons in both bonding and antibonding molecular orbitals. The net contribution of the electrons to the bond strength of a molecule is identified by determining the bond order that results from the filling of the molecular orbitals by electrons.

When using Lewis structures to describe the distribution of electrons in molecules, we define bond order as the number of bonding pairs of electrons between two atoms. Thus a single bond has a bond order of 1 , a double bond has a bond order of 2 , and a triple bond has a bond order of 3 . We define bond order differently when we use the molecular orbital description of the distribution of electrons, but the resulting bond order is usually the same. The MO technique is more accurate and can handle cases when the Lewis structure method fails, but both methods describe the same phenomenon.

In the molecular orbital model, an electron contributes to a bonding interaction if it occupies a bonding orbital and it contributes to an antibonding interaction if it occupies an antibonding orbital. The bond order is calculated by subtracting the destabilizing (antibonding) electrons from the stabilizing (bonding) electrons. Since a bond consists of two electrons, we divide by two to get the bond order. We can determine bond order with the following equation:
bond order $=\frac{\text { (number of bonding electrons) }- \text { (number of antibonding electrons) }}{2}$
The order of a covalent bond is a guide to its strength; a bond between two given atoms becomes stronger as the bond order increases. If the distribution of electrons in the molecular orbitals between two atoms is such that the resulting bond would have a bond order of zero, a stable bond does not form. We next look at some specific examples of MO diagrams and bond orders.

Bonding in Diatomic Molecules

A dihydrogen molecule $\left(\mathrm{H}_{2}\right)$ forms from two hydrogen atoms. When the atomic orbitals of the two atoms combine, the electrons occupy the molecular orbital of lowest energy, the $\sigma_{1 s}$ bonding orbital. A dihydrogen molecule, H_{2}, readily forms because the energy of a H_{2} molecule is lower than that of two H atoms. The $\sigma_{1 s}$ orbital that contains both electrons is lower in energy than either of the two $1 s$ atomic orbitals.

A molecular orbital can hold two electrons, so both electrons in the H_{2} molecule are in the $\sigma_{1 s}$ bonding orbital; the electron configuration is
$\left(\sigma_{1 s}\right)^{2}$.

We represent this configuration by a molecular orbital energy diagram (Figure 22.9) in which a single upward arrow indicates one electron in an orbital, and two (upward and downward) arrows indicate two electrons of opposite spin.

Figure 22.9
The molecular orbital energy diagram predicts that H_{2} will be a stable molecule with lower energy than the separated atoms.

A dihydrogen molecule contains two bonding electrons and no antibonding electrons so we have
bond order in $\mathrm{H}_{2}=\frac{(2-0)}{2}=1$

Because the bond order for the $\mathrm{H}-\mathrm{H}$ bond is equal to 1 , the bond is a single bond.
A helium atom has two electrons, both of which are in its $1 s$ orbital. Two helium atoms do not combine to form a dihelium molecule, He_{2}, with four electrons, because the stabilizing effect of the two electrons in the lower-energy bonding orbital would be offset by the destabilizing effect of the two electrons in the higher-energy antibonding molecular orbital. We would write the hypothetical electron configuration of He_{2} as
$\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}$
as in Figure 22.10. The net energy change would be zero, so there is no driving force for helium atoms to form the diatomic molecule. In fact, helium exists as discrete atoms rather than as diatomic molecules. The bond order in a hypothetical dihelium molecule would be zero.
bond order in $\mathrm{He}_{2}=\frac{(2-2)}{2}=0$

A bond order of zero indicates that no bond is formed between two atoms.

Figure 22.10
The molecular orbital energy diagram predicts that He_{2} will not be a stable molecule, since it has equal numbers of bonding and antibonding electrons.

The Diatomic Molecules of the Second Period

Eight possible homonuclear diatomic molecules might be formed by the atoms of the second period of the periodic table: $\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}$, and Ne_{2}. However, we can predict that the Be_{2} molecule and the Ne_{2} molecule would not be stable. We can see this by a consideration of the molecular electron configurations (Table 22.2).

We predict valence molecular orbital electron configurations just as we predict electron configurations of atoms. Valence electrons are assigned to valence molecular orbitals with the lowest possible energies. Consistent with Hund's rule, whenever there are two or more degenerate molecular orbitals, electrons fill each orbital of that type singly before any pairing of electrons takes place.

As we saw in valence bond theory, σ bonds are generally more stable than π bonds formed from degenerate atomic orbitals. Similarly, in molecular orbital theory, σ orbitals are usually more stable than π orbitals. However, this is not always the case. The MOs for the valence orbitals of the second period are shown in Figure 22.11. Looking at Ne_{2} molecular orbitals, we see that the order is consistent with the generic diagram shown in the previous section. However, for atoms with three or fewer electrons in the p orbitals (Li through N) we observe a different pattern, in which the σ_{p} orbital is higher in energy than the π_{p} set. Obtain the molecular orbital diagram for a homonuclear diatomic ion by adding or subtracting electrons from the diagram for the neutral molecule.

Figure 22.11

This shows the MO diagrams for each homonuclear diatomic molecule in the second period. The orbital energies decrease across the period as the effective nuclear charge increases and atomic radius decreases. Between N_{2} and O_{2}, the order of the orbitals changes.

This switch in orbital ordering occurs because of a phenomenon called s-p mixing. s-p mixing does not create new orbitals; it merely influences the energies of the existing molecular orbitals. The σ_{s} wavefunction mathematically combines with the σ_{p} wavefunction, with the result that the σ_{s} orbital becomes more stable, and the σ_{p} orbital becomes less stable (Figure 22.12). Similarly, the antibonding orbitals also undergo s-p mixing, with the $\sigma_{\mathrm{s}^{\star}}$ becoming more stable and the $\sigma_{p *}$ becoming less stable.

Figure 22.12
Without mixing, the MO pattern occurs as expected, with the σ_{p} orbital lower in energy than the π_{p} orbitals. When s-p mixing occurs, the orbitals shift as shown, with the σ_{p} orbital higher in energy than the π_{p} orbitals.

$s-p$ mixing occurs when the s and p orbitals have similar energies. The energy difference between $2 s$ and $2 p$ orbitals in O, F, and Ne is greater than that in $\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}$, and N . Because of this, $\mathrm{O}_{2}, \mathrm{~F}_{2}$, and Ne_{2} exhibit negligible s-p mixing (not sufficient to change the energy ordering), and their MO diagrams follow the normal pattern, as shown in Figure 22.11. All of the other period 2 diatomic molecules do have s-p mixing, which leads to the pattern where the σ_{p} orbital is raised above the π_{p} set.

Using the MO diagrams shown in Figure 22.11, we can add in the electrons and determine the molecular electron configuration and bond order for each of the diatomic molecules. As shown in Table 22.2, Be_{2} and Ne_{2} molecules would have a bond order of 0 , and these molecules do not exist.

Table 22.2
Electron Configuration and Bond Order for Molecular Orbitals in Homonuclear Diatomic Molecules of Period Two Elements

Molecule	Electron Configuration	Bond Order
Li_{2}	$\left(\sigma_{2 s}\right)^{2}$	1
Be_{2} (unstable)	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}$	0
$\mathrm{~B}_{2}$	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{2}$	1
C_{2}	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}$	2
$\mathrm{~N}_{2}$	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}\left(\sigma_{2 p x}\right)^{2}$	3
O_{2}	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p x}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}\left(\pi_{2 p y}^{*}, \pi_{2 p z}^{*}\right)^{2}$	2

F_{2}	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p x}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}\left(\pi_{2 p y}^{*}, \pi_{2 p z}^{*}\right)^{4}$	1
Ne_{2} (unstable)	$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p x}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}\left(\pi_{2 p y}^{*}, \pi_{2 p z}^{*}\right)^{4}\left(\sigma_{2 p x}^{*}\right)^{2}$	0

The combination of two lithium atoms to form a lithium molecule, Li_{2}, is analogous to the formation of H_{2}, but the atomic orbitals involved are the valence $2 s$ orbitals. Each of the two lithium atoms has one valence electron. Hence, we have two valence electrons available for the $\sigma_{2 s}$ bonding molecular orbital. Because both valence electrons would be in a bonding orbital, we would predict the Li_{2} molecule to be stable. The molecule is, in fact, present in appreciable concentration in lithium vapor at temperatures near the boiling point of the element. All of the other molecules in Table $\underline{22.2}$ with a bond order greater than zero are also known.

The O_{2} molecule has enough electrons to half fill the
$\left(\pi_{2 p y}^{*}, \pi_{2 p z}^{*}\right)$
level. We expect the two electrons that occupy these two degenerate orbitals to be unpaired, and this molecular electronic configuration for O_{2} is in accord with the fact that the oxygen molecule has two unpaired electrons (Figure 22.14). The presence of two unpaired electrons has proved to be difficult to explain using Lewis structures, but the molecular orbital theory explains it quite well. In fact, the unpaired electrons of the oxygen molecule provide a strong piece of support for the molecular orbital theory.

How Sciences Interconnect

Band Theory

When two identical atomic orbitals on different atoms combine, two molecular orbitals result (see Figure 22.3). The bonding orbital is lower in energy than the original atomic orbitals because the atomic orbitals are in-phase in the molecular orbital. The antibonding orbital is higher in energy than the original atomic orbitals because the atomic orbitals are out-of-phase.

In a solid, similar things happen, but on a much larger scale. Remember that even in a small sample there are a huge number of atoms (typically $>10^{23}$ atoms), and therefore a huge number of atomic orbitals that may be combined into molecular orbitals. When N valence atomic orbitals, all of the same energy and each containing one (1) electron, are combined, $N / 2$ (filled) bonding orbitals and $N / 2$ (empty) antibonding orbitals will result. Each bonding orbital will show an energy lowering as the atomic orbitals are mostly in-phase, but each of the bonding orbitals will be a little different and have slightly different energies. The antibonding orbitals will show an increase in energy as the atomic orbitals are mostly out-of-phase, but each of the antibonding orbitals will also be a little different and have slightly different energies. The allowed energy levels for all the bonding orbitals are so close together that they form a band, called the valence band. Likewise, all the antibonding orbitals are very close together and form a band, called the conduction band. Figure 22.13 shows the bands for three important classes of materials: insulators, semiconductors, and conductors.

Figure 22.13
Molecular orbitals in solids are so closely spaced that they are described as bands. The valence band is lower in energy and the conduction band is higher in energy. The type of solid is determined by the size of the "band gap" between the valence and conduction bands. Only a very small amount of energy is required to move electrons from the valance band to the conduction band in a conductor, and so they conduct electricity well. In an insulator, the band gap is large, so that very few electrons move, and they are poor conductors of electricity. Semiconductors are in between: they conduct electricity better than insulators, but not as well as conductors.

In order to conduct electricity, electrons must move from the filled valence band to the empty conduction band where they can move throughout the solid. The size of the band gap, or the energy difference between the top of the valence band and the bottom of the conduction band, determines how easy it is to move electrons between the bands. Only a small amount of energy is required in a conductor because the band gap is very small. This small energy difference is "easy" to overcome, so they are good conductors of electricity. In an insulator, the band gap is so "large" that very few electrons move into the conduction band; as a result, insulators are poor conductors of electricity. Semiconductors conduct electricity when "moderate" amounts of energy are provided
to move electrons out of the valence band and into the conduction band. Semiconductors, such as silicon, are found in many electronics.

Semiconductors are used in devices such as computers, smartphones, and solar cells. Solar cells produce electricity when light provides the energy to move electrons out of the valence band. The electricity that is generated may then be used to power a light or tool, or it can be stored for later use by charging a battery. As of December 2014, up to 46% of the energy in sunlight could be converted into electricity using solar cells.

Example 22.2

Molecular Orbital Diagrams, Bond Order, and Number of Unpaired Electrons

Draw the molecular orbital diagram for the oxygen molecule, O_{2}. From this diagram, calculate the bond order for O_{2}. How does this diagram account for the paramagnetism of O_{2} ?

Solution

We draw a molecular orbital energy diagram similar to that shown in Figure 22.11. Each oxygen atom contributes six electrons, so the diagram appears as shown in Figure 22.14.
Figure 22.14
The molecular orbital energy diagram for O_{2} predicts two unpaired electrons.

We calculate the bond order as
$\mathrm{O}_{2}=\frac{(8-4)}{2}=2$

Oxygen's paramagnetism is explained by the presence of two unpaired electrons in the ($\pi_{2 p y}, \pi_{2 p z}$)* molecular orbitals.

Check Your Learning

The main component of air is N_{2}. From the molecular orbital diagram of N_{2}, predict its bond order and whether it is diamagnetic or paramagnetic.

Answer

N_{2} has a bond order of 3 and is diamagnetic.

Example 22.3

Ion Predictions with MO Diagrams

Give the molecular orbital configuration for the valence electrons in
$\mathrm{C}_{2}{ }^{2-}$.

Will this ion be stable?

Solution

Looking at the appropriate MO diagram, we see that the π orbitals are lower in energy than the σ_{p} orbital. The valence electron configuration for C_{2} is
$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}$.

Adding two more electrons to generate the
$\mathrm{C}_{2}{ }^{2-}$
anion will give a valence electron configuration of
$\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p y}, \pi_{2 p z}\right)^{4}\left(\sigma_{2 p x}\right)^{2}$.

Since this has six more bonding electrons than antibonding, the bond order will be 3, and the ion should be stable.
Check Your Learning
How many unpaired electrons would be present on a
$\mathrm{Be}_{2}{ }^{2-}$
ion? Would it be paramagnetic or diamagnetic?

Answer

two, paramagnetic

Link to Learning

Creating molecular orbital diagrams for molecules with more than two atoms relies on the same basic ideas as the diatomic examples presented here. However, with more atoms, computers are required to calculate how the atomic orbitals combine. See three-dimensional drawings of the molecular orbitals for $\mathrm{C}_{6} \mathrm{H}_{6}$.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/5-4-molecular-orbitaltheory

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/molecular_orbital_theory.

Unit III

Interactions

Pressure \& Gas Laws
Combined \& Ideal Gas Laws
Dalton's Law, Graham's Law, Henry's Law
Kinetic Molecular Theory, Real Gases
Intermolecular Forces
Properties of Water
Applications of IMF
Phase Diagrams

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/unit_iii.

23

Pressure \& Gas Laws

Pressure Gas Laws

Gases exert pressure, which is force per unit area. The pressure of a gas may be expressed in the SI unit of pascal or kilopascal, as well as in many other units including torr, atmosphere, and bar. Atmospheric pressure is measured using a barometer; other gas pressures can be measured using one of several types of manometers. The behavior of gases can be described by several laws based on experimental observations of their properties. The pressure of a given amount of gas is directly proportional to its absolute temperature, provided that the volume does not change (Amontons's law). The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure (Charles's law). The volume of a given amount of gas is inversely proportional to its pressure when temperature is held constant (Boyle's law). Under the same conditions of temperature and pressure, equal volumes of all gases contain the same number of molecules (Avogadro's law).

23.1 Gas Pressure

Learning Objectives

By the end of this section, you will be able to:

- Define the property of pressure
- Define and convert among the units of pressure measurements
- Describe the operation of common tools for measuring gas pressure
- Calculate pressure from manometer data

The earth's atmosphere exerts a pressure, as does any other gas. Although we do not normally notice atmospheric pressure, we are sensitive to pressure changes-for example, when your ears "pop" during take-off and landing while flying, or when you dive underwater. Gas pressure is caused by the force exerted by gas molecules colliding with the surfaces of objects (Figure 23.1). Although the force of each collision is very small, any surface of appreciable area experiences a large number of collisions in a short time, which can result in a high pressure. In fact, normal air pressure is strong enough to crush a metal container when not balanced by equal pressure from inside the container.

Figure 23.1

The atmosphere above us exerts a large pressure on objects at the surface of the earth, roughly equal to the weight of a bowling ball pressing on an area the size of a human thumbnail.

Link to Learning

A dramatic illustration of atmospheric pressure is provided in this brief video, which shows a railway tanker car imploding when its internal pressure is decreased.

Watch on YouTube
You can watch an explanation of this phenomenon in the next video.

Atmospheric pressure is caused by the weight of the column of air molecules in the atmosphere above an object, such as the tanker car. At sea level, this pressure is roughly the same as that exerted by a full-grown African elephant standing on a doormat, or a typical bowling ball resting on your thumbnail. These may seem like huge amounts, and they are, but life on earth has evolved under such atmospheric pressure. If you actually perch a bowling ball on your thumbnail, the pressure experienced is twice the usual pressure, and the sensation is unpleasant.

In general, pressure is defined as the force exerted on a given area:
$P=\frac{F}{A}$.

Note that pressure is directly proportional to force and inversely proportional to area. Thus, pressure can be increased either by increasing the amount of force or by decreasing the area over which it is applied; pressure can be decreased by decreasing the force or increasing the area.

Let's apply this concept to determine which exerts a greater pressure in Figure 23.2-the elephant or the figure skater? A large African elephant can weigh 7 tons, supported on four feet, each with a diameter of about 1.5 ft (footprint area of $250 \mathrm{in}^{2}$), so the pressure exerted by each foot is about $14 \mathrm{lb} / \mathrm{in}^{2}$:
pressure per elephant foot $=14,000 \frac{\mathrm{lb}}{\text { elephant }} \times \frac{1 \text { elephant }}{4 \text { feet }} \times \frac{1 \text { foot }}{250 \mathrm{in}^{2}}=14 \mathrm{lb} / \mathrm{in}^{2}$

The figure skater weighs about 120 lbs , supported on two skate blades, each with an area of about $2 \mathrm{in}^{2}$, so the pressure exerted by each blade is about $30 \mathrm{lb} / \mathrm{in}^{2}$:
pressure per skate blade $=120 \frac{\mathrm{lb}}{\text { skater }} \times \frac{1 \text { skater }}{2 \text { blades }} \times \frac{1 \text { blade }}{2 \mathrm{in}^{2}}=30 \mathrm{lb} / \mathrm{in}^{2}$

Even though the elephant is more than one hundred-times heavier than the skater, it exerts less than one-half of the pressure. On the other hand, if the skater removes their skates and stands with bare feet (or regular footwear) on the ice, the larger area over which their weight is applied greatly reduces the pressure exerted:
pressure per human foot $=120 \frac{\mathrm{lb}}{\text { skater }} \times \frac{1 \text { skater }}{2 \text { feet }} \times \frac{1 \text { foot }}{30 \mathrm{in}^{2}}=2 \mathrm{lb} / \mathrm{in}^{2}$

Figure 23.2
Although (a) an elephant's weight is large, creating a very large force on the ground, (b) the figure skater exerts a much higher pressure on the ice due to the small surface area of the skates. (credit a: modification of work by Guido da Rozze; credit b: modification of work by Ryosuke Yagi)

The SI unit of pressure is the pascal (Pa), with $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$, where N is the newton, a unit of force defined as 1 kg $\mathrm{m} / \mathrm{s}^{2}$. One pascal is a small pressure; in many cases, it is more convenient to use units of kilopascal ($1 \mathrm{kPa}=1000 \mathrm{~Pa}$) or bar (1 bar $=100,000 \mathrm{~Pa}$). In the United States, pressure is often measured in pounds of force on an area of one square inch-pounds per square inch (psi)-for example, in car tires. Pressure can also be measured using the unit atmosphere (atm), which originally represented the average sea level air pressure at the approximate latitude of Paris $\left(45^{\circ}\right)$. Table 23.1 provides some information on these and a few other common units for pressure measurements

Table 23.1

Pressure Units

Unit Name and Abbreviation	Definition or Relation to Other Unit
pascal (Pa)	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$ recommended IUPAC unit
kilopascal (kPa)	$1 \mathrm{kPa}=1000 \mathrm{~Pa}$
pounds per square inch (psi)	air pressure at sea level is $\sim 14.7 \mathrm{psi}$
atmosphere (atm)	$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=760$ torr air pressure at sea level is $\sim 1 \mathrm{~atm}$
bar (bar, or b)	1 bar $=100,000 \mathrm{~Pa}$ (exactly) commonly used in meteorology
millibar (mbar, or mb)	1000 mbar $=1$ bar

Unit Name and Abbreviation	Definition or Relation to Other Unit
inches of mercury (in. Hg$)$	$1 \mathrm{in} . \mathrm{Hg}=3386 \mathrm{~Pa}$ used by aviation industry, also some weather reports
torr	$1 \mathrm{torr}=\frac{1}{760} \mathrm{~atm}$ named after Evangelista Torricelli, inventor of the barometer
millimeters of mercury $(\mathrm{mm} \mathrm{Hg})$	$1 \mathrm{~mm} \mathrm{Hg} \sim 1$ torr

Example 23.1

Conversion of Pressure Units

The United States National Weather Service reports pressure in both inches of Hg and millibars. Convert a pressure of 29.2 in . Hg into:
(a) torr
(b) atm
(c) kPa
(d) mbar

Solution

This is a unit conversion problem. The relationships between the various pressure units are given in Table 23.1.
(a)
29.2 in $\mathrm{Hg} \times \frac{25.4 \mathrm{~mm}}{1 \text { in }} \times \frac{1 \text { torr }}{1 \mathrm{~mm} \mathrm{Hg}}=742$ torr
(b)

742 torr $\times \frac{1 \mathrm{~atm}}{760 \text { torr }}=0.976 \mathrm{~atm}$
(c)

742 torr $\times \frac{101.325 \mathrm{kPa}}{760 \text { torr }}=98.9 \mathrm{kPa}$
(d)
$98.9 \mathrm{kPa} \times \frac{1000 \mathrm{~Pa}}{1 \mathrm{kPa}} \times \frac{1 \mathrm{bar}}{100,000 \mathrm{~Pa}} \times \frac{1000 \mathrm{mbar}}{1 \mathrm{bar}}=989 \mathrm{mbar}$

Check Your Learning

A typical barometric pressure in Kansas City is 740 torr. What is this pressure in atmospheres, in millimeters of mercury, in kilopascals, and in bar?

Answer

0.974 atm; 740 mm Hg; 98.7 kPa; 0.987 bar

We can measure atmospheric pressure, the force exerted by the atmosphere on the earth's surface, with a barometer (Figure 23.3). A barometer is a glass tube that is closed at one end, filled with a nonvolatile liquid such as mercury, and
then inverted and immersed in a container of that liquid. The atmosphere exerts pressure on the liquid outside the tube, the column of liquid exerts pressure inside the tube, and the pressure at the liquid surface is the same inside and outside the tube. The height of the liquid in the tube is therefore proportional to the pressure exerted by the atmosphere.

Figure 23.3

In a barometer, the height, h, of the column of liquid is used as a measurement of the air pressure. Using very dense liquid mercury (left) permits the construction of reasonably sized barometers, whereas using water (right) would require a barometer more than 30 feet tall.

If the liquid is water, normal atmospheric pressure will support a column of water over 10 meters high, which is rather inconvenient for making (and reading) a barometer. Because mercury (Hg) is about 13.6 -times denser than water, a mercury barometer only needs to be

$$
\frac{1}{13.6}
$$

as tall as a water barometer-a more suitable size. Standard atmospheric pressure of 1 atm at sea level $(101,325 \mathrm{~Pa})$ corresponds to a column of mercury that is about 760 mm (29.92 in.) high. The torr was originally intended to be a unit equal to one millimeter of mercury, but it no longer corresponds exactly. The pressure exerted by a fluid due to gravity is known as hydrostatic pressure, p :
$p=h \rho g$
where h is the height of the fluid, ρ is the density of the fluid, and g is acceleration due to gravity.

Example 23.2

Calculation of Barometric Pressure

Show the calculation supporting the claim that atmospheric pressure near sea level corresponds to the pressure exerted by a column of mercury that is about 760 mm high. The density of mercury $=13.6 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution

The hydrostatic pressure is given by $p=h \rho g$, with $h=760 \mathrm{~mm}, \rho=13.6 \mathrm{~g} / \mathrm{cm}^{3}$, and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Plugging these values into the equation and doing the necessary unit conversions will give us the value we seek. (Note: We are expecting to find a pressure of $\sim 101,325 \mathrm{~Pa}$.)

$$
\begin{aligned}
& 101,325 \mathrm{~N} / \mathrm{m}^{2}=101,325 \frac{\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=101,325 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}} \\
& p=\left(760 \mathrm{~mm} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right) \times\left(\frac{13.6 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{(100 \mathrm{~cm})^{3}}{(1 \mathrm{~m})^{3}}\right) \times\left(\frac{9.81 \mathrm{~m}}{1 \mathrm{~s}^{2}}\right)
\end{aligned}
$$

$$
=(0.760 \mathrm{~m})\left(13,600 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=1.01 \times 10^{5} \mathrm{~kg} / \mathrm{ms}^{2}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

$$
=1.01 \times 10^{5} \mathrm{~Pa}
$$

Check Your Learning

Calculate the height of a column of water at $25^{\circ} \mathrm{C}$ that corresponds to normal atmospheric pressure. The density of water at this temperature is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.

Answer

10.3 m

A manometer is a device similar to a barometer that can be used to measure the pressure of a gas trapped in a container. A closed-end manometer is a U-shaped tube with one closed arm, one arm that connects to the gas to be measured, and a nonvolatile liquid (usually mercury) in between. As with a barometer, the distance between the liquid levels in the two arms of the tube (h in the diagram) is proportional to the pressure of the gas in the container. An openend manometer (Figure 23.4) is the same as a closed-end manometer, but one of its arms is open to the atmosphere. In this case, the distance between the liquid levels corresponds to the difference in pressure between the gas in the container and the atmosphere.

Figure 23.4
A manometer can be used to measure the pressure of a gas. The (difference in) height between the liquid levels (h) is a measure of the pressure. Mercury is usually used because of its large density.

$$
P_{\mathrm{gas}}=h \rho g
$$

$P_{\mathrm{gas}}=P_{\mathrm{atm}}-h \rho g$

$$
P_{\mathrm{gas}}=P_{\mathrm{atm}}+h \rho g
$$

Example 23.3

Calculation of Pressure Using a Closed-End Manometer

The pressure of a sample of gas is measured with a closed-end manometer, as shown to the right. The liquid in the manometer is mercury. Determine the pressure of the gas in:
(a) torr
(b) Pa
(c) bar

Solution

The pressure of the gas is equal to a column of mercury of height 26.4 cm . (The pressure at the bottom horizontal line is equal on both sides of the tube. The pressure on the left is due to the gas and the pressure on the right is due to 26.4 cm Hg , or mercury.) We could use the equation $p=h \rho g$ as in Example 23.2, but it is simpler to just convert between units using Table 23.1.
(a)
$26.4 \mathrm{~cm} \mathrm{Hg} \times \frac{10 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~cm} \mathrm{Hg}} \times \frac{1 \text { torr }}{1 \mathrm{~mm} \mathrm{Hg}}=264$ torr
(b)

264 torr $\times \frac{1 \mathrm{~atm}}{760 \text { torr }} \times \frac{101,325 \mathrm{~Pa}}{1 \mathrm{~atm}}=35,200 \mathrm{~Pa}$
(c)
$35,200 \mathrm{~Pa} \times \frac{1 \mathrm{bar}}{100,000 \mathrm{~Pa}}=0.352 \mathrm{bar}$

Check Your Learning

The pressure of a sample of gas is measured with a closed-end manometer. The liquid in the manometer is mercury. Determine the pressure of the gas in:
(a) torr
(b) Pa
(c) bar

Answer

(a) ~150 torr; (b) ~20,000 Pa; (c) ~0.20 bar

Example 23.4

Calculation of Pressure Using an Open-End Manometer

The pressure of a sample of gas is measured at sea level with an open-end Hg (mercury) manometer, as shown to the right. Determine the pressure of the gas in:
(a) mm Hg
(b) atm
(c) kPa

Solution

The pressure of the gas equals the hydrostatic pressure due to a column of mercury of height 13.7 cm plus the pressure of the atmosphere at sea level. (The pressure at the bottom horizontal line is equal on both sides of the tube. The pressure on the left is due to the gas and the pressure on the right is due to 13.7 cm of Hg plus atmospheric pressure.)
(a) In mm Hg , this is: $137 \mathrm{~mm} \mathrm{Hg}+760 \mathrm{~mm} \mathrm{Hg}=897 \mathrm{~mm} \mathrm{Hg}$
(b)
$897 \mathrm{~mm} \mathrm{Hg} \times \frac{1 \mathrm{~atm}}{160 \mathrm{~mm} \mathrm{Hg}}=1.18 \mathrm{~atm}$
(c)
$1.18 \mathrm{~atm} \times \frac{101.325 \mathrm{kPa}}{1 \mathrm{~atm}}=1.20 \times 10^{2} \mathrm{kPa}$

Check Your Learning

The pressure of a sample of gas is measured at sea level with an open-end Hg manometer, as shown to the right. Determine the pressure of the gas in:
(a) mm Hg
(b) atm
(c) kPa

Answer
(a) 642 mm Hg ; (b) 0.845 atm ; (c) 85.6 kPa

Chemistry in Everyday Life

Measuring Blood Pressure

Blood pressure is measured using a device called a sphygmomanometer (Greek sphygmos = "pulse"). It consists of an inflatable cuff to restrict blood flow, a manometer to measure the pressure, and a method of determining when blood flow begins and when it becomes impeded (Figure 23.5). Since its invention in 1881, it has been an essential medical device. There are many types of sphygmomanometers: manual ones that require a stethoscope and are used by medical professionals; mercury ones, used when the most accuracy is required; less accurate mechanical ones; and digital ones that can be used with little training but that have limitations. When using a sphygmomanometer, the cuff is placed around the upper arm and inflated until blood flow is completely blocked, then slowly released. As the heart beats, blood forced through the arteries causes a rise in pressure. This rise in pressure at which blood flow begins is the systolic pressure-the peak pressure in the cardiac cycle. When the cuff's pressure equals the arterial systolic pressure, blood flows past the cuff, creating audible sounds that can be heard using a stethoscope. This is followed by a decrease in pressure as the heart's ventricles prepare for another beat. As cuff pressure continues to decrease, eventually sound is no longer heard; this is the diastolic pressure-the lowest pressure (resting phase) in the cardiac cycle. Blood pressure units from a sphygmomanometer are in terms of millimeters of mercury (mm Hg).

Figure 23.5
(a) A medical technician prepares to measure a patient's blood pressure with a sphygmomanometer. (b) A typical sphygmomanometer uses a valved rubber bulb to inflate the cuff and a diaphragm gauge to measure pressure. (credit a: modification of work by Master Sgt. Jeffrey Allen)

How Sciences Interconnect

Meteorology, Climatology, and Atmospheric Science

Throughout the ages, people have observed clouds, winds, and precipitation, trying to discern patterns and make predictions: when it is best to plant and harvest; whether it is safe to set out on a sea voyage; and much more. We now face complex weather and atmosphere-related challenges that will have a major impact on our civilization and the ecosystem. Several different scientific disciplines use chemical principles to help us better understand weather, the atmosphere, and climate. These are meteorology, climatology, and atmospheric science. Meteorology is the study of the atmosphere, atmospheric phenomena, and atmospheric effects on earth's weather. Meteorologists seek to understand and predict the weather in the short term, which can save lives and benefit the economy. Weather forecasts (Figure 23.6) are the result of thousands of measurements of air pressure, temperature, and the like, which are compiled, modeled, and analyzed in weather centers worldwide.

Figure 23.6

Meteorologists use weather maps to describe and predict weather. Regions of high (H) and low (L) pressure have large effects on weather conditions. The gray lines represent locations of constant pressure known as isobars. (credit: modification of work by National Oceanic and Atmospheric Administration)

In terms of weather, low-pressure systems occur when the earth's surface atmospheric pressure is lower than the surrounding environment: Moist air rises and condenses, producing clouds. Movement of moisture and air within various weather fronts instigates most weather events.

The atmosphere is the gaseous layer that surrounds a planet. Earth's atmosphere, which is roughly $100-125 \mathrm{~km}$ thick, consists of roughly 78.1% nitrogen and 21.0% oxygen, and can be subdivided further into the regions shown in Figure 23.7: the exosphere (furthest from earth, > 700 km above sea level), the thermosphere (80-700 km), the mesosphere ($50-80 \mathrm{~km}$), the stratosphere (second lowest level of our atmosphere, 12-50 km above sea level), and the troposphere (up to 12 km above sea level, roughly 80% of the earth's atmosphere by mass
and the layer where most weather events originate). As you go higher in the troposphere, air density and temperature both decrease.

Figure 23.7
Earth's atmosphere has five layers: the troposphere, the stratosphere, the mesosphere, the thermosphere, and the exosphere.

Stratosphere 12-50 km

Climatology is the study of the climate, averaged weather conditions over long time periods, using atmospheric data. However, climatologists study patterns and effects that occur over decades, centuries, and millennia, rather than shorter time frames of hours, days, and weeks like meteorologists. Atmospheric science is an even broader field, combining meteorology, climatology, and other scientific disciplines that study the atmosphere.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

23.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law

Learning Objectives

By the end of this section, you will be able to:

- Identify the mathematical relationships between the various properties of gases

During the seventeenth and especially eighteenth centuries, driven both by a desire to understand nature and a quest to make balloons in which they could fly (Figure 23.8), a number of scientists established the relationships between the macroscopic physical properties of gases, that is, pressure, volume, temperature, and amount of gas. Although their measurements were not precise by today's standards, they were able to determine the mathematical relationships between pairs of these variables (e.g., pressure and temperature, pressure and volume) that hold for an ideal gas-a hypothetical construct that real gases approximate under certain conditions. Eventually, these individual laws were combined into a single equation-the ideal gas law-that relates gas quantities for gases and is quite accurate for low pressures and moderate temperatures. We will consider the key developments in individual relationships (for pedagogical reasons not quite in historical order), then put them together in the ideal gas law.

Figure 23.8
In 1783, the first (a) hydrogen-filled balloon flight, (b) manned hot air balloon flight, and (c) manned hydrogen-filled balloon flight occurred. When the hydrogen-filled balloon depicted in (a) landed, the frightened villagers of Gonesse reportedly destroyed it with pitchforks and knives. The launch of the latter was reportedly viewed by 400,000 people in Paris.

Pressure and Temperature: Amontons's Law

Imagine filling a rigid container attached to a pressure gauge with gas and then sealing the container so that no gas may escape. If the container is cooled, the gas inside likewise gets colder and its pressure is observed to decrease. Since the container is rigid and tightly sealed, both the volume and number of moles of gas remain constant. If we heat the sphere, the gas inside gets hotter (Figure 23.9) and the pressure increases.

Figure 23.9
The effect of temperature on gas pressure: When the hot plate is off, the pressure of the gas in the sphere is relatively low. As the gas is heated, the pressure of the gas in the sphere increases.

This relationship between temperature and pressure is observed for any sample of gas confined to a constant volume. An example of experimental pressure-temperature data is shown for a sample of air under these conditions in Figure 23.10. We find that temperature and pressure are linearly related, and if the temperature is on the kelvin scale, then P and T are directly proportional (again, when volume and moles of gas are held constant); if the temperature on the kelvin scale increases by a certain factor, the gas pressure increases by the same factor.

Figure 23.10
For a constant volume and amount of air, the pressure and temperature are directly proportional, provided the temperature is in kelvin. (Measurements cannot be made at lower temperatures because of the condensation of the gas.) When this line is extrapolated to lower pressures, it reaches a pressure of 0 at $-273{ }^{\circ} \mathrm{C}$, which is 0 on the kelvin scale and the lowest possible temperature, called absolute zero.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Temperature (K)	Pressure $\mathbf{(k P a)}$
-100	173	36.0
-50	223	46.4
0	273	56.7
50	323	67.1
100	373	77.5
150	423	88.0

Guillaume Amontons was the first to empirically establish the relationship between the pressure and the temperature of a gas (~ 1700), and Joseph Louis Gay-Lussac determined the relationship more precisely (~ 1800). Because of this, the $P-T$ relationship for gases is known as either Amontons's law or Gay-Lussac's law. Under either name, it states that the pressure of a given amount of gas is directly proportional to its temperature on the kelvin scale when the volume is held constant. Mathematically, this can be written:
$P \propto T$ or $P=$ constant $\times T$ or $P=k \times T$
where \propto means "is proportional to," and k is a proportionality constant that depends on the identity, amount, and volume of the gas.

For a confined, constant volume of gas, the ratio
$\frac{P}{T}$
is therefore constant (i.e.,
${ }_{T}^{P}=k$
). If the gas is initially in "Condition 1 " (with $P=P_{1}$ and $T=T_{1}$), and then changes to "Condition 2 " (with $P=P_{2}$ and $T=$ T_{2}), we have that
$\frac{P_{1}}{T_{1}}=k$
and
$\frac{P_{2}}{T_{2}}=k$,
which reduces to
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$.

This equation is useful for pressure-temperature calculations for a confined gas at constant volume. Note that temperatures must be on the kelvin scale for any gas law calculations (0 on the kelvin scale and the lowest possible temperature is called absolute zero). (Also note that there are at least three ways we can describe how the pressure of a gas changes as its temperature changes: We can use a table of values, a graph, or a mathematical equation.)

Example 23.5

Predicting Change in Pressure with Temperature

A can of hair spray is used until it is empty except for the propellant, isobutane gas.
(a) On the can is the warning "Store only at temperatures below $120^{\circ} \mathrm{F}\left(48.8^{\circ} \mathrm{C}\right)$. Do not incinerate." Why?
(b) The gas in the can is initially at $24^{\circ} \mathrm{C}$ and 360 kPa , and the can has a volume of 350 mL . If the can is left in a car that reaches $50^{\circ} \mathrm{C}$ on a hot day, what is the new pressure in the can?

Solution

(a) The can contains an amount of isobutane gas at a constant volume, so if the temperature is increased by heating, the pressure will increase proportionately. High temperature could lead to high pressure, causing the can to burst. (Also, isobutane is combustible, so incineration could cause the can to explode.)
(b) We are looking for a pressure change due to a temperature change at constant volume, so we will use Amontons's/Gay-Lussac's law. Taking P_{1} and T_{1} as the initial values, T_{2} as the temperature where the pressure is unknown and P_{2} as the unknown pressure, and converting ${ }^{\circ} \mathrm{C}$ to K , we have:
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$ which means that $\frac{360 \mathrm{kPa}}{297 \mathrm{~K}}=\frac{P_{2}}{323 \mathrm{~K}}$

Rearranging and solving gives:
$P_{2}=\frac{360 \mathrm{kPa} \times 323 \mathrm{~K}}{297 \mathrm{~K}}=390 \mathrm{kPa}$

Check Your Learning

A sample of nitrogen, N_{2}, occupies 45.0 mL at $27^{\circ} \mathrm{C}$ and 600 torr. What pressure will it have if cooled to $-73^{\circ} \mathrm{C}$ while the volume remains constant?

Answer

400 torr

Volume and Temperature: Charles's Law

If we fill a balloon with air and seal it, the balloon contains a specific amount of air at atmospheric pressure, let's say 1 atm. If we put the balloon in a refrigerator, the gas inside gets cold and the balloon shrinks (although both the amount of gas and its pressure remain constant). If we make the balloon very cold, it will shrink a great deal, and it expands again when it warms up.

Link to Learning

This video shows how cooling and heating a gas causes its volume to decrease or increase, respectively.

These examples of the effect of temperature on the volume of a given amount of a confined gas at constant pressure are true in general: The volume increases as the temperature increases, and decreases as the temperature decreases. Volume-temperature data for a 1-mole sample of methane gas at 1 atm are listed and graphed in Figure 23.11.

Figure 23.11
The volume and temperature are linearly related for 1 mole of methane gas at a constant pressure of 1 atm . If the temperature is in kelvin, volume and temperature are directly proportional. The line stops at 111 K because methane liquefies at this temperature; when extrapolated, it intersects the graph's origin, representing a temperature of absolute zero.

Temperature (${ }^{\circ} \mathrm{C}$)	Temperature (K)	Volume (L)
-3	270	22
-23	250	21
-53	220	18
-162	111	9

The relationship between the volume and temperature of a given amount of gas at constant pressure is known as Charles's law in recognition of the French scientist and balloon flight pioneer Jacques Alexandre César Charles. Charles's law states that the volume of a given amount of gas is directly proportional to its temperature on the kelvin scale when the pressure is held constant.

Mathematically, this can be written as:
$V \alpha T$ or $V=\mathrm{constant} \cdot T$ or $V=k \cdot T$ or $V_{1} / T_{1}=V_{2} / T_{2}$
with k being a proportionality constant that depends on the amount and pressure of the gas.
For a confined, constant pressure gas sample,
$\stackrel{V}{T}$
is constant (i.e., the ratio $=k$), and as seen with the P - T relationship, this leads to another form of Charles's law:

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} .
$$

Example 23.6

Predicting Change in Volume with Temperature

A sample of carbon dioxide, CO_{2}, occupies 0.300 L at $10^{\circ} \mathrm{C}$ and 750 torr. What volume will the gas have at $30^{\circ} \mathrm{C}$ and 750 torr?

Solution

Because we are looking for the volume change caused by a temperature change at constant pressure, this is a job for Charles's law. Taking V_{1} and T_{1} as the initial values, T_{2} as the temperature at which the volume is unknown and V_{2} as the unknown volume, and converting ${ }^{\circ} \mathrm{C}$ into K we have:
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$ which means that $\frac{0.300 \mathrm{~L}}{283 \mathrm{~K}}=\frac{V_{2}}{303 \mathrm{~K}}$

Rearranging and solving gives:
$V_{2}=\frac{0.300 \mathrm{~L} \times 303 \mathrm{~K}}{283 \mathrm{~K}}=0.321 \mathrm{~L}$

This answer supports our expectation from Charles's law, namely, that raising the gas temperature (from 283 K to 303 K) at a constant pressure will yield an increase in its volume (from 0.300 L to 0.321 L).

Check Your Learning

A sample of oxygen, O_{2}, occupies 32.2 mL at $30^{\circ} \mathrm{C}$ and 452 torr. What volume will it occupy at $-70^{\circ} \mathrm{C}$ and the same pressure?

Answer

21.6 mL

Example 23.7

Measuring Temperature with a Volume Change

Temperature is sometimes measured with a gas thermometer by observing the change in the volume of the gas as the temperature changes at constant pressure. The hydrogen in a particular hydrogen gas thermometer has a volume of $150.0 \mathrm{~cm}^{3}$ when immersed in a mixture of ice and water $\left(0.00^{\circ} \mathrm{C}\right)$. When immersed in boiling liquid ammonia, the volume of the hydrogen, at the same pressure, is $131.7 \mathrm{~cm}^{3}$. Find the temperature of boiling ammonia on the kelvin and Celsius scales.

Solution

A volume change caused by a temperature change at constant pressure means we should use Charles's law. Taking V_{1} and T_{1} as the initial values, T_{2} as the temperature at which the volume is unknown and V_{2} as the unknown volume, and converting ${ }^{\circ} \mathrm{C}$ into K we have:
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$ which means that $\frac{150.0 \mathrm{~cm}^{3}}{273.15 \mathrm{~K}}=\frac{131.7 \mathrm{~cm}^{3}}{T_{2}}$

Rearrangement gives
$T_{2}=\frac{131.7 \mathrm{~cm}^{3} \times 273.15 \mathrm{~K}}{150.0 \mathrm{~cm}^{3}}=239.8 \mathrm{~K}$

Subtracting 273.15 from 239.8 K , we find that the temperature of the boiling ammonia on the Celsius scale is $33.4^{\circ} \mathrm{C}$.

Check Your Learning

What is the volume of a sample of ethane at 467 K and 1.1 atm if it occupies 405 mL at 298 K and 1.1 atm?

Answer

635 mL

Volume and Pressure: Boyle’s Law

If we partially fill an airtight syringe with air, the syringe contains a specific amount of air at constant temperature, say $25^{\circ} \mathrm{C}$. If we slowly push in the plunger while keeping temperature constant, the gas in the syringe is compressed into a smaller volume and its pressure increases; if we pull out the plunger, the volume increases and the pressure decreases. This example of the effect of volume on the pressure of a given amount of a confined gas is true in general. Decreasing the volume of a contained gas will increase its pressure, and increasing its volume will decrease its pressure. In fact, if the volume increases by a certain factor, the pressure decreases by the same factor, and vice versa. Volume-pressure data for an air sample at room temperature are graphed in Figure 23.12.

Figure 23.12
When a gas occupies a smaller volume, it exerts a higher pressure; when it occupies a larger volume, it exerts a lower pressure (assuming the amount of gas and the temperature do not change). Since P and V are inversely proportional, a
graph of $\frac{1}{P}$ vs. V is linear.

Unlike the $P-T$ and $V-T$ relationships, pressure and volume are not directly proportional to each other. Instead, P and V exhibit inverse proportionality: Increasing the pressure results in a decrease of the volume of the gas. Mathematically this can be written:
$P \propto 1 / V$ or $P=k \cdot 1 / V$ or $P \cdot V=k$ or $P_{1} V_{1}=P_{2} V_{2}$
with k being a constant. Graphically, this relationship is shown by the straight line that results when plotting the inverse of the pressure
$\left(\frac{1}{P}\right)$
versus the volume (V), or the inverse of volume

$\binom{1}{V}$

versus the pressure (P). Graphs with curved lines are difficult to read accurately at low or high values of the variables, and they are more difficult to use in fitting theoretical equations and parameters to experimental data. For those reasons, scientists often try to find a way to "linearize" their data. If we plot P versus V, we obtain a hyperbola (see Figure 23.13).

Figure 23.13
The relationship between pressure and volume is inversely proportional. (a) The graph of P vs. V is a hyperbola, whereas (b) the graph of $\left(\frac{1}{P}\right)$ vs. V is linear.

The relationship between the volume and pressure of a given amount of gas at constant temperature was first published by the English natural philosopher Robert Boyle over 300 years ago. It is summarized in the statement now known as Boyle's law: The volume of a given amount of gas held at constant temperature is inversely proportional to the pressure under which it is measured.

Example 23.8

Volume of a Gas Sample

The sample of gas in Figure 23.12 has a volume of 15.0 mL at a pressure of 13.0 psi . Determine the pressure of the gas at a volume of 7.5 mL , using:
(a) the P - V graph in Figure 23.12
(b) the
$\frac{1}{P}$
vs. V graph in Figure 23.12
(c) the Boyle's law equation

Comment on the likely accuracy of each method.

Solution

(a) Estimating from the P - V graph gives a value for P somewhere around 27 psi .
(b) Estimating from the
$\frac{1}{P}$
versus V graph give a value of about 26 psi .
(c) From Boyle's law, we know that the product of pressure and volume ($P V$) for a given sample of gas at a constant temperature is always equal to the same value. Therefore we have $P_{1} V_{1}=k$ and $P_{2} V_{2}=k$ which means that $P_{1} V_{1}=P_{2} V_{2}$.

Using P_{1} and V_{1} as the known values 13.0 psi and $15.0 \mathrm{~mL}, P_{2}$ as the pressure at which the volume is unknown, and V_{2} as the unknown volume, we have:
$P_{1} V_{1}=P_{2} V_{2}$ or $13.0 \mathrm{psi} \times 15.0 \mathrm{~mL}=P_{2} \times 7.5 \mathrm{~mL}$

Solving:
$P_{2}=\frac{13.0 \mathrm{psi} \times 15.0 \mathrm{~mL}}{7.5 \mathrm{~mL}}=26 \mathrm{psi}$
It was more difficult to estimate well from the P - V graph, so (a) is likely more inaccurate than (b) or (c). The calculation will be as accurate as the equation and measurements allow.

Check Your Learning

The sample of gas in Figure 23.12 has a volume of 30.0 mL at a pressure of 6.5 psi . Determine the volume of the gas at a pressure of 11.0 psi, using:
(a) the P - V graph in Figure 23.12
(b) the
vs. V graph in Figure 23.12
(c) the Boyle's law equation

Comment on the likely accuracy of each method.

Answer

(a) about 17-18 mL; (b) $\sim 18 \mathrm{~mL}$; (c) 17.7 mL ; it was more difficult to estimate well from the P - V graph, so
(a) is likely more inaccurate than (b); the calculation will be as accurate as the equation and measurements allow

Chemistry in Everyday Life

Breathing and Boyle's Law

What do you do about 20 times per minute for your whole life, without break, and often without even being aware of it? The answer, of course, is respiration, or breathing. How does it work? It turns out that the gas laws apply here. Your lungs take in gas that your body needs (oxygen) and get rid of waste gas (carbon dioxide). Lungs are made of spongy, stretchy tissue that expands and contracts while you breathe. When you inhale, your diaphragm and intercostal muscles (the muscles between your ribs) contract, expanding your chest cavity and making your lung volume larger. The increase in volume leads to a decrease in pressure (Boyle's law). This causes air to flow into the lungs (from high pressure to low pressure). When you exhale, the process reverses: Your diaphragm and rib muscles relax, your chest cavity contracts, and your lung volume decreases, causing the pressure to increase (Boyle’s law again), and air flows out of the lungs (from high pressure to low pressure). You then breathe in and out again, and again, repeating this Boyle's law cycle for the rest of your life (Figure 23.14).

Figure 23.14
Breathing occurs because expanding and contracting lung volume creates small pressure differences between your lungs and your surroundings, causing air to be drawn into and forced out of your lungs.

Moles of Gas and Volume: Avogadro's Law

The Italian scientist Amedeo Avogadro advanced a hypothesis in 1811 to account for the behavior of gases, stating that equal volumes of all gases, measured under the same conditions of temperature and pressure, contain the same
number of molecules. Over time, this relationship was supported by many experimental observations as expressed by Avogadro's law: For a confined gas, the volume (V) and number of moles (n) are directly proportional if the pressure and temperature both remain constant.

In equation form, this is written as:

$$
V \propto n \quad \text { or } \quad V=k \times n \quad \text { or } \quad \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

Mathematical relationships can also be determined for the other variable pairs, such as P versus n, and n versus T.

Link to Learning

Explore this interaction PhET simulation to investigate the relationships between pressure, volume, temperature, and amount of gas. Use the simulation to examine the effect of changing one parameter on another while holding the other parameters constant (as described in the preceding sections on the various gas laws).

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. The IUPAC definition of standard pressure was changed from 1 atm to 1 bar (100 kPa) in 1982 , but the prior definition remains in use by many literature resources and will be used in this text.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/8-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/pressure_and_gas_laws.

24

Combined \& Ideal Gas Laws

Ideal gas laws

The equations presented in the previous chapter for Amonton's, Charles's, Boyle's, and Avogadro's Laws are all special cases of the ideal gas law, $P V=n R T$, where P is the pressure of the gas, V is its volume, n is the number of moles of the gas, T is its kelvin temperature, and R is the ideal (universal) gas constant. The ideal gas law can be used to derive a number of convenient equations relating directly measured quantities to properties of interest for gaseous substances and mixtures. Appropriate rearrangement of the ideal gas equation may be made to permit the calculation of gas densities and molar masses.

24.1 The Ideal Gas Law

Learning Objectives

- Use the ideal gas law, and related gas laws, to compute the values of various gas properties under specified conditions

To this point, four separate laws have been discussed that relate pressure, volume, temperature, and the number of moles of the gas:

- Boyle's law: $P V=$ constant at constant T and n
- Amontons's law: ${ }_{T}^{P}=$ constant at constant V and n
- Charles's law: $\frac{V}{T}=$ constant at constant P and n
- Avogadro's law: $\frac{V}{\pi}=$ constant at constant P and T

Combining these four laws yields the ideal gas law, a relation between the pressure, volume, temperature, and number of moles of a gas:
$P V=n R T$
where P is the pressure of a gas, V is its volume, n is the number of moles of the gas, T is its temperature on the kelvin scale, and R is a constant called the ideal gas constant or the universal gas constant. The units used to express
pressure, volume, and temperature will determine the proper form of the gas constant as required by dimensional

Gases whose properties of P, V, and T are accurately described by the ideal gas law (or the other gas laws) are said to exhibit ideal behavior or to approximate the traits of an ideal gas. An ideal gas is a hypothetical construct that may be used along with kinetic molecular theory to effectively explain the gas laws as will be described in a later module of this chapter. Although all the calculations presented in this module assume ideal behavior, this assumption is only reasonable for gases under conditions of relatively low pressure and high temperature. In the final module of this chapter, a modified gas law will be introduced that accounts for the non-ideal behavior observed for many gases at relatively high pressures and low temperatures.

The ideal gas equation contains five terms, the gas constant R and the variable properties P, V, n, and T. Specifying any four of these terms will permit use of the ideal gas law to calculate the fifth term as demonstrated in the following example exercises.

Example 24.1

Using the Ideal Gas Law

Methane, CH_{4}, is being considered for use as an alternative automotive fuel to replace gasoline. One gallon of gasoline could be replaced by 655 g of CH_{4}. What is the volume of this much methane at $25^{\circ} \mathrm{C}$ and 745 torr?

Solution

We must rearrange $P V=n R T$ to solve for V :
$V=\frac{n R T}{P}$

If we choose to use $R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then the amount must be in moles, temperature must be in kelvin, and pressure must be in atm.

Converting into the "right" units:
$n=655 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol}}{16.043 \mathrm{~g} \mathrm{CH}_{4}}=40.8 \mathrm{~mol}$
$T=25^{\circ} \mathrm{C}+273=298 \mathrm{~K}$
$P=745$ torr $\times \frac{1 \mathrm{~atm}}{760 \mathrm{torr}}=0.980 \mathrm{~atm}$

$$
V=\frac{n R T}{P}=\frac{(40.8 \mathrm{~mol})\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{0.980 \mathrm{~atm}}=1.02 \times 10^{3} \mathrm{~L}
$$

It would require 1020 L (269 gal) of gaseous methane at about 1 atm of pressure to replace 1 gal of gasoline. It requires a large container to hold enough methane at 1 atm to replace several gallons of gasoline.

Check Your Learning

Calculate the pressure in bar of 2520 moles of hydrogen gas stored at $27^{\circ} \mathrm{C}$ in the $180-\mathrm{L}$ storage tank of a modern hydrogen-powered car.

Answer

350 bar

If the number of moles of an ideal gas are kept constant under two different sets of conditions, a useful mathematical relationship called the combined gas law is obtained:
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
using units of atm, L , and K . Both sets of conditions are equal to the product of n
\times
R (where $n=$ the number of moles of the gas and R is the ideal gas law constant).

Example 24.2

Using the Combined Gas Law

When filled with air, a typical scuba tank with a volume of 13.2 L has a pressure of 153 atm (Figure 24.1). If the water temperature is $27^{\circ} \mathrm{C}$, how many liters of air will such a tank provide to a diver's lungs at a depth of approximately 70 feet in the ocean where the pressure is 3.13 atm ?
Figure 24.1
Scuba divers use compressed air to breathe while underwater. (credit: modification of work by Mark Goodchild)

Letting 1 represent the air in the scuba tank and 2 represent the air in the lungs, and noting that body temperature (the temperature the air will be in the lungs) is $37^{\circ} \mathrm{C}$, we have:
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{(153 \mathrm{~atm})(13.2 \mathrm{~L})}{(300 \mathrm{~K})}=\frac{(3.13 \mathrm{~atm})\left(V_{2}\right)}{(310 \mathrm{~K})}$

Solving for V_{2} :
$V_{2}=\frac{(153 \mathrm{~atm})(13.2 \mathrm{~L})(310 \mathrm{~K})}{(300 \mathrm{~K})(3.13 \mathrm{~atm})}=667 \mathrm{~L}$
(Note: Be advised that this particular example is one in which the assumption of ideal gas behavior is not very reasonable, since it involves gases at relatively high pressures and low temperatures. Despite this limitation, the
calculated volume can be viewed as a good "ballpark" estimate.)

Check Your Learning

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of $27^{\circ} \mathrm{C}$ and 0.850 atm . Find the volume of this sample at $0^{\circ} \mathrm{C}$ and 1.00 atm .

Answer
0.193 L

Chemistry in Everday Life

The Interdependence between Ocean Depth and Pressure in Scuba Diving

Whether scuba diving at the Great Barrier Reef in Australia (shown in Figure 24.2) or in the Caribbean, divers must understand how pressure affects a number of issues related to their comfort and safety.

Figure 24.2
Scuba divers, whether at the Great Barrier Reef or in the Caribbean, must be aware of buoyancy, pressure equalization, and the amount of time they spend underwater, to avoid the risks associated with pressurized gases in the body. (credit: Kyle Taylor)

Pressure increases with ocean depth, and the pressure changes most rapidly as divers reach the surface. The pressure a diver experiences is the sum of all pressures above the diver (from the water and the air). Most pressure measurements are given in units of atmospheres, expressed as "atmospheres absolute" or ATA in the diving community: Every 33 feet of salt water represents 1 ATA of pressure in addition to 1 ATA of pressure from the atmosphere at sea level. As a diver descends, the increase in pressure causes the body's air pockets in the ears and lungs to compress; on the ascent, the decrease in pressure causes these air pockets to expand, potentially rupturing eardrums or bursting the lungs. Divers must therefore undergo equalization by adding air to body airspaces on the descent by breathing normally and adding air to the mask by breathing out of the nose or adding air to the ears and sinuses by equalization techniques; the corollary is also true on ascent, divers must release air from the body to maintain equalization. Buoyancy, or the ability to control whether a diver sinks or floats, is controlled by the buoyancy compensator (BCD). If a diver is ascending, the air in their BCD expands because of lower pressure according to Boyle's law (decreasing the pressure of gases increases the volume). The expanding air increases the buoyancy of the diver, and they begin to ascend. The diver must vent air from
the BCD or risk an uncontrolled ascent that could rupture the lungs. In descending, the increased pressure causes the air in the BCD to compress and the diver sinks much more quickly; the diver must add air to the BCD or risk an uncontrolled descent, facing much higher pressures near the ocean floor. The pressure also impacts how long a diver can stay underwater before ascending. The deeper a diver dives, the more compressed the air that is breathed because of increased pressure: If a diver dives 33 feet, the pressure is 2 ATA and the air would be compressed to one-half of its original volume. The diver uses up available air twice as fast as at the surface.

Standard Conditions of Temperature and Pressure

We have seen that the volume of a given quantity of gas and the number of molecules (moles) in a given volume of gas vary with changes in pressure and temperature. Chemists sometimes make comparisons against a standard temperature and pressure (STP) for reporting properties of gases: 273.15 K and $1 \mathrm{~atm}(101.325 \mathrm{kPa}) .{ }^{1}$ At STP, one mole of an ideal gas has a volume of about 22.4 L -this is referred to as the standard molar volume (Figure 24.3).

Figure 24.3
Regardless of its chemical identity, one mole of gas behaving ideally occupies a volume of ~ 22.4 L at STP.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

24.2 Stoichiometry of Gaseous Substances, Mixtures, and Reactions

Learning Objectives

By the end of this section, you will be able to:

- Use the ideal gas law to compute gas densities and molar masses

The study of the chemical behavior of gases was part of the basis of perhaps the most fundamental chemical revolution in history. French nobleman Antoine Lavoisier, widely regarded as the "father of modern chemistry," changed chemistry from a qualitative to a quantitative science through his work with gases. He discovered the law of conservation of matter, discovered the role of oxygen in combustion reactions, determined the composition of air, explained respiration in terms of chemical reactions, and more. He was a casualty of the French Revolution, guillotined in 1794. Of his death, mathematician and astronomer Joseph-Louis Lagrange said, "It took the mob only a moment to remove his head; a century will not suffice to reproduce it." ${ }^{2}$ Much of the knowledge we do have about Lavoisier's contributions is due to his wife, Marie-Anne Paulze Lavoisier, who worked with him in his lab. A trained artist fluent in several languages, she created detailed illustrations of the equipment in his lab, and translated texts from foreign scientists to complement his knowledge. After his execution, she was instrumental in publishing Lavoisier's major treatise, which unified many concepts of chemistry and laid the groundwork for significant further study.

As described in an earlier chapter of this text, we can turn to chemical stoichiometry for answers to many of the questions that ask "How much?" The essential property involved in such use of stoichiometry is the amount of substance, typically measured in moles (n). For gases, molar amount can be derived from convenient experimental measurements of pressure, temperature, and volume. Therefore, these measurements are useful in assessing the stoichiometry of pure gases, gas mixtures, and chemical reactions involving gases. This section will not introduce any new material or ideas, but will provide examples of applications and ways to integrate concepts we have already discussed.

Gas Density and Molar Mass

The ideal gas law described previously in this chapter relates the properties of pressure P, volume V, temperature T, and molar amount n. This law is universal, relating these properties in identical fashion regardless of the chemical identity of the gas:

$$
P V=n R T
$$

The density d of a gas, on the other hand, is determined by its identity. As described in another chapter of this text, the density of a substance is a characteristic property that may be used to identify the substance.

$$
d=\frac{m}{V}
$$

Rearranging the ideal gas equation to isolate V and substituting into the density equation yields

$$
d=\frac{m P}{n R T}=\left(\frac{m}{n}\right) \frac{P}{R T}
$$

The ratio m / n is the definition of molar mass, \mathscr{M}.

$$
\mathcal{M}=\frac{m}{n}
$$

The density equation can then be written

$$
d=\frac{\mathcal{M P}}{R T}
$$

This relation may be used for calculating the densities of gases of known identities at specified values of pressure and temperature as demonstrated in Example 24.3.

Example 24.3

Measuring Gas Density

What is the density of molecular nitrogen gas at STP?

Solution

The molar mass of molecular nitrogen, N_{2}, is $28.01 \mathrm{~g} / \mathrm{mol}$. Substituting this value along with standard temperature and pressure into the gas density equation yields

$$
d=\frac{\mathscr{M} P}{R T}=\frac{(28.01 \mathrm{~g} / \mathrm{mol})(1.00 \mathrm{~atm})}{\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273 \mathrm{~K})}=1.25 \mathrm{~g} / \mathrm{L}
$$

Check Your Learning

What is the density of molecular hydrogen gas at $17.0^{\circ} \mathrm{C}$ and a pressure of 760 torr?

Answer

$$
d=0.0847 \mathrm{~g} / \mathrm{L}
$$

When the identity of a gas is unknown, measurements of the mass, pressure, volume, and temperature of a sample can be used to calculate the molar mass of the gas (a useful property for identification purposes). Combining the ideal gas equation

$$
P V=n R T
$$

and the definition of molar mass

$$
\mathfrak{M}=\frac{m}{n}
$$

yields the following equation:

$$
\mathscr{M}=\frac{m R T}{P V}
$$

Determining the molar mass of a gas via this approach is demonstrated in Example 24.4

Example 24.4

Determining the Molecular Formula of a Gas from its Molar Mass and Empirical Formula

Cyclopropane, a gas once used with oxygen as a general anesthetic, is composed of 85.7% carbon and 14.3% hydrogen by mass. Find the empirical formula. If 1.56 g of cyclopropane occupies a volume of 1.00 L at 0.984 atm and $50^{\circ} \mathrm{C}$, what is the molecular formula for cyclopropane?

Solution

First determine the empirical formula of the gas. Assume 100 g and convert the percentage of each element into grams. Determine the number of moles of carbon and hydrogen in the $100-\mathrm{g}$ sample of cyclopropane. Divide by the smallest number of moles to relate the number of moles of carbon to the number of moles of hydrogen. In the last step, realize that the smallest whole number ratio is the empirical formula:

$$
\begin{array}{ll}
85.7 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=7.136 \mathrm{~mol} \mathrm{C} & \frac{7.136}{7.136}=1.00 \mathrm{~mol} \mathrm{C} \\
14.3 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=14.158 \mathrm{~mol} \mathrm{H} & \frac{14.158}{7.136}=1.98 \mathrm{~mol} \mathrm{H}
\end{array}
$$

Empirical formula is CH_{2} [empirical mass (EM) of $14.03 \mathrm{~g} /$ empirical unit].
Next, use the provided values for mass, pressure, temperature and volume to compute the molar mass of the gas:

$$
\mathcal{M}=\frac{m R T}{P V}=\frac{(1.56 \mathrm{~g})\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(323 \mathrm{~K})}{(0.984 \mathrm{~atm})(1.00 \mathrm{~L})}=42.0 \mathrm{~g} / \mathrm{mol}
$$

Comparing the molar mass to the empirical formula mass shows how many empirical formula units make up a molecule:

$$
\frac{M}{E M}=\frac{42.0 \mathrm{~g} / \mathrm{mol}}{14.0 \mathrm{~g} / \mathrm{mol}}=3
$$

The molecular formula is thus derived from the empirical formula by multiplying each of its subscripts by three:

$$
\left(\mathrm{CH}_{2}\right)_{3}=\mathrm{C}_{3} \mathrm{H}_{6}
$$

Check Your Learning

Acetylene, a fuel used welding torches, is composed of $92.3 \% \mathrm{C}$ and $7.7 \% \mathrm{H}$ by mass. Find the empirical formula. If 1.10 g of acetylene occupies of volume of 1.00 L at 1.15 atm and $59.5^{\circ} \mathrm{C}$, what is the molecular formula for acetylene?

Answer

Empirical formula, CH ; Molecular formula, $\mathrm{C}_{2} \mathrm{H}_{2}$

Example 24.5

Determining the Molar Mass of a Volatile Liquid

The approximate molar mass of a volatile liquid can be determined by:

1. Heating a sample of the liquid in a flask with a tiny hole at the top, which converts the liquid into gas that may escape through the hole
2. Removing the flask from heat at the instant when the last bit of liquid becomes gas, at which time the flask will be filled with only gaseous sample at ambient pressure
3. Sealing the flask and permitting the gaseous sample to condense to liquid, and then weighing the flask to determine the sample's mass (see Figure 24.4)

Figure 24.4
When the volatile liquid in the flask is heated past its boiling point, it becomes gas and drives air out of the flask. At $t_{l \rightarrow g}$, the flask is filled with volatile liquid gas at the same pressure as the atmosphere. If the flask is then cooled to room temperature, the gas condenses and the mass of the gas that filled the flask, and is now liquid, can be measured. (credit: modification of work by Mark Ott)

Using this procedure, a sample of chloroform gas weighing 0.494 g is collected in a flask with a volume of 129 cm^{3} at $99.6^{\circ} \mathrm{C}$ when the atmospheric pressure is 742.1 mm Hg . What is the approximate molar mass of chloroform?

Solution

Since
$\mathcal{M}=\frac{m}{n}$
and
$n=\frac{P V}{R T}$,
substituting and rearranging gives
$\mathcal{M}=\frac{m R T}{P V}$,
then

$$
\mathcal{M}=\frac{m R T}{P V}=\frac{(0.494 \mathrm{~g}) \times 0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \mathrm{~K} \times 372.8 \mathrm{~K}}{0.976 \mathrm{~atm} \times 0.129 \mathrm{~L}}=120 \mathrm{~g} / \mathrm{mol} .
$$

Check Your Learning

A sample of phosphorus that weighs 3.243
\times
$10^{-2} \mathrm{~g}$ exerts a pressure of 31.89 kPa in a $56.0-\mathrm{mL}$ bulb at $550^{\circ} \mathrm{C}$. What are the molar mass and molecular formula of phosphorus vapor?

Answer

$124 \mathrm{~g} / \mathrm{mol} \mathrm{P} 4$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. The IUPAC definition of standard pressure was changed from 1 atm to 1 bar (100 kPa) in 1982 , but the prior definition remains in use by many literature resources and will be used in this text.
2. "Quotations by Joseph-Louis Lagrange," last modified February 2006, accessed February 10, 2015, http://www-history.mcs.st-andrews.ac.uk/Quotations/Lagrange.html

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/8-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/combined_and_ideal_gas_laws.

Dalton's Law, Graham's Law, Henry's Law

Pressure Gas Laws

Dalton's law of partial pressures may be used to relate measured gas pressures for gaseous mixtures to their compositions. Diffusion is the process whereby gaseous atoms and molecules are transferred from regions of relatively high concentration to regions of relatively low concentration. Effusion is a similar process in which gaseous species pass from a container to a vacuum through very small orifices. The rates of effusion of gases are inversely proportional to the square roots of their densities or to the square roots of their atoms $/ \mathrm{molecules}$ ' masses (Graham's law). The concentration of a gaseous solute in a solution is proportional to the partial pressure of the gas to which the solution is exposed, a relation known as Henry's law.

25.1 The Pressure of a Mixture of Gases: Dalton's Law

Learning Objectives

- State Dalton's law of partial pressures and use it in calculations involving gaseous mixtures

Unless they chemically react with each other, the individual gases in a mixture of gases do not affect each other's pressure. Each individual gas in a mixture exerts the same pressure that it would exert if it were present alone in the container (Figure 25.1). The pressure exerted by each individual gas in a mixture is called its partial pressure. This observation is summarized by Dalton's law of partial pressures: The total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the component gases:

$$
P_{\text {Total }}=P_{A}+P_{B}+P_{C}+\ldots=\Sigma_{\mathrm{i}} P_{\mathrm{i}}
$$

In the equation $P_{\text {Total }}$ is the total pressure of a mixture of gases, P_{A} is the partial pressure of gas $A ; P_{B}$ is the partial pressure of gas $B ; P_{C}$ is the partial pressure of gas C; and so on.

Figure 25.1
If equal-volume cylinders containing gasses at pressures of $300 \mathrm{kPa}, 450 \mathrm{kPa}$, and 600 kPa are all combined in the same-size cylinder, the total pressure of the gas mixture is 1350 kPa .

The partial pressure of gas A is related to the total pressure of the gas mixture via its mole fraction (X), a unit of concentration defined as the number of moles of a component of a solution divided by the total number of moles of all components:

$$
P_{A}=X_{A} \times P_{\text {Total }} \quad \text { where } \quad X_{A}=\frac{n_{A}}{n_{\text {Total }}}
$$

where P_{A}, X_{A}, and n_{A} are the partial pressure, mole fraction, and number of moles of gas A, respectively, and $n_{\text {Total }}$ is the number of moles of all components in the mixture.

Example 25.1

The Pressure of a Mixture of Gases

A 10.0-L vessel contains 2.50
\times
$10^{-3} \mathrm{~mol}$ of $\mathrm{H}_{2}, 1.00$
\times
$10^{-3} \mathrm{~mol}$ of He , and 3.00
\times
$10^{-4} \mathrm{~mol}$ of Ne at $35^{\circ} \mathrm{C}$.
(a) What are the partial pressures of each of the gases?
(b) What is the total pressure in atmospheres?

Solution

The gases behave independently, so the partial pressure of each gas can be determined from the ideal gas equation, using

$$
P=\frac{n R T}{V}
$$

$$
\begin{aligned}
& P_{\mathrm{H}_{2}}=\frac{\left(2.50 \times 10^{-3} \mathrm{~mol}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K})}{10.0 \mathrm{~L}}=6.32 \times 10^{-3} \mathrm{~atm} \\
& P_{\mathrm{He}}=\frac{\left(1.00 \times 10^{-3} \mathrm{~mol}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K})}{10.0 \mathrm{~L}}=2.53 \times 10^{-3} \mathrm{~atm} \\
& P_{\mathrm{Ne}}=\frac{\left(3.00 \times 10^{-4} \mathrm{~mol}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K})}{10.0 \mathrm{~L}}=7.58 \times 10^{-4} \mathrm{~atm}
\end{aligned}
$$

The total pressure is given by the sum of the partial pressures:

$$
P_{\mathrm{T}}=P_{\mathrm{H}_{2}}+P_{\mathrm{He}}+P_{\mathrm{Ne}}=(0.00632+0.00253+0.00076) \mathrm{atm}=9.61 \times 10^{-3} \mathrm{~atm}
$$

Check Your Learning

A 5.73 -L flask at $25^{\circ} \mathrm{C}$ contains 0.0388 mol of $\mathrm{N}_{2}, 0.147 \mathrm{~mol}$ of CO , and 0.0803 mol of H_{2}. What is the total pressure in the flask in atmospheres?

Answer

1.137 atm

Here is another example of this concept, but dealing with mole fraction calculations.

Example 25.2

The Pressure of a Mixture of Gases

A gas mixture used for anesthesia contains 2.83 mol oxygen, O_{2}, and 8.41 mol nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$. The total pressure of the mixture is 192 kPa .
(a) What are the mole fractions of O_{2} and $\mathrm{N}_{2} \mathrm{O}$?
(b) What are the partial pressures of O_{2} and $\mathrm{N}_{2} \mathrm{O}$?

Solution

The mole fraction is given by
$X_{A}=\frac{n_{A}}{n_{\text {Total }}}$
and the partial pressure is $P_{A}=X_{A}$
\times
$P_{\text {Total }}$
For O_{2},

$$
X_{O_{2}}=\frac{n_{O_{2}}}{n_{\text {Total }}}=\frac{2.83 \mathrm{~mol}}{(2.83+8.41) \mathrm{mol}}=0.252
$$

and
$P_{O_{2}}=X_{O_{2}} \times P_{\text {Total }}=0.252 \times 192 \mathrm{kPa}=48.4 \mathrm{kPa}$

For $\mathrm{N}_{2} \mathrm{O}$,

$$
X_{N_{2} O}=\frac{n_{N_{2} O}}{n_{\text {Total }}}=\frac{8.41 \mathrm{~mol}}{(2.83+8.41) \mathrm{mol}}=0.748
$$

and
$P_{N_{2} \mathrm{O}}=X_{N_{2} \mathrm{O}} \times P_{\text {Total }}=0.748 \times 192 \mathrm{kPa}=144 \mathrm{kPa}$

Check Your Learning

What is the pressure of a mixture of 0.200 g of $\mathrm{H}_{2}, 1.00 \mathrm{~g}$ of N_{2}, and 0.820 g of Ar in a container with a volume of 2.00 L at $20^{\circ} \mathrm{C}$?

Answer

1.87 atm

Collection of Gases over Water

A simple way to collect gases that do not react with water is to capture them in a bottle that has been filled with water and inverted into a dish filled with water. The pressure of the gas inside the bottle can be made equal to the air pressure outside by raising or lowering the bottle. When the water level is the same both inside and outside the bottle (Figure 25.2), the pressure of the gas is equal to the atmospheric pressure, which can be measured with a barometer.

Figure 25.2
When a reaction produces a gas that is collected above water, the trapped gas is a mixture of the gas produced by the reaction and water vapor. If the collection flask is appropriately positioned to equalize the water levels both within and outside the flask, the pressure of the trapped gas mixture will equal the atmospheric pressure outside the flask (see the earlier discussion of manometers).

Collection flask

However, there is another factor we must consider when we measure the pressure of the gas by this method. Water evaporates and there is always gaseous water (water vapor) above a sample of liquid water. As a gas is collected over water, it becomes saturated with water vapor and the total pressure of the mixture equals the partial pressure of the gas plus the partial pressure of the water vapor. The pressure of the pure gas is therefore equal to the total pressure minus the pressure of the water vapor-this is referred to as the "dry" gas pressure, that is, the pressure of the gas only, without water vapor. The vapor pressure of water, which is the pressure exerted by water vapor in equilibrium with liquid water in a closed container, depends on the temperature (Figure 25.3); more detailed information on the temperature
dependence of water vapor can be found in Table 25.1, and vapor pressure will be discussed in more detail in the chapter on liquids.

Figure 25.3

This graph shows the vapor pressure of water at sea level as a function of temperature.

Table 25.1

Vapor Pressure of Ice and Water in Various Temperatures at Sea Level

Temperature ($\left.{ }^{\circ} \mathbf{C}\right)$	Pressure (torr)	Temperature $\mathbf{(~}^{\circ} \mathbf{C}$)	Pressure (torr)	Temperature $\left.\mathbf{(~}^{\circ} \mathbf{C}\right)$	Pressure (torr)
-10	1.95	18	15.5	30	31.8
-5	3.0	19	16.5	35	42.2
-2	3.9	20	17.5	40	55.3
0	4.6	21	18.7	50	92.5
2	5.3	22	19.8	60	149.4
4	6.1	23	21.1	70	233.7
6	7.0	24	22.4	90	355.1
8	9.0	25	23.8	95	525.8
10	10.5	27	25.2	99	633.9
12	12.0	28	28.3	100.0	733.2
14					760.0

Temperature (${ }^{\circ} \mathbf{C}$)	Pressure (torr)	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Pressure (torr)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (torr)
16	13.6	29	30.0	101.0	787.6

Example 25.3

Pressure of a Gas Collected Over Water

If 0.200 L of argon is collected over water at a temperature of $26^{\circ} \mathrm{C}$ and a pressure of 750 torr in a system like that shown in Figure 25.2, what is the partial pressure of argon?

Solution

According to Dalton's law, the total pressure in the bottle (750 torr) is the sum of the partial pressure of argon and the partial pressure of gaseous water:

$$
P_{\mathrm{T}}=P_{\mathrm{Ar}}+P_{\mathrm{H}_{2} \mathrm{O}}
$$

Rearranging this equation to solve for the pressure of argon gives:

$$
P_{\mathrm{Ar}}=P_{\mathrm{T}}-P_{\mathrm{H}_{2} \mathrm{O}}
$$

The pressure of water vapor above a sample of liquid water at $26^{\circ} \mathrm{C}$ is 25.2 torr, so:

$$
P_{\mathrm{Ar}}=750 \text { torr }-25.2 \text { torr }=725 \text { torr }
$$

Check Your Learning

A sample of oxygen collected over water at a temperature of $29.0^{\circ} \mathrm{C}$ and a pressure of 764 torr has a volume of 0.560 L . What volume would the dry oxygen have under the same conditions of temperature and pressure?

Answer

0.583 L

Avogadro’s Law Revisited

All gases that show ideal behavior contain the same number of molecules in the same volume (at the same temperature and pressure). Thus, the ratios of volumes of gases involved in a chemical reaction are given by the coefficients in the equation for the reaction, provided that the gas volumes are measured at the same temperature and pressure.

We can extend Avogadro's law (that the volume of a gas is directly proportional to the number of moles of the gas) to chemical reactions with gases: Gases combine, or react, in definite and simple proportions by volume, provided that all gas volumes are measured at the same temperature and pressure. For example, since nitrogen and hydrogen gases react to produce ammonia gas according to
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$,
a given volume of nitrogen gas reacts with three times that volume of hydrogen gas to produce two times that volume of ammonia gas, if pressure and temperature remain constant.

The explanation for this is illustrated in Figure 25.4. According to Avogadro's law, equal volumes of gaseous $\mathrm{N}_{2}, \mathrm{H}_{2}$, and NH_{3}, at the same temperature and pressure, contain the same number of molecules. Because one molecule of N_{2} reacts with three molecules of H_{2} to produce two molecules of NH_{3}, the volume of H_{2} required is three times the volume of N_{2}, and the volume of NH_{3} produced is two times the volume of N_{2}.

Figure 25.4
One volume of N_{2} combines with three volumes of H_{2} to form two volumes of NH_{3}.

Example 25.4

Reaction of Gases

Propane, $\mathrm{C}_{3} \mathrm{H}_{8}(g)$, is used in gas grills to provide the heat for cooking. What volume of $\mathrm{O}_{2}(g)$ measured at $25^{\circ} \mathrm{C}$ and 760 torr is required to react with 2.7 L of propane measured under the same conditions of temperature and pressure? Assume that the propane undergoes complete combustion.

Solution

The ratio of the volumes of $\mathrm{C}_{3} \mathrm{H}_{8}$ and O_{2} will be equal to the ratio of their coefficients in the balanced equation for the reaction:

$$
\begin{array}{llc}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \\
1 \text { volume }+5 \text { volumes }
\end{array} \quad \rightarrow \quad \begin{gathered}
3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(l) \\
3 \text { volumes }+4 \text { volumes }
\end{gathered}
$$

From the equation, we see that one volume of $\mathrm{C}_{3} \mathrm{H}_{8}$ will react with five volumes of O_{2} :

$$
2.7 \mathrm{LC}_{3} \mathrm{H}_{8} \times \frac{5 \mathrm{LO}_{2}}{1 \mathrm{LC}_{3} \mathrm{H}_{8}}=13.5 \mathrm{~L} \mathrm{O}_{2}
$$

A volume of 13.5 L of O_{2} will be required to react with 2.7 L of $\mathrm{C}_{3} \mathrm{H}_{8}$.

Check Your Learning

An acetylene tank for an oxyacetylene welding torch provides 9340 L of acetylene gas, $\mathrm{C}_{2} \mathrm{H}_{2}$, at $0{ }^{\circ} \mathrm{C}$ and 1 atm. How many tanks of oxygen, each providing 7.00

$$
\times
$$

$10^{3} \mathrm{~L}$ of O_{2} at $0^{\circ} \mathrm{C}$ and 1 atm , will be required to burn the acetylene?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Answer

3.34 tanks (2.34
\times
$10^{4} \mathrm{~L}$)

Example 25.5

Volumes of Reacting Gases

Ammonia is an important fertilizer and industrial chemical. Suppose that a volume of 683 billion cubic feet of gaseous ammonia, measured at $25^{\circ} \mathrm{C}$ and 1 atm, was manufactured. What volume of $\mathrm{H}_{2}(\mathrm{~g})$, measured under the same conditions, was required to prepare this amount of ammonia by reaction with N_{2} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

Solution

Because equal volumes of H_{2} and NH_{3} contain equal numbers of molecules and each three molecules of H_{2} that react produce two molecules of NH_{3}, the ratio of the volumes of H_{2} and NH_{3} will be equal to 3:2. Two volumes of NH_{3}, in this case in units of billion ft^{3}, will be formed from three volumes of H_{2} :

$$
683 \text { billion } \mathrm{ft}^{3} \mathrm{NH}_{3} \times \frac{3 \text { billion } \mathrm{ft}^{3} \mathrm{H}_{2}}{2 \text { billion } \mathrm{ft}^{3} \mathrm{NH}_{3}}=1.02 \times 10^{3} \text { billion } \mathrm{ft}^{3} \mathrm{H}_{2}
$$

The manufacture of 683 billion ft^{3} of NH_{3} required 1020 billion ft^{3} of H_{2}. (At $25^{\circ} \mathrm{C}$ and 1 atm, this is the volume of a cube with an edge length of approximately 1.9 miles.)

Check Your Learning

What volume of $\mathrm{O}_{2}(\mathrm{~g})$ measured at $25^{\circ} \mathrm{C}$ and 760 torr is required to react with 17.0 L of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, measured under the same conditions of temperature and pressure? The products are CO_{2} and water vapor.

Answer

51.0 L

Example 25.6

Volume of Gaseous Product

What volume of hydrogen at $27^{\circ} \mathrm{C}$ and 723 torr may be prepared by the reaction of 8.88 g of gallium with an excess of hydrochloric acid?

$$
2 \mathrm{Ga}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{GaCl}_{3}(a q)+3 \mathrm{H}_{2}(g)
$$

Solution

Convert the provided mass of the limiting reactant, Ga , to moles of hydrogen produced:

$$
8.88 \mathrm{~g} \mathrm{Ga} \times \frac{1 \mathrm{~mol} \mathrm{Ga}}{69.723 \mathrm{~g} \mathrm{Ga}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{Ga}}=0.191 \mathrm{~mol} \mathrm{H}_{2}
$$

Convert the provided temperature and pressure values to appropriate units (K and atm, respectively), and then use the molar amount of hydrogen gas and the ideal gas equation to calculate the volume of gas:

$$
V=\left(\frac{n R T}{P}\right)=\frac{0.191 \mathrm{~mol} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K}}{0.951 \mathrm{~atm}}=4.94 \mathrm{~L}
$$

Check Your Learning

Sulfur dioxide is an intermediate in the preparation of sulfuric acid. What volume of SO_{2} at $343^{\circ} \mathrm{C}$ and 1.21 atm is produced by burning 1.00 kg of sulfur in excess oxygen?

Answer

1.30
\times
$10^{3} \mathrm{~L}$

How Sciences Interconnect

Greenhouse Gases and Climate Change

The thin skin of our atmosphere keeps the earth from being an ice planet and makes it habitable. In fact, this is due to less than 0.5% of the air molecules. Of the energy from the sun that reaches the earth, almost

```
\frac{1}{3}
```

is reflected back into space, with the rest absorbed by the atmosphere and the surface of the earth. Some of the energy that the earth absorbs is re-emitted as infrared (IR) radiation, a portion of which passes back out through the atmosphere into space. Most of this IR radiation, however, is absorbed by certain atmospheric gases, effectively trapping heat within the atmosphere in a phenomenon known as the greenhouse effect. This effect maintains global temperatures within the range needed to sustain life on earth. Without our atmosphere, the earth's average temperature would be lower by more than $30^{\circ} \mathrm{C}$ (nearly $60^{\circ} \mathrm{F}$). The major greenhouse gases (GHGs) are water vapor, carbon dioxide, methane, and ozone. Since the Industrial Revolution, human activity has been increasing the concentrations of GHGs, which have changed the energy balance and are significantly altering the earth's climate (Figure 25.5).

Figure 25.5
Greenhouse gases trap enough of the sun's energy to make the planet habitable-this is known as the greenhouse effect. Human activities are increasing greenhouse gas levels, warming the planet and causing more extreme weather events.

There is strong evidence from multiple sources that higher atmospheric levels of CO_{2} are caused by human activity, with fossil fuel burning accounting for about
$\frac{3}{4}$
of the recent increase in CO_{2}. Reliable data from ice cores reveals that CO_{2} concentration in the atmosphere is at the highest level in the past 800,000 years; other evidence indicates that it may be at its highest level in 20 million years. In recent years, the CO_{2} concentration has increased from preindustrial levels of $\sim 280 \mathrm{ppm}$ to more than 400 ppm today (Figure 25.6).

Figure 25.6
CO_{2} levels over the past 700,000 years were typically from 200-300 ppm, with a steep, unprecedented increase over the past 50 years.

Carbon Dioxide in the Atmosphere

Link to Learning

Watch this video that explains greenhouse gases and global warming:

Watch on YouTube

Portrait of a Chemist

Susan Solomon

Atmospheric and climate scientist Susan Solomon (Figure 25.7) is the author of one of The New York Times books of the year (The Coldest March, 2001), one of Time magazine's 100 most influential people in the world (2008), and a working group leader of the Intergovernmental Panel on Climate Change (IPCC), which was the recipient of the 2007 Nobel Peace Prize. She helped determine and explain the cause of the formation of the ozone hole over Antarctica, and has authored many important papers on climate change. She has been awarded the top scientific honors in the US and France (the National Medal of Science and the Grande Medaille, respectively), and is a member of the National Academy of Sciences, the Royal Society, the French Academy of Sciences, and the European Academy of Sciences. Formerly a professor at the University of Colorado, she is now at MIT, and continues to work at NOAA.

For more information, watch this video about Susan Solomon:

Watch on YouTube

Figure 25.7
Susan Solomon's research focuses on climate change and has been instrumental in determining the cause of the ozone hole over Antarctica. (credit: National Oceanic and Atmospheric Administration)

Link to Supplemental Exercises
Supplemental exercises are available if you would like more practice with these concepts.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

25.2 Effusion and Diffusion of Gases

Learning Objectives

By the end of this section, you will be able to:

- Define and explain effusion and diffusion
- State Graham's law and use it to compute relevant gas properties

If you have ever been in a room when a piping hot pizza was delivered, you have been made aware of the fact that gaseous molecules can quickly spread throughout a room, as evidenced by the pleasant aroma that soon reaches your nose. Although gaseous molecules travel at tremendous speeds (hundreds of meters per second), they collide with other gaseous molecules and travel in many different directions before reaching the desired target. At room temperature, a gaseous molecule will experience billions of collisions per second. The mean free path is the average distance a molecule travels between collisions. The mean free path increases with decreasing pressure; in general, the mean free path for a gaseous molecule will be hundreds of times the diameter of the molecule

In general, we know that when a sample of gas is introduced to one part of a closed container, its molecules very quickly disperse throughout the container; this process by which molecules disperse in space in response to differences in concentration is called diffusion (shown in Figure 25.8). The gaseous atoms or molecules are, of course, unaware of any concentration gradient, they simply move randomly-regions of higher concentration have more particles than regions of lower concentrations, and so a net movement of species from high to low concentration areas takes place. In a closed environment, diffusion will ultimately result in equal concentrations of gas throughout, as
depicted in Figure 25.8. The gaseous atoms and molecules continue to move, but since their concentrations are the same in both bulbs, the rates of transfer between the bulbs are equal (no net transfer of molecules occurs).

Figure 25.8
(a) Two gases, H_{2} and O_{2}, are initially separated. (b) When the stopcock is opened, they mix together. The lighter gas, H_{2}, passes through the opening faster than O_{2}, so just after the stopcock is opened, more H_{2} molecules move to the O_{2} side than O_{2} molecules move to the H_{2} side. (c) After a short time, both the slower-moving O_{2} molecules and the fastermoving H_{2} molecules have distributed themselves evenly on both sides of the vessel.

We are often interested in the rate of diffusion, the amount of gas passing through some area per unit time:

$$
\text { rate of diffusion }=\frac{\text { amount of gas passing through an area }}{\text { unit of time }}
$$

The diffusion rate depends on several factors: the concentration gradient (the increase or decrease in concentration from one point to another); the amount of surface area available for diffusion; and the distance the gas particles must travel. Note also that the time required for diffusion to occur is inversely proportional to the rate of diffusion, as shown in the rate of diffusion equation.

A process involving movement of gaseous species similar to diffusion is effusion, the escape of gas molecules through a tiny hole such as a pinhole in a balloon into a vacuum (Figure 25.9). Although diffusion and effusion rates both depend on the molar mass of the gas involved, their rates are not equal; however, the ratios of their rates are the same.

Figure 25.9
Diffusion involves the unrestricted dispersal of molecules throughout space due to their random motion. When this process is restricted to passage of molecules through very small openings in a physical barrier, the process is called effusion.

If a mixture of gases is placed in a container with porous walls, the gases effuse through the small openings in the walls. The lighter gases pass through the small openings more rapidly (at a higher rate) than the heavier ones (Figure
25.10). In 1832, Thomas Graham studied the rates of effusion of different gases and formulated Graham's law of effusion: The rate of effusion of a gas is inversely proportional to the square root of the mass of its particles:

$$
\text { rate of effusion } \propto \frac{1}{\sqrt{M}}
$$

This means that if two gases A and B are at the same temperature and pressure, the ratio of their effusion rates is inversely proportional to the ratio of the square roots of the masses of their particles:

$$
\frac{\text { rate of effusion of } \mathrm{A}}{\text { rate of effusion of } \mathrm{B}}=\frac{\sqrt{\mathscr{M}_{\mathrm{B}}}}{\sqrt{\mathscr{M}_{\mathrm{A}}}}
$$

Figure 25.10
The left photograph shows two balloons inflated with different gases, helium (orange) and argon (blue). The right-side photograph shows the balloons approximately 12 hours after being filled, at which time the helium balloon has become noticeably more deflated than the argon balloon, due to the greater effusion rate of the lighter helium gas. (credit: modification of work by Paul Flowers)

A balloon filled with He gas talus 6.0 his to deflate to $50 \%_{0}$ of its ongind volume. How long will it take for an identical balloon fined with the same volume of Hydhoryen (instal of te) gas to decrease it t volume ben 50\%?
Rate $_{\text {te }}=\frac{50^{\circ} \mathrm{h}}{6 \mathrm{hrs}}=\frac{8.33}{\mathrm{hr}} \sqrt{\frac{M_{k+}}{M_{k_{2}}}}$, rate

$$
\frac{\text { rate }_{\mathrm{H}_{2}}}{\text { rate }}=\sqrt{\frac{M_{H e}}{M_{H_{2}}}}
$$

Watch on YouTube

Example 25.7

Applying Graham's Law to Rates of Effusion

Calculate the ratio of the rate of effusion of hydrogen to the rate of effusion of oxygen.

Solution

From Graham's law, we have:

$$
\frac{\text { rate of effusion of hydrogen }}{\text { rate of effusion of oxygen }}=\frac{\sqrt{32 \mathrm{~g} \mathrm{~mol}^{-1}}}{\sqrt{2 \mathrm{~g} \mathrm{~mol}^{-1}}}=\frac{\sqrt{16}}{\sqrt{1}}=\frac{4}{1}
$$

Hydrogen effuses four times as rapidly as oxygen.

Check Your Learning

At a particular pressure and temperature, nitrogen gas effuses at the rate of $79 \mathrm{~mL} / \mathrm{s}$. Under the same conditions, at what rate will sulfur dioxide effuse?

Answer

$52 \mathrm{~mL} / \mathrm{s}$

Example 25.8

Effusion Time Calculations

It takes 243 s for 4.46
\times
$10^{-5} \mathrm{~mol}$ Xe to effuse through a tiny hole. Under the same conditions, how long will it take 4.46
\times
$10^{-5} \mathrm{~mol}$ Ne to effuse?

Solution

It is important to resist the temptation to use the times directly, and to remember how rate relates to time as well as how it relates to mass. Recall the definition of rate of effusion:

$$
\text { rate of effusion }=\frac{\text { amount of gas transferred }}{\text { time }}
$$

and combine it with Graham's law:

$$
\frac{\text { rate of effusion of gas Xe }}{\text { rate of effusion of gas } \mathrm{Ne}}=\frac{\sqrt{\mathscr{M}_{\mathrm{Ne}}}}{\sqrt{\mathcal{M}_{\mathrm{Xe}}}}
$$

To get:

$$
\frac{\frac{\text { amount of Xe transferred }}{\text { time for Xe }}}{\frac{\text { amount of Ne transferred }}{\text { time for } \mathrm{Ne}}}=\frac{\sqrt{\mathcal{M}_{\mathrm{Ne}}}}{\sqrt{\mathcal{M}_{\mathrm{Xe}}}}
$$

Noting that amount of $A=$ amount of B, and solving for time for $N e$:

$$
\frac{\frac{\text { amount of } \mathrm{Xe}}{\text { time for } \mathrm{Xe}}}{\frac{\text { amount of } \mathrm{Ne}}{\text { time for } \mathrm{Ne}}}=\frac{\text { time for } \mathrm{Ne}}{\text { time for } \mathrm{Xe}}=\frac{\sqrt{\mathbb{M}_{\mathrm{Ne}}}}{\sqrt{\mathbb{M}_{\mathrm{Xe}}}}=\frac{\sqrt{\mathbb{M}_{\mathrm{Ne}}}}{\sqrt{\mathbb{M}_{\mathrm{Xe}}}}
$$

and substitute values:

$$
\frac{\text { time for } \mathrm{Ne}}{243 \mathrm{~s}}=\frac{\sqrt{20.2 \mathrm{~g} \mathrm{~mol}}}{131.3 \mathrm{~g} \mathrm{~mol}}=0.392
$$

Finally, solve for the desired quantity:

$$
\text { time for } \mathrm{Ne}=0.392 \times 243 \mathrm{~s}=95.3 \mathrm{~s}
$$

Note that this answer is reasonable: Since Ne is lighter than Xe , the effusion rate for Ne will be larger than that for Xe , which means the time of effusion for Ne will be smaller than that for Xe .

Check Your Learning

A party balloon filled with helium deflates to

$\frac{2}{3}$

of its original volume in 8.0 hours. How long will it take an identical balloon filled with the same number of moles of air ($\mathcal{M}=28.2 \mathrm{~g} / \mathrm{mol}$) to deflate to
$\frac{1}{2}$
of its original volume?

Answer

Example 25.9

Determining Molar Mass Using Graham's Law

An unknown gas effuses 1.66 times more rapidly than CO_{2}. What is the molar mass of the unknown gas? Can you make a reasonable guess as to its identity?

Solution

From Graham's law, we have:

$$
\frac{\text { rate of effusion of Unknown }}{\text { rate of effusion of } \mathrm{CO}_{2}}=\frac{\sqrt{\mathscr{M}_{\mathrm{CO}_{2}}}}{\sqrt{\mathscr{M}_{\text {Unknown }}}}
$$

Plug in known data:

$$
\frac{1.66}{1}=\frac{\sqrt{44.0 \mathrm{~g} / \mathrm{mol}}}{\sqrt{\mathcal{M}_{\text {Unknown }}}}
$$

Solve:

$$
\mathcal{M}_{\text {Unknown }}=\frac{44.0 \mathrm{~g} / \mathrm{mol}}{(1.66)^{2}}=16.0 \mathrm{~g} / \mathrm{mol}
$$

The gas could well be CH_{4}, the only gas with this molar mass.

Check Your Learning

Hydrogen gas effuses through a porous container 8.97-times faster than an unknown gas. Estimate the molar mass of the unknown gas.

Answer

$163 \mathrm{~g} / \mathrm{mol}$

How Sciences Interconnect

Use of Diffusion for Nuclear Energy Applications: Uranium Enrichment

Gaseous diffusion has been used to produce enriched uranium for use in nuclear power plants and weapons. Naturally occurring uranium contains only 0.72% of ${ }^{235} \mathrm{U}$, the kind of uranium that is "fissile," that is, capable of sustaining a nuclear fission chain reaction. Nuclear reactors require fuel that is $2-5 \%{ }^{235} \mathrm{U}$, and nuclear bombs need even higher concentrations. One way to enrich uranium to the desired levels is to take advantage of Graham's law. In a gaseous diffusion enrichment plant, uranium hexafluoride (UF_{6}, the only uranium compound that is volatile enough to work) is slowly pumped through large cylindrical vessels called diffusers, which contain porous barriers with microscopic openings. The process is one of diffusion because the other side of the barrier is not evacuated. The ${ }^{235} \mathrm{UF}_{6}$ molecules have a higher average speed and diffuse through the barrier a little faster than the heavier ${ }^{238} \mathrm{UF}_{6}$ molecules. The gas that has passed through the barrier is slightly enriched in ${ }^{235} \mathrm{UF}_{6}$ and the residual gas is slightly depleted. The small difference in molecular weights between ${ }^{235} \mathrm{UF}_{6}$ and ${ }^{238} \mathrm{UF}_{6}$ only about 0.4% enrichment, is achieved in one diffuser (Figure 25.11). But by connecting many diffusers in a sequence of stages (called a cascade), the desired level of enrichment can be attained.

Figure 25.11
In a diffuser, gaseous $U F_{6}$ is pumped through a porous barrier, which partially separates ${ }^{235} U F_{6}$ from ${ }^{238} U F_{6}$ The $U F_{6}$ must pass through many large diffuser units to achieve sufficient enrichment in ${ }^{235} \mathrm{U}$.

The large scale separation of gaseous ${ }^{235} \mathrm{UF}_{6}$ from ${ }^{238} \mathrm{UF}_{6}$ was first done during the World War II, at the atomic energy installation in Oak Ridge, Tennessee, as part of the Manhattan Project (the development of the first atomic bomb). Although the theory is simple, this required surmounting many daunting technical challenges to make it work in practice. The barrier must have tiny, uniform holes (about $10^{-6} \mathrm{~cm}$ in diameter) and be porous enough to produce high flow rates. All materials (the barrier, tubing, surface coatings, lubricants, and gaskets) need to be able to contain, but not react with, the highly reactive and corrosive UF_{6}.

Because gaseous diffusion plants require very large amounts of energy (to compress the gas to the high pressures required and drive it through the diffuser cascade, to remove the heat produced during compression, and so on), it is now being replaced by gas centrifuge technology, which requires far less
energy. A current hot political issue is how to deny this technology to Iran, to prevent it from producing enough enriched uranium for them to use to make nuclear weapons.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

25.3 Solubility

Learning Objectives

By the end of this section, you will be able to:

- Describe the effects of temperature and pressure on solubility
- State Henry's law and use it in calculations involving the solubility of a gas in a liquid

Imagine adding a small amount of sugar to a glass of water, stirring until all the sugar has dissolved, and then adding a bit more. You can repeat this process until the sugar concentration of the solution reaches its natural limit, a limit determined primarily by the relative strengths of the solute-solute, solute-solvent, and solvent-solvent attractive forces discussed in the previous two modules of this chapter. You can be certain that you have reached this limit because, no matter how long you stir the solution, undissolved sugar remains. The concentration of sugar in the solution at this point is known as its solubility.

The solubility of a solute in a particular solvent is the maximum concentration that may be achieved under given conditions when the dissolution process is at equilibrium.

When a solute's concentration is equal to its solubility, the solution is said to be saturated with that solute. If the solute's concentration is less than its solubility, the solution is said to be unsaturated. A solution that contains a relatively low concentration of solute is called dilute, and one with a relatively high concentration is called concentrated.

Link to Learning

Use this interactive simulation to prepare various saturated solutions.

Solutions may be prepared in which a solute concentration exceeds its solubility. Such solutions are said to be supersaturated, and they are interesting examples of nonequilibrium states (a detailed treatment of this important concept is provided in the text chapters on equilibrium). For example, the carbonated beverage in an open container that has not yet "gone flat" is supersaturated with carbon dioxide gas; given time, the CO_{2} concentration will decrease until it reaches its solubility.

Link to Learning

Watch this impressive video showing the precipitation of sodium acetate from a supersaturated solution.

Solutions of Gases in Liquids

As for any solution, the solubility of a gas in a liquid is affected by the intermolecular attractive forces between solute and solvent species. Unlike solid and liquid solutes, however, there is no solute-solute intermolecular attraction to overcome when a gaseous solute dissolves in a liquid solvent since the atoms or molecules comprising a gas are far separated and experience negligible interactions. Consequently, solute-solvent interactions are the sole energetic factor affecting solubility. For example, the water solubility of oxygen is approximately three times greater than that of helium (there are greater dispersion forces between water and the larger oxygen molecules) but 100 times less than the solubility of chloromethane, CHCl_{3} (polar chloromethane molecules experience dipole-dipole attraction to polar water molecules). Likewise note the solubility of oxygen in hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$, is approximately 20 times greater than it is in water because greater dispersion forces exist between oxygen and the larger hexane molecules.

Temperature is another factor affecting solubility, with gas solubility typically decreasing as temperature increases (Figure 25.12). This inverse relation between temperature and dissolved gas concentration is responsible for one of the major impacts of thermal pollution in natural waters.

Figure 25.12
The solubilities of these gases in water decrease as the temperature increases. All solubilities were measured with a constant pressure of 101.3 kPa (1 atm) of gas above the solutions.

When the temperature of a river, lake, or stream is raised, the solubility of oxygen in the water is decreased. Decreased levels of dissolved oxygen may have serious consequences for the health of the water's ecosystems and, in severe cases, can result in large-scale fish kills (Figure 25.13).

Figure 25.13
(a) The small bubbles of air in this glass of chilled water formed when the water warmed to room temperature and the solubility of its dissolved air decreased. (b) The decreased solubility of oxygen in natural waters subjected to thermal pollution can result in large-scale fish kills. (credit a: modification of work by Liz West; credit b: modification of work by U.S. Fish and Wildlife Service)

The solubility of a gaseous solute is also affected by the partial pressure of solute in the gas to which the solution is exposed. Gas solubility increases as the pressure of the gas increases. Carbonated beverages provide a nice illustration of this relationship. The carbonation process involves exposing the beverage to a relatively high pressure of carbon
dioxide gas and then sealing the beverage container, thus saturating the beverage with CO_{2} at this pressure. When the beverage container is opened, a familiar hiss is heard as the carbon dioxide gas pressure is released, and some of the dissolved carbon dioxide is typically seen leaving solution in the form of small bubbles (Figure 25.14). At this point, the beverage is supersaturated with carbon dioxide and, with time, the dissolved carbon dioxide concentration will decrease to its equilibrium value and the beverage will become "flat."

Figure 25.14
Opening the bottle of carbonated beverage reduces the pressure of the gaseous carbon dioxide above the beverage. The solubility of CO_{2} is thus lowered, and some dissolved carbon dioxide may be seen leaving the solution as small gas bubbles. (credit: modification of work by Derrick Coetzee)

For many gaseous solutes, the relation between solubility, C_{g}, and partial pressure, P_{g}, is a proportional one:

$$
C_{\mathrm{g}}=k P_{\mathrm{g}}
$$

where k is a proportionality constant that depends on the identity of the gaseous solute, the identity of the solvent, and the solution temperature. This is a mathematical statement of Henry's law: The quantity of an ideal gas that dissolves in a definite volume of liquid is directly proportional to the pressure of the gas.

If the pressure inside a $2 L$ bottle of ginger ale is 3 atm at $25^{\circ} \mathrm{C}$, how many grams of CO_{2} are disselvedin the soda? $K_{H}\left(\cos _{2}, 5^{\circ} \mathrm{C}\right)=3.5 \times 10^{-2} \frac{\mathrm{~mol}}{\mathrm{matm}^{-a t m}}$

$$
C_{c_{2}}=K_{H} P_{c_{2}}
$$

Watch on YouTube

Example 25.10

Application of Henry's Law

At $20^{\circ} \mathrm{C}$, the concentration of dissolved oxygen in water exposed to gaseous oxygen at a partial pressure of 101.3 kPa is 1.38
\times
$10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. Use Henry's law to determine the solubility of oxygen when its partial pressure is 20.7 kPa , the approximate pressure of oxygen in earth's atmosphere.

Solution

According to Henry's law, for an ideal solution the solubility, C_{g}, of a gas (1.38
\times
$10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, in this case) is directly proportional to the pressure, P_{g}, of the undissolved gas above the solution (101.3 kPa in this case). Because both C_{g} and P_{g} are known, this relation can be rearranged and used to solve for k.

$$
\begin{array}{rlc}
C_{\mathrm{g}} & = & k P_{\mathrm{g}} \\
k & = & \frac{C_{\mathrm{g}}}{P_{\mathrm{g}}} \\
& = & \frac{1.38 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}}{101.3 \mathrm{kPa}^{2}} \\
& = & 1.36 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{kPa}^{-1}
\end{array}
$$

Now, use k to find the solubility at the lower pressure

$$
\begin{aligned}
& C_{\mathrm{g}}= \\
& k P_{\mathrm{g}} \\
&=\begin{array}{c}
1.36 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{kPa}^{-1} \times 20.7 \mathrm{kPa} \\
2.82 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}
\end{array}
\end{aligned}
$$

Note that various units may be used to express the quantities involved in these sorts of computations. Any combination of units that yield to the constraints of dimensional analysis are acceptable.

Check Your Learning

Exposing a 100.0 mL sample of water at $0{ }^{\circ} \mathrm{C}$ to an atmosphere containing a gaseous solute at 152 torr resulted in the dissolution of 1.45
\times
$10^{-3} \mathrm{~g}$ of the solute. Use Henry's law to determine the solubility of this gaseous solute when its pressure is 760 torr.

Answer

7.25
\times
10^{-3} in 100.0 mL or $0.0725 \mathrm{~g} / \mathrm{L}$

Example 25.11

Thermal Pollution and Oxygen Solubility

A certain species of freshwater trout requires a dissolved oxygen concentration of $7.5 \mathrm{mg} / \mathrm{L}$. Could these fish thrive in a thermally polluted mountain stream (water temperature is $30.0^{\circ} \mathrm{C}$, partial pressure of atmospheric oxygen is 0.17 atm)? Use the data in Figure 25.12 to estimate a value for the Henry's law constant at this temperature.

Solution

First, estimate the Henry's law constant for oxygen in water at the specified temperature of $30.0^{\circ} \mathrm{C}$ (Figure $\underline{25.12}$ indicates the solubility at this temperature is approximately $\sim 1.2 \mathrm{~mol} / \mathrm{L}$).

$$
k=\frac{C_{\mathrm{g}}}{P_{\mathrm{g}}}=1.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L} / 1.00 \mathrm{~atm}=1.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{~atm}
$$

Then, use this k value to compute the oxygen solubility at the specified oxygen partial pressure, 0.17 atm .

$$
C_{g}=k P_{g}=\left(1.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{~atm}\right)(0.17 \mathrm{~atm})=2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}
$$

Finally, convert this dissolved oxygen concentration from $\mathrm{mol} / \mathrm{L}$ to mg / L.

$$
\left(2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)(32.0 \mathrm{~g} / 1 \mathrm{~mol})(1000 \mathrm{mg} / \mathrm{g})=6.4 \mathrm{mg} / \mathrm{L}
$$

This concentration is lesser than the required minimum value of $7.5 \mathrm{mg} / \mathrm{L}$, and so these trout would likely not thrive in the polluted stream.

Check Your Learning

What dissolved oxygen concentration is expected for the stream above when it returns to a normal summer time temperature of $15^{\circ} \mathrm{C}$?

Answer

$8.2 \mathrm{mg} / \mathrm{L}$

Chemistry in Everyday Life

Decompression Sickness or "The Bends"

Decompression sickness (DCS), or "the bends," is an effect of the increased pressure of the air inhaled by scuba divers when swimming underwater at considerable depths. In addition to the pressure exerted by the atmosphere, divers are subjected to additional pressure due to the water above them, experiencing an increase of approximately 1 atm for each 10 m of depth. Therefore, the air inhaled by a diver while submerged contains gases at the corresponding higher ambient pressure, and the concentrations of the gases dissolved in the diver's blood are proportionally higher per Henry's law.

As the diver ascends to the surface of the water, the ambient pressure decreases and the dissolved gases becomes less soluble. If the ascent is too rapid, the gases escaping from the diver's blood may form bubbles that can cause a variety of symptoms ranging from rashes and joint pain to paralysis and death. To avoid DCS, divers must ascend from depths at relatively slow speeds (10 or $20 \mathrm{~m} / \mathrm{min}$) or otherwise make several decompression stops, pausing for several minutes at given depths during the ascent. When these preventive measures are unsuccessful, divers with DCS are often provided hyperbaric oxygen therapy in pressurized vessels called decompression (or recompression) chambers (Figure 25.15). Researchers are also investigating related body reactions and defenses in order to develop better testing and treatment for decompression sicknetss. For example, Ingrid Eftedal, a barophysiologist specializing in bodily reactions to diving, has shown that white blood cells undergo chemical and genetic changes as a result of the condition; these can potentially be used to create biomarker tests and other methods to manage decompression sickness.

Figure 25.15
(a) US Navy divers undergo training in a recompression chamber. (b) Divers receive hyperbaric oxygen therapy.

(a)

(b)

Deviations from Henry's law are observed when a chemical reaction takes place between the gaseous solute and the solvent. Thus, for example, the solubility of ammonia in water increases more rapidly with increasing pressure than predicted by the law because ammonia, being a base, reacts to some extent with water to form ammonium ions and hydroxide ions.

Gases can form supersaturated solutions. If a solution of a gas in a liquid is prepared either at low temperature or under pressure (or both), then as the solution warms or as the gas pressure is reduced, the solution may become supersaturated. In 1986, more than 1700 people in Cameroon were killed when a cloud of gas, almost certainly carbon dioxide, bubbled from Lake Nyos (Figure 25.16), a deep lake in a volcanic crater. The water at the bottom of Lake Nyos is saturated with carbon dioxide by volcanic activity beneath the lake. It is believed that the lake underwent a turnover due to gradual heating from below the lake, and the warmer, less-dense water saturated with carbon dioxide reached the surface. Consequently, tremendous quantities of dissolved CO_{2} were released, and the colorless gas, which is denser than air, flowed down the valley below the lake and suffocated humans and animals living in the valley.

Figure 25.16
(a) It is believed that the 1986 disaster that killed more than 1700 people near Lake Nyos in Cameroon resulted when a large volume of carbon dioxide gas was released from the lake. (b) A CO_{2} vent has since been installed to help outgas the lake in a slow, controlled fashion and prevent a similar catastrophe from happening in the future. (credit a: modification of work by Jack Lockwood; credit b: modification of work by Bill Evans)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/daltons_law_grahams_law_henrys_law.

Kinetic Molecular Theory, Real Gases

Kinetic molecular theory
Real gases
Non-ideal gas behavior

The kinetic molecular theory is a simple but very effective model that effectively explains ideal gas behavior. The theory assumes that gases consist of widely separated molecules of negligible volume that are in constant motion, colliding elastically with one another and the walls of their container with average speeds determined by their absolute temperatures. The individual molecules of a gas exhibit a range of speeds, the distribution of these speeds being dependent on the temperature of the gas and the mass of its molecules. Gas molecules possess a finite volume and experience forces of attraction for one another. Consequently, gas behavior is not necessarily described well by the ideal gas law. Under conditions of low pressure and high temperature, these factors are negligible, the ideal gas equation is an accurate description of gas behavior, and the gas is said to exhibit ideal behavior. However, at lower temperatures and higher pressures, corrections for molecular volume and molecular attractions are required to account for finite molecular size and attractive forces. The van der Waals equation is a modified version of the ideal gas law that can be used to account for the non-ideal behavior of gases under these conditions.

26.1 The Kinetic-Molecular Theory

Learning Objectives

By the end of this section, you will be able to:

- State the postulates of the kinetic-molecular theory
- Use this theory's postulates to explain the gas laws

The gas laws that we have seen to this point, as well as the ideal gas equation, are empirical, that is, they have been derived from experimental observations. The mathematical forms of these laws closely describe the macroscopic behavior of most gases at pressures less than about 1 or 2 atm . Although the gas laws describe relationships that have been verified by many experiments, they do not tell us why gases follow these relationships.

The kinetic molecular theory (KMT) is a simple microscopic model that effectively explains the gas laws described in previous modules of this chapter. This theory is based on the following five postulates described here. (Note: The term
"molecule" will be used to refer to the individual chemical species that compose the gas, although some gases are composed of atomic species, for example, the noble gases.)

1. Gases are composed of molecules that are in continuous motion, travelling in straight lines and changing direction only when they collide with other molecules or with the walls of a container.
2. The molecules composing the gas are negligibly small compared to the distances between them.
3. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
4. Gas molecules exert no attractive or repulsive forces on each other or the container walls; therefore, their collisions are elastic (do not involve a loss of energy).
5. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.

The test of the KMT and its postulates is its ability to explain and describe the behavior of a gas. The various gas laws can be derived from the assumptions of the KMT, which have led chemists to believe that the assumptions of the theory accurately represent the properties of gas molecules. We will first look at the individual gas laws (Boyle's, Charles's, Amontons's, Avogadro's, and Dalton's laws) conceptually to see how the KMT explains them. Then, we will more carefully consider the relationships between molecular masses, speeds, and kinetic energies with temperature, and explain Graham's law.

The Kinetic-Molecular Theory Explains the Behavior of Gases, Part I

Recalling that gas pressure is exerted by rapidly moving gas molecules and depends directly on the number of molecules hitting a unit area of the wall per unit of time, we see that the KMT conceptually explains the behavior of a gas as follows:

- Amontons's law. If the temperature is increased, the average speed and kinetic energy of the gas molecules increase. If the volume is held constant, the increased speed of the gas molecules results in more frequent and more forceful collisions with the walls of the container, therefore increasing the pressure (Figure 26.1).
- Charles's law. If the temperature of a gas is increased, a constant pressure may be maintained only if the volume occupied by the gas increases. This will result in greater average distances traveled by the molecules to reach the container walls, as well as increased wall surface area. These conditions will decrease the both the frequency of molecule-wall collisions and the number of collisions per unit area, the combined effects of which balance the effect of increased collision forces due to the greater kinetic energy at the higher temperature.
- Boyle's law. If the gas volume volume of a given amount of gas at a given temperature is decreased (that is, if the gas is compressed), the molecules will be exposed to a decreased container wall area. Collisions with the container wall will therefore occur more frequently and the pressure exerted by the gas will increase (Figure 26.1).
- Avogadro's law. At constant pressure and temperature, the frequency and force of molecule-wall collisions are constant. Under such conditions, increasing the number of gaseous molecules will require a proportional increase in the container volume in order to yield a decrease in the number of collisions per unit area to compensate for the increased frequency of collisions (Figure 26.1).
- Dalton's Law. Because of the large distances between them, the molecules of one gas in a mixture bombard the container walls with the same frequency whether other gases are present or not, and the total pressure of a gas mixture equals the sum of the (partial) pressures of the individual gases.

Figure 26.1

(a) When gas temperature increases, gas pressure increases due to increased force and frequency of molecular collisions. (b) When volume decreases, gas pressure increases due to increased frequency of molecular collisions. (c) When the amount of gas increases at a constant pressure, volume increases to yield a constant number of collisions per unit wall area per unit time.

Molecular Speeds and Kinetic Energy

The previous discussion showed that the KMT qualitatively explains the behaviors described by the various gas laws. The postulates of this theory may be applied in a more quantitative fashion to derive these individual laws. To do this, we must first look at speeds and kinetic energies of gas molecules, and the temperature of a gas sample.

In a gas sample, individual molecules have widely varying speeds; however, because of the vast number of molecules and collisions involved, the molecular speed distribution and average speed are constant. This molecular speed distribution is known as a Maxwell-Boltzmann distribution, and it depicts the relative numbers of molecules in a bulk sample of gas that possesses a given speed (Figure 26.2).

Figure 26.2

The molecular speed distribution for oxygen gas at 300 K is shown here. Very few molecules move at either very low or very high speeds. The number of molecules with intermediate speeds increases rapidly up to a maximum, which is the most probable speed, then drops off rapidly. Note that the most probable speed, v_{p}, is a little less than $400 \mathrm{~m} / \mathrm{s}$, while the root mean square speed, $u_{r m s}$, is closer to $500 \mathrm{~m} / \mathrm{s}$.

The kinetic energy (KE) of a particle of mass (m) and speed (u) is given by:

$$
\mathrm{KE}=\frac{1}{2} m u^{2}
$$

Expressing mass in kilograms and speed in meters per second will yield energy values in units of joules $\left(\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\right)$. To deal with a large number of gas molecules, we use averages for both speed and kinetic energy. In the KMT, the root mean square speed of a particle, $u_{\text {rms }}$, is defined as the square root of the average of the squares of the speeds with $n=$ the number of particles:

$$
u_{\mathrm{rms}}=\sqrt{\overline{u^{2}}}=\frac{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+\ldots}}{n}
$$

The average kinetic energy for a mole of particles, $\mathrm{KE}_{\text {avg }}$, is then equal to:

$$
\mathrm{KE}_{\mathrm{avg}}=\frac{1}{2} M u_{\mathrm{rms}}^{2}
$$

where M is the molar mass expressed in units of $\mathrm{kg} / \mathrm{mol}$. The $\mathrm{KE}_{\text {avg }}$ of a mole of gas molecules is also directly proportional to the temperature of the gas and may be described by the equation:

$$
\mathrm{KE}_{\mathrm{avg}}=\frac{3}{2} R T
$$

where R is the gas constant and T is the kelvin temperature. When used in this equation, the appropriate form of the gas constant is $8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\left(8.314 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$. These two separate equations for $\mathrm{KE}_{\text {avg }}$ may be combined and rearranged to yield a relation between molecular speed and temperature:

$$
\begin{gathered}
\frac{1}{2} M u_{\mathrm{rms}}^{2}=\frac{3}{2} R T \\
u_{\mathrm{rms}}=\frac{\sqrt{3 R T}}{M}
\end{gathered}
$$

Example 26.1

Calculation of u_{rms}

Calculate the root-mean-square speed for a nitrogen molecule at $30^{\circ} \mathrm{C}$.

Solution

Convert the temperature into Kelvin:

$$
30^{\circ} \mathrm{C}+273=303 \mathrm{~K}
$$

Determine the molar mass of nitrogen in kilograms:

$$
\frac{28.0 \mathrm{~g}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.028 \mathrm{~kg} / \mathrm{mol}
$$

Replace the variables and constants in the root-mean-square speed equation, replacing Joules with the equivalent $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$.

$$
\begin{gathered}
u_{\mathrm{rms}}=\frac{\sqrt{3 R T}}{M} \\
u_{\mathrm{rms}}=\frac{\sqrt{3(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(303 \mathrm{~K})}}{(0.028 \mathrm{~kg} / \mathrm{mol})}=\sqrt{2.70 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}}=519 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Check Your Learning

Calculate the root-mean-square speed for a mole of oxygen molecules at $-23^{\circ} \mathrm{C}$.

Answer

441 m/s

If the temperature of a gas increases, its $\mathrm{KE}_{\text {avg }}$ increases, more molecules have higher speeds and fewer molecules have lower speeds, and the distribution shifts toward higher speeds overall, that is, to the right. If temperature decreases, $\mathrm{KE}_{\text {avg }}$ decreases, more molecules have lower speeds and fewer molecules have higher speeds, and the distribution shifts toward lower speeds overall, that is, to the left. This behavior is illustrated for nitrogen gas in Figure 26.3.

Figure 26.3

The molecular speed distribution for nitrogen gas $\left(N_{2}\right)$ shifts to the right and flattens as the temperature increases; it shifts to the left and heightens as the temperature decreases.

At a given temperature, all gases have the same $\mathrm{KE}_{\text {avg }}$ for their molecules. Gases composed of lighter molecules have more high-speed particles and a higher $u_{r m s}$, with a speed distribution that peaks at relatively higher speeds. Gases consisting of heavier molecules have more low-speed particles, a lower $u_{r m s}$, and a speed distribution that peaks at relatively lower speeds. This trend is demonstrated by the data for a series of noble gases shown in Figure 26.4.

Figure 26.4
molecular speed is directly related to molecular mass. At a given temperature, lighter molecules move faster on average than heavier molecules.

Link to Learning

This gas simulator may be used to examine the effect of temperature on molecular speeds. Examine the simulator's "energy histograms" (molecular speed distributions) and "species information" (which gives average speed values) for molecules of different masses at various temperatures.

The Kinetic-Molecular Theory Explains the Behavior of Gases, Part II

According to Graham's law, the molecules of a gas are in rapid motion and the molecules themselves are small. The average distance between the molecules of a gas is large compared to the size of the molecules. As a consequence, gas molecules can move past each other easily and diffuse at relatively fast rates.

The rate of effusion of a gas depends directly on the (average) speed of its molecules:

$$
\text { effusion rate } \propto u_{\mathrm{rms}}
$$

Using this relation, and the equation relating molecular speed to mass, Graham's law may be easily derived as shown here:

$$
\begin{gathered}
u_{\mathrm{rms}}=\frac{\sqrt{3 R T}}{M} \\
M=\frac{3 R T}{u_{\mathrm{rms}}^{2}}=\frac{3 R T}{u^{2}}
\end{gathered}
$$

$$
\frac{\text { effusion rate } \mathrm{A}}{\text { effusion rate } \mathrm{B}}=\frac{u_{\mathrm{rms} \mathrm{~A}}}{u_{\mathrm{rms}}}=\frac{\sqrt{\frac{3 R T}{M_{\mathrm{A}}}}}{\sqrt{\frac{3 R T}{M_{\mathrm{B}}}}}=\frac{\sqrt{M_{\mathrm{B}}}}{M_{\mathrm{A}}}
$$

The ratio of the rates of effusion is thus derived to be inversely proportional to the ratio of the square roots of their masses. This is the same relation observed experimentally and expressed as Graham's law.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

26.2 Non-Ideal Gas Behavior

Learning Objectives

By the end of this section, you will be able to:

- Describe the physical factors that lead to deviations from ideal gas behavior
- Explain how these factors are represented in the van der Waals equation
- Define compressibility (Z) and describe how its variation with pressure reflects non-ideal behavior
- Quantify non-ideal behavior by comparing computations of gas properties using the ideal gas law and the van der Waals equation

Thus far, the ideal gas law, $P V=n R T$, has been applied to a variety of different types of problems, ranging from reaction stoichiometry and empirical and molecular formula problems to determining the density and molar mass of a gas. As mentioned in the previous modules of this chapter, however, the behavior of a gas is often non-ideal, meaning that the observed relationships between its pressure, volume, and temperature are not accurately described by the gas laws. In this section, the reasons for these deviations from ideal gas behavior are considered.

One way in which the accuracy of $P V=n R T$ can be judged is by comparing the actual volume of 1 mole of gas (its molar volume, V_{m}) to the molar volume of an ideal gas at the same temperature and pressure. This ratio is called the compressibility factor (Z) with:

$$
\mathrm{Z}=\frac{\text { molar volume of gas at same } T \text { and } P}{\text { molar volume of ideal gas at same } T \text { and } P}=\left(\frac{P V_{m}}{R T}\right)_{\text {measured }}
$$

Ideal gas behavior is therefore indicated when this ratio is equal to 1 , and any deviation from 1 is an indication of nonideal behavior. Figure 26.5 shows plots of Z over a large pressure range for several common gases.

Figure 26.5
A graph of the compressibility factor (Z) vs. pressure shows that gases can exhibit significant deviations from the behavior predicted by the ideal gas law.

As is apparent from Figure 26.5, the ideal gas law does not describe gas behavior well at relatively high pressures. To determine why this is, consider the differences between real gas properties and what is expected of a hypothetical ideal gas.

Particles of a hypothetical ideal gas have no significant volume and do not attract or repel each other. In general, real gases approximate this behavior at relatively low pressures and high temperatures. However, at high pressures, the
molecules of a gas are crowded closer together, and the amount of empty space between the molecules is reduced. At these higher pressures, the volume of the gas molecules themselves becomes appreciable relative to the total volume occupied by the gas. The gas therefore becomes less compressible at these high pressures, and although its volume continues to decrease with increasing pressure, this decrease is not proportional as predicted by Boyle's law.

At relatively low pressures, gas molecules have practically no attraction for one another because they are (on average) so far apart, and they behave almost like particles of an ideal gas. At higher pressures, however, the force of attraction is also no longer insignificant. This force pulls the molecules a little closer together, slightly decreasing the pressure (if the volume is constant) or decreasing the volume (at constant pressure) (Figure 26.6). This change is more pronounced at low temperatures because the molecules have lower KE relative to the attractive forces, and so they are less effective in overcoming these attractions after colliding with one another.

Figure 26.6
(a) Attractions between gas molecules serve to decrease the gas volume at constant pressure compared to an ideal gas whose molecules experience no attractive forces. (b) These attractive forces will decrease the force of collisions between the molecules and container walls, therefore reducing the pressure exerted at constant volume compared to an ideal gas.

There are several different equations that better approximate gas behavior than does the ideal gas law. The first, and simplest, of these was developed by the Dutch scientist Johannes van der Waals in 1879. The van der Waals equation improves upon the ideal gas law by adding two terms: one to account for the volume of the gas molecules and another for the attractive forces between them.

$$
P V=n R T \longrightarrow(P+\underbrace{\left(P V^{2}\right.}_{\substack{\text { Correction for } \\ \text { molecular attraction }}})(V-n b)=n R T
$$

The constant a corresponds to the strength of the attraction between molecules of a particular gas, and the constant b corresponds to the size of the molecules of a particular gas. The "correction" to the pressure term in the ideal gas law is

$$
\frac{n^{2} a}{V^{2}}
$$

and the "correction" to the volume is $n b$. Note that when V is relatively large and n is relatively small, both of these correction terms become negligible, and the van der Waals equation reduces to the ideal gas law, $P V=n R T$. Such a
condition corresponds to a gas in which a relatively low number of molecules is occupying a relatively large volume, that is, a gas at a relatively low pressure. Experimental values for the van der Waals constants of some common gases are given in Table 26.1.

Table 26.1

Values of van der Waals Constants for Some Common Gases

Gas	$\boldsymbol{a}\left(\mathrm{L}^{\left.\mathbf{2} \mathbf{a t m} / \mathrm{mol}^{2}\right)}\right.$	$\boldsymbol{b}(\mathrm{L} / \mathrm{mol})$
N_{2}	1.39	0.0391
O_{2}	1.36	0.0318
CO_{2}	3.59	0.0427
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305
He	0.0342	0.0237
CCl_{4}	20.4	0.1383

At low pressures, the correction for intermolecular attraction, a, is more important than the one for molecular volume, b. At high pressures and small volumes, the correction for the volume of the molecules becomes important because the molecules themselves are incompressible and constitute an appreciable fraction of the total volume. At some intermediate pressure, the two corrections have opposing influences and the gas appears to follow the relationship given by $P V=n R T$ over a small range of pressures. This behavior is reflected by the "dips" in several of the compressibility curves shown in Figure 26.5. The attractive force between molecules initially makes the gas more compressible than an ideal gas, as pressure is raised (Z decreases with increasing P). At very high pressures, the gas becomes less compressible (Z increases with P), as the gas molecules begin to occupy an increasingly significant fraction of the total gas volume.

Strictly speaking, the ideal gas equation functions well when intermolecular attractions between gas molecules are negligible and the gas molecules themselves do not occupy an appreciable part of the whole volume. These criteria are satisfied under conditions of low pressure and high temperature. Under such conditions, the gas is said to behave ideally, and deviations from the gas laws are small enough that they may be disregarded-this is, however, very often not the case.

Example 26.2

Comparison of Ideal Gas Law and van der Waals Equation

A 4.25-L flask contains $3.46 \mathrm{~mol} \mathrm{CO}_{2}$ at $229^{\circ} \mathrm{C}$. Calculate the pressure of this sample of CO_{2} :
(a) from the ideal gas law
(b) from the van der Waals equation
(c) Explain the reason(s) for the difference.

Solution

(a) From the ideal gas law:

$$
P=\frac{n R T}{V}=\frac{3.46 \mathrm{~mol} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}}{}{ }^{-1} \mathrm{~K}^{-1} \times 502 \mathrm{~K} \mathrm{~K}^{2}=33.5 \mathrm{~atm}
$$

(b) From the van der Waals equation:

$$
\begin{gathered}
\left(P+\frac{n^{2} a}{V^{2}}\right) \times(V-n b)=n R T \rightarrow P=\frac{n R T}{(V-n b)}-\frac{n^{2} a}{V^{2}} \\
P=\frac{3.46 \mathrm{~mol} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 502 \mathrm{~K}}{\left(4.25 \mathrm{~L}-3.46 \mathrm{~mol} \times 0.0427 \mathrm{~L} \mathrm{~mol}^{-1}\right)}-\frac{(3.46 \mathrm{~mol})^{2} \times 3.59 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}^{2}}{(4.25 \mathrm{~L})^{2}}
\end{gathered}
$$

This finally yields $P=32.4$ atm.
(c) This is not very different from the value from the ideal gas law because the pressure is not very high and the temperature is not very low. The value is somewhat different because CO_{2} molecules do have some volume and attractions between molecules, and the ideal gas law assumes they do not have volume or attractions.

Check your Learning

A $560-\mathrm{mL}$ flask contains $21.3 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ at $145^{\circ} \mathrm{C}$. Calculate the pressure of N_{2} :
(a) from the ideal gas law
(b) from the van der Waals equation
(c) Explain the reason(s) for the difference.

Answer

(a) 46.562 atm ; (b) 46.594 atm ; (c) The van der Waals equation takes into account the volume of

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/8-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/kinetic_molecular_theory_Real_gases.

27

Intermolecular Forces

Matter Atom Kinetic molecular theory Intermolecular Forces

The physical properties of condensed matter (liquids and solids) can be explained in terms of the kinetic molecular theory. In a liquid, intermolecular attractive forces hold the molecules in contact, although they still have sufficient KE to move past each other. Intermolecular attractive forces, collectively referred to as van der Waals forces, are responsible for the behavior of liquids and solids and are electrostatic in nature. Dipole-dipole attractions result from the electrostatic attraction of the partial negative end of one polar molecule for the partial positive end of another. The temporary dipole that results from the motion of the electrons in an atom can induce a dipole in an adjacent atom and give rise to the London dispersion force. London forces increase with increasing molecular size. Hydrogen bonds are a special type of dipole-dipole attraction that results when hydrogen is bonded to one of the three most electronegative elements: $F, 0$, or N.

27.1 Intermolecular Forces

Learning Objectives

By the end of this section, you will be able to:

- Describe the types of intermolecular forces possible between atoms or molecules in condensed phases (dispersion forces, dipole-dipole attractions, and hydrogen bonding)
- Identify the types of intermolecular forces experienced by specific molecules based on their structures
- Explain the relation between the intermolecular forces present within a substance and the temperatures associated with changes in its physical state

As was the case for gaseous substances, the kinetic molecular theory may be used to explain the behavior of solids and liquids. In the following description, the term particle will be used to refer to an atom, molecule, or ion. Note that we will use the popular phrase "intermolecular attraction" to refer to attractive forces between the particles of a substance, regardless of whether these particles are molecules, atoms, or ions.

Consider these two aspects of the molecular-level environments in solid, liquid, and gaseous matter:

- Particles in a solid are tightly packed together and often arranged in a regular pattern; in a liquid, they are close together with no regular arrangement; in a gas, they are far apart with no regular arrangement.
- Particles in a solid vibrate about fixed positions and do not generally move in relation to one another; in a liquid, they move past each other but remain in essentially constant contact; in a gas, they move independently of one another except when they collide.

The differences in the properties of a solid, liquid, or gas reflect the strengths of the attractive forces between the atoms, molecules, or ions that make up each phase. The phase in which a substance exists depends on the relative extents of its intermolecular forces (IMFs) and the kinetic energies (KE) of its molecules. IMFs are the various forces of attraction that may exist between the atoms and molecules of a substance due to electrostatic phenomena, as will be detailed in this module. These forces serve to hold particles close together, whereas the particles' KE provides the energy required to overcome the attractive forces and thus increase the distance between particles. Figure 27.1 illustrates how changes in physical state may be induced by changing the temperature, hence, the average KE, of a given substance.

Figure 27.1
Transitions between solid, liquid, and gaseous states of a substance occur when conditions of temperature or pressure favor the associated changes in intermolecular forces. (Note: The space between particles in the gas phase is much greater than shown.)

Increasing KE (temperature)

Increasing IMF

As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between $\mathrm{H}_{2} \mathrm{O}$ molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid $\mathrm{H}_{2} \mathrm{O}$. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass, as seen in Figure 27.2.

Figure 27.2
Condensation forms when water vapor in the air is cooled enough to form liquid water, such as (a) on the outside of a cold beverage glass or (b) in the form of fog. (credit a: modification of work by Jenny Downing; credit b: modification of work by Cory Zanker)

(a)

(b)

We can also liquefy many gases by compressing them, if the temperature is not too high. The increased pressure brings the molecules of a gas closer together, such that the attractions between the molecules become strong relative to their KE . Consequently, they form liquids. Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, is the fuel used in disposable lighters and is a gas at standard temperature and pressure. Inside the lighter's fuel compartment, the butane is compressed to a pressure that results in its condensation to the liquid state, as shown in Figure 27.3.

Figure 27.3
Gaseous butane is compressed within the storage compartment of a disposable lighter, resulting in its condensation to the liquid state. (credit: modification of work by "Sam-Cat"/Flickr)

Finally, if the temperature of a liquid becomes sufficiently low, or the pressure on the liquid becomes sufficiently high, the molecules of the liquid no longer have enough KE to overcome the IMF between them, and a solid forms. A more thorough discussion of these and other changes of state, or phase transitions, is provided in a later module of this chapter.

Link to Learning

This interactive simulation on states of matter, phase transitions, and intermolecular forces is useful for visualizing concepts introduced throughout this chapter.

Forces between Molecules

Under appropriate conditions, the attractions between all gas molecules will cause them to form liquids or solids. This is due to intermolecular forces, not intramolecular forces. Intramolecular forces are those within the molecule that keep the molecule together, for example, the bonds between the atoms. Intermolecular forces are the attractions between molecules, which determine many of the physical properties of a substance. Figure 27.4 illustrates these different molecular forces. The strengths of these attractive forces vary widely, though usually the IMFs between small molecules are weak compared to the intramolecular forces that bond atoms together within a molecule. For example, to overcome the IMFs in one mole of liquid HCl and convert it into gaseous HCl requires only about 17 kilojoules. However, to break the covalent bonds between the hydrogen and chlorine atoms in one mole of HCl requires about 25 times more energy-430 kilojoules.

Figure 27.4
Intramolecular forces keep a molecule intact. Intermolecular forces hold multiple molecules together and determine many of a substance's properties.

All of the attractive forces between neutral atoms and molecules are known as van der Waals forces, although they are usually referred to more informally as intermolecular attraction. We will consider the various types of IMFs in the next three sections of this module.

Dispersion Forces

One of the three van der Waals forces is present in all condensed phases, regardless of the nature of the atoms or molecules composing the substance. This attractive force is called the London dispersion force in honor of Germanborn American physicist Fritz London who, in 1928, first explained it. This force is often referred to as simply the dispersion force. Because the electrons of an atom or molecule are in constant motion (or, alternatively, the electron's location is subject to quantum-mechanical variability), at any moment in time, an atom or molecule can develop a temporary, instantaneous dipole if its electrons are distributed asymmetrically. The presence of this dipole can, in turn, distort the electrons of a neighboring atom or molecule, producing an induced dipole. These two rapidly fluctuating, temporary dipoles thus result in a relatively weak electrostatic attraction between the species-a so-called dispersion force like that illustrated in Figure 27.5.

Figure 27.5
Dispersion forces result from the formation of temporary dipoles, as illustrated here for two nonpolar diatomic molecules.

Dispersion forces that develop between atoms in different molecules can attract the two molecules to each other. The forces are relatively weak, however, and become significant only when the molecules are very close. Larger and heavier atoms and molecules exhibit stronger dispersion forces than do smaller and lighter atoms and molecules. F_{2} and Cl_{2} are gases at room temperature (reflecting weaker attractive forces); Br_{2} is a liquid, and I_{2} is a solid (reflecting stronger attractive forces). Trends in observed melting and boiling points for the halogens clearly demonstrate this effect, as seen in Table 27.1.

Table 27.1
Melting and Boiling Points of the Halogens

Halogen	Molar Mass	Atomic Radius	Melting Point	Boiling Point
fluorine, F_{2}	$38 \mathrm{~g} / \mathrm{mol}$	72 pm	53 K	85 K
chlorine, Cl_{2}	$71 \mathrm{~g} / \mathrm{mol}$	99 pm	172 K	238 K
bromine, Br_{2}	$160 \mathrm{~g} / \mathrm{mol}$	114 pm	266 K	332 K
iodine, I_{2}	$254 \mathrm{~g} / \mathrm{mol}$	133 pm	387 K	457 K
astatine, At_{2}	$420 \mathrm{~g} / \mathrm{mol}$	150 pm	575 K	610 K

The increase in melting and boiling points with increasing atomic/molecular size may be rationalized by considering how the strength of dispersion forces is affected by the electronic structure of the atoms or molecules in the substance. In a larger atom, the valence electrons are, on average, farther from the nuclei than in a smaller atom. Thus, they are less tightly held and can more easily form the temporary dipoles that produce the attraction. The measure of how easy or difficult it is for another electrostatic charge (for example, a nearby ion or polar molecule) to distort a molecule's charge distribution (its electron cloud) is known as polarizability. A molecule that has a charge cloud that is easily distorted is said to be very polarizable and will have large dispersion forces; one with a charge cloud that is difficult to distort is not very polarizable and will have small dispersion forces.

Example 27.1

London Forces and Their Effects

Order the following compounds of a group 14 element and hydrogen from lowest to highest boiling point: CH_{4}, $\mathrm{SiH}_{4}, \mathrm{GeH}_{4}$, and SnH_{4}. Explain your reasoning.

Solution

Applying the skills acquired in the chapter on chemical bonding and molecular geometry, all of these compounds are predicted to be nonpolar, so they may experience only dispersion forces: the smaller the molecule, the less polarizable and the weaker the dispersion forces; the larger the molecule, the larger the dispersion forces. The molar masses of $\mathrm{CH}_{4}, \mathrm{SiH}_{4}, \mathrm{GeH}_{4}$, and SnH_{4} are approximately $16 \mathrm{~g} / \mathrm{mol}, 32 \mathrm{~g} / \mathrm{mol}, 77$ $\mathrm{g} / \mathrm{mol}$, and $123 \mathrm{~g} / \mathrm{mol}$, respectively. Therefore, CH_{4} is expected to have the lowest boiling point and SnH_{4} the highest boiling point. The ordering from lowest to highest boiling point is expected to be $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{GeH}_{4}<$ SnH_{4}.
A graph of the actual boiling points of these compounds versus the period of the group 14 element shows this prediction to be correct:

Carbon Family

Check Your Learning

Order the following hydrocarbons from lowest to highest boiling point: $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}$, and $\mathrm{C}_{4} \mathrm{H}_{10}$.

Answer

$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}$. All of these compounds are nonpolar and only have London dispersion forces: the larger the molecule, the larger the dispersion forces and the higher the boiling point. The ordering from lowest to highest boiling point is therefore $\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}$.

The shapes of molecules also affect the magnitudes of the dispersion forces between them. For example, boiling points for the isomers n-pentane, isopentane, and neopentane (shown in Figure 27.6) are $36{ }^{\circ} \mathrm{C}, 27^{\circ} \mathrm{C}$, and $9.5^{\circ} \mathrm{C}$, respectively. Even though these compounds are composed of molecules with the same chemical formula, $\mathrm{C}_{5} \mathrm{H}_{12}$, the difference in boiling points suggests that dispersion forces in the liquid phase are different, being greatest for n-pentane and least for neopentane. The elongated shape of n-pentane provides a greater surface area available for contact between molecules, resulting in correspondingly stronger dispersion forces. The more compact shape of isopentane offers a smaller surface area available for intermolecular contact and, therefore, weaker dispersion forces. Neopentane molecules are the most compact of the three, offering the least available surface area for intermolecular contact and, hence, the weakest dispersion forces. This behavior is analogous to the connections that may be formed between strips of VELCRO brand fasteners: the greater the area of the strip's contact, the stronger the connection.

Figure 27.6
The strength of the dispersion forces increases with the contact area between molecules, as demonstrated by the boiling points of these pentane isomers.

Small contact area, weakest attraction

isopentane
boiling point: $27^{\circ} \mathrm{C}$

> Large contact area, strong attraction

n-pentane boiling point: $36^{\circ} \mathrm{C}$

Chemistry in Everyday Life

Geckos and Intermolecular Forces

Geckos have an amazing ability to adhere to most surfaces. They can quickly run up smooth walls and across ceilings that have no toe-holds, and they do this without having suction cups or a sticky substance on their toes. And while a gecko can lift its feet easily as it walks along a surface, if you attempt to pick it up, it sticks to the surface. How are geckos (as well as spiders and some other insects) able to do this? Although this phenomenon has been investigated for hundreds of years, scientists only recently uncovered the details of the process that allows geckos' feet to behave this way.

Geckos' toes are covered with hundreds of thousands of tiny hairs known as setae, with each seta, in turn, branching into hundreds of tiny, flat, triangular tips called spatulae. The huge numbers of spatulae on its setae provide a gecko, shown in Figure 27.7, with a large total surface area for sticking to a surface. In 2000, Kellar Autumn, who leads a multi-institutional gecko research team, found that geckos adhered equally well to both polar silicon dioxide and nonpolar gallium arsenide. This proved that geckos stick to surfaces because of dispersion forces-weak intermolecular attractions arising from temporary, synchronized charge distributions between adjacent molecules. Although dispersion forces are very weak, the total attraction over millions of spatulae is large enough to support many times the gecko's weight.

In 2014, two scientists developed a model to explain how geckos can rapidly transition from "sticky" to "nonsticky." Alex Greaney and Congcong Hu at Oregon State University described how geckos can achieve this by changing the angle between their spatulae and the surface. Geckos' feet, which are normally nonsticky, become sticky when a small shear force is applied. By curling and uncurling their toes, geckos can alternate between sticking and unsticking from a surface, and thus easily move across it. Later research led by Alyssa Stark at University of Akron showed that geckos can maintain their hold on hydrophobic surfaces (similar to the leaves in their habitats) equally well whether the surfaces were wet or dry. Stark's experiment used a ribbon to gently pull the geckos until they slipped, so that the researchers could determine the geckos' ability to hold various surfaces under wet and dry conditions. Further investigations may eventually lead to the development of better adhesives and other applications.

Figure 27.7
Geckos' toes contain large numbers of tiny hairs (setae), which branch into many triangular tips (spatulae). Geckos adhere to surfaces because of van der Waals attractions between the surface and a gecko's millions of spatulae. By changing how the spatulae contact the surface, geckos can turn their stickiness "on" and "off." (credit photo: modification of work by "JC*+A!"/Flickr)

Setae

Spatulae

Link to Learning

Watch this video to learn more about Kellar Autumn's research that determined that van der Waals forces are responsible for a gecko's ability to cling and climb.

Watch on YouTube

Dipole-Dipole Attractions

Recall from the chapter on chemical bonding and molecular geometry that polar molecules have a partial positive charge on one side and a partial negative charge on the other side of the molecule-a separation of charge called a dipole. Consider a polar molecule such as hydrogen chloride, HCl . In the HCl molecule, the more electronegative Cl atom bears the partial negative charge, whereas the less electronegative H atom bears the partial positive charge. An attractive force between HCl molecules results from the attraction between the positive end of one HCl molecule and the negative end of another. This attractive force is called a dipole-dipole attraction-the electrostatic force between the partially positive end of one polar molecule and the partially negative end of another, as illustrated in Figure 27.8.

Figure 27.8
This image shows two arrangements of polar molecules, such as HCl , that allow an attraction between the partial negative end of one molecule and the partial positive end of another.

The effect of a dipole-dipole attraction is apparent when we compare the properties of HCl molecules to nonpolar F_{2} molecules. Both HCl and F_{2} consist of the same number of atoms and have approximately the same molecular mass. At a temperature of 150 K , molecules of both substances would have the same average KE. However, the dipole-dipole attractions between HCl molecules are sufficient to cause them to "stick together" to form a liquid, whereas the relatively weaker dispersion forces between nonpolar F_{2} molecules are not, and so this substance is gaseous at this temperature. The higher normal boiling point of $\mathrm{HCl}(188 \mathrm{~K})$ compared to $\mathrm{F}_{2}(85 \mathrm{~K})$ is a reflection of the greater strength of dipole-dipole attractions between HCl molecules, compared to the attractions between nonpolar F_{2} molecules. We will often use values such as boiling or freezing points, or enthalpies of vaporization or fusion, as indicators of the relative strengths of IMFs of attraction present within different substances.

Example 27.2

Dipole-Dipole Forces and Their Effects

Predict which will have the higher boiling point: N_{2} or CO . Explain your reasoning.

Solution

CO and N_{2} are both diatomic molecules with masses of about 28 amu , so they experience similar London dispersion forces. Because CO is a polar molecule, it experiences dipole-dipole attractions. Because N_{2} is nonpolar, its molecules cannot exhibit dipole-dipole attractions. The dipole-dipole attractions between CO molecules are comparably stronger than the dispersion forces between nonpolar N_{2} molecules, so CO is expected to have the higher boiling point.

Check Your Learning

Predict which will have the higher boiling point: ICl or Br_{2}. Explain your reasoning.

Answer

ICI . ICl and Br_{2} have similar masses ($\sim 160 \mathrm{amu}$) and therefore experience similar London dispersion forces. ICI is polar and thus also exhibits dipole-dipole attractions; Br_{2} is nonpolar and does not. The relatively stronger dipole-dipole attractions require more energy to overcome, so ICI will have the higher boiling point.

Hydrogen Bonding

Nitrosyl fluoride (ONF, molecular mass 49 amu$)$ is a gas at room temperature. Water $\left(\mathrm{H}_{2} \mathrm{O}\right.$, molecular mass 18 amu$)$ is a liquid, even though it has a lower molecular mass. We clearly cannot attribute this difference between the two compounds to dispersion forces. Both molecules have about the same shape and ONF is the heavier and larger molecule. It is, therefore, expected to experience more significant dispersion forces. Additionally, we cannot attribute
this difference in boiling points to differences in the dipole moments of the molecules. Both molecules are polar and exhibit comparable dipole moments. The large difference between the boiling points is due to a particularly strong dipole-dipole attraction that may occur when a molecule contains a hydrogen atom bonded to a fluorine, oxygen, or nitrogen atom (the three most electronegative elements). The very large difference in electronegativity between the H atom (2.1) and the atom to which it is bonded (4.0 for an F atom, 3.5 for an O atom, or 3.0 for a N atom), combined with the very small size of a H atom and the relatively small sizes of F, O, or N atoms, leads to highly concentrated partial charges with these atoms. Molecules with F-H, O-H, or N-H moieties are very strongly attracted to similar moieties in nearby molecules, a particularly strong type of dipole-dipole attraction called hydrogen bonding. Examples of hydrogen bonds include $\mathrm{HF} \cdots \mathrm{HF}, \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{HOH}$, and $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{HNH}_{2}$, in which the hydrogen bonds are denoted by dots. Figure $\underline{27.9}$ illustrates hydrogen bonding between water molecules.

Figure 27.9
Water molecules participate in multiple hydrogen-bonding interactions with nearby water molecules.

Despite use of the word "bond," keep in mind that hydrogen bonds are intermolecular attractive forces, not intramolecular attractive forces (covalent bonds). Hydrogen bonds are much weaker than covalent bonds, only about 5 to 10% as strong, but are generally much stronger than other dipole-dipole attractions and dispersion forces.

Hydrogen bonds have a pronounced effect on the properties of condensed phases (liquids and solids). For example, consider the trends in boiling points for the binary hydrides of group $15\left(\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}\right.$, and $\left.\mathrm{SbH}_{3}\right)$, group 16 hydrides $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}\right.$, and $\left.\mathrm{H}_{2} \mathrm{Te}\right)$, and group 17 hydrides ($\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$, and HI). The boiling points of the heaviest three hydrides for each group are plotted in Figure 27.10. As we progress down any of these groups, the polarities of the molecules decrease slightly, whereas the sizes of the molecules increase substantially. The effect of increasingly stronger dispersion forces dominates that of increasingly weaker dipole-dipole attractions, and the boiling points are observed to increase steadily.

Figure 27.10
For the group 15, 16, and 17 hydrides, the boiling points for each class of compounds increase with increasing molecular mass for elements in periods 3,4 , and 5 .

If we use this trend to predict the boiling points for the lightest hydride for each group, we would expect NH_{3} to boil at about $-120^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ to boil at about $-80^{\circ} \mathrm{C}$, and HF to boil at about $-110^{\circ} \mathrm{C}$. However, when we measure the boiling points for these compounds, we find that they are dramatically higher than the trends would predict, as shown in Figure 27.11. The stark contrast between our naïve predictions and reality provides compelling evidence for the strength of hydrogen bonding.

Figure 27.11
In comparison to periods 3-5, the binary hydrides of period 2 elements in groups 17, 16 and 15 ($F, 0$ and N, respectively) exhibit anomalously high boiling points due to hydrogen bonding.

Here is a flowchart to help you determine which intermolecular forces are most likely to predominate in a bulk sample of a substance. It also outlines the ways to rank the strength of these interactions for substances that fall within a single category.

Flowchart for determining predominant intermolecular forces

1. Is the compound ionic (metal/non-metal) or covalent (non-metal/non-metal)?

Example 27.3

Effect of Hydrogen Bonding on Boiling Points

Consider the compounds dimethylether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$, ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$, and propane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Their boiling points, not necessarily in order, are $-42.1^{\circ} \mathrm{C},-24.8{ }^{\circ} \mathrm{C}$, and $78.4^{\circ} \mathrm{C}$. Match each compound with its boiling point. Explain your reasoning.

Solution

The VSEPR-predicted shapes of $\mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ are similar, as are their molar masses ($46 \mathrm{~g} / \mathrm{mol}, 46 \mathrm{~g} / \mathrm{mol}$, and $44 \mathrm{~g} / \mathrm{mol}$, respectively), so they will exhibit similar dispersion forces. Since $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ is nonpolar, it may exhibit only dispersion forces. Because $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ is polar, it will also experience dipole-dipole attractions. Finally, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ has an -OH group, and so it will experience the uniquely strong dipole-dipole attraction known as hydrogen bonding. So the ordering in terms of strength of IMFs, and thus boiling points, is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$. The boiling point of propane is $-42.1^{\circ} \mathrm{C}$, the boiling point of dimethylether is $-24.8^{\circ} \mathrm{C}$, and the boiling point of ethanol is $78.5^{\circ} \mathrm{C}$.

Check Your Learning

Ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$ has a melting point of $-183^{\circ} \mathrm{C}$ and a boiling point of $-89^{\circ} \mathrm{C}$. Predict the melting and boiling points for methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$. Explain your reasoning.

Answer

The melting point and boiling point for methylamine are predicted to be significantly greater than those of ethane. $\mathrm{CH}_{3} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{NH}_{2}$ are similar in size and mass, but methylamine possesses an -NH group and therefore may exhibit hydrogen bonding. This greatly increases its IMFs, and therefore its melting and boiling points. It is difficult to predict values, but the known values are a melting point of $-93^{\circ} \mathrm{C}$ and a boiling point of $-6^{\circ} \mathrm{C}$.

How Sciences Interconnect

Hydrogen Bonding and DNA

Deoxyribonucleic acid (DNA) is found in every living organism and contains the genetic information that determines the organism's characteristics, provides the blueprint for making the proteins necessary for life, and serves as a template to pass this information on to the organism's offspring. A DNA molecule consists of two (anti-)parallel chains of repeating nucleotides, which form its well-known double helical structure, as shown in Figure 27.12.

Figure 27.12
Two separate DNA molecules form a double-stranded helix in which the molecules are held together via hydrogen bonding. (credit: modification of work by Jerome Walker, Dennis Myts)

Nitrogenous bases:

Each nucleotide contains a (deoxyribose) sugar bound to a phosphate group on one side, and one of four nitrogenous bases on the other. Two of the bases, cytosine (C) and thymine (T), are single-ringed structures known as pyrimidines. The other two, adenine (A) and guanine (G), are double-ringed structures called purines. These bases form complementary base pairs consisting of one purine and one pyrimidine, with adenine pairing with thymine, and cytosine with guanine. Each base pair is held together by hydrogen bonding. A and T share two hydrogen bonds, C and G share three, and both pairings have a similar shape and structure Figure 27.13.

Figure 27.13
The geometries of the base molecules result in maximum hydrogen bonding between adenine and thymine (AT) and between guanine and cytosine (GC), so-called "complementary base pairs."

The cumulative effect of millions of hydrogen bonds effectively holds the two strands of DNA together. Importantly, the two strands of DNA can relatively easily "unzip" down the middle since hydrogen bonds are relatively weak compared to the covalent bonds that hold the atoms of the individual DNA molecules together. This allows both strands to function as a template for replication.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/10-1-intermolecular-

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/intermolecular_forces.

28

Properties of Water

Intermolecular Forces Liquid

The intermolecular forces between molecules in the liquid state vary depending upon their chemical identities and result in corresponding variations in various physical properties. Cohesive forces between like molecules are responsible for a liquid's viscosity (resistance to flow) and surface tension (elasticity of a liquid surface). Adhesive forces between the molecules of a liquid and different molecules composing a surface in contact with the liquid are responsible for phenomena such as surface wetting and capillary rise. Because water is polar, it is an exceptionally good solvent. In part this is because it can interact using additional types of intermolecular forces. These include dipole-induced dipole interactions between polar and non-polar substances, and ion-dipole interactions between ions and polar substances.

28.1 Properties of Liquids

Learning Objectives

By the end of this section, you will be able to:

- Distinguish between adhesive and cohesive forces
- Define viscosity, surface tension, and capillary rise
- Describe the roles of intermolecular attractive forces in each of these properties/phenomena

When you pour a glass of water, or fill a car with gasoline, you observe that water and gasoline flow freely. But when you pour syrup on pancakes or add oil to a car engine, you note that syrup and motor oil do not flow as readily. The viscosity of a liquid is a measure of its resistance to flow. Water, gasoline, and other liquids that flow freely have a low viscosity. Honey, syrup, motor oil, and other liquids that do not flow freely, like those shown in Figure 28.1, have higher viscosities. We can measure viscosity by measuring the rate at which a metal ball falls through a liquid (the ball falls more slowly through a more viscous liquid) or by measuring the rate at which a liquid flows through a narrow tube (more viscous liquids flow more slowly).

Figure 28.1
(a) Honey and (b) motor oil are examples of liquids with high viscosities; they flow slowly. (credit a: modification of work by Scott Bauer; credit b: modification of work by David Nagy)

The IMFs between the molecules of a liquid, the size and shape of the molecules, and the temperature determine how easily a liquid flows. As Table 28.1 shows, the more structurally complex are the molecules in a liquid and the stronger the IMFs between them, the more difficult it is for them to move past each other and the greater is the viscosity of the liquid. As the temperature increases, the molecules move more rapidly and their kinetic energies are better able to overcome the forces that hold them together; thus, the viscosity of the liquid decreases.

Table 28.1
Viscosities of Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	Viscosity (mPa•s)
water	$\mathrm{H}_{2} \mathrm{O}$	0.890
mercury	Hg	1.526
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1.074
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	0.508
ethylene glycol	$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})$	16.1
honey	variable	$\sim 2,000-10,000$
motor oil	variable	$\sim 50-500$

The various IMFs between identical molecules of a substance are examples of cohesive forces. The molecules within a liquid are surrounded by other molecules and are attracted equally in all directions by the cohesive forces within the liquid. However, the molecules on the surface of a liquid are attracted only by about one-half as many molecules. Because of the unbalanced molecular attractions on the surface molecules, liquids contract to form a shape that minimizes the number of molecules on the surface-that is, the shape with the minimum surface area. A small drop of liquid tends to assume a spherical shape, as shown in Figure 28.2, because in a sphere, the ratio of surface area to volume is at a minimum. Larger drops are more greatly affected by gravity, air resistance, surface interactions, and so on, and as a result, are less spherical.

Figure 28.2
Attractive forces result in a spherical water drop that minimizes surface area; cohesive forces hold the sphere together; adhesive forces keep the drop attached to the web. (credit photo: modification of work by "OliBac"/Flickr)

Surface tension is defined as the energy required to increase the surface area of a liquid, or the force required to increase the length of a liquid surface by a given amount. This property results from the cohesive forces between molecules at the surface of a liquid, and it causes the surface of a liquid to behave like a stretched rubber membrane. Surface tensions of several liquids are presented in Table 28.2. Among common liquids, water exhibits a distinctly high surface tension due to strong hydrogen bonding between its molecules. As a result of this high surface tension, the surface of water represents a relatively "tough skin" that can withstand considerable force without breaking. A steel needle carefully placed on water will float. Some insects, like the one shown in Figure 28.3, even though they are denser than water, move on its surface because they are supported by the surface tension.

Table 28.3
Surface Tensions of Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	Surface Tension (mN/m)
water	$\mathrm{H}_{2} \mathrm{O}$	71.99
mercury	Hg	458.48
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	21.97
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	21.14
ethylene glycol	$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})$	47.99

Figure 28.3
Surface tension (right) prevents this insect, a "water strider," from sinking into the water.

Surface tension is affected by a variety of variables, including the introduction of additional substances on the surface. In the late 1800 s, Agnes Pockels, who was initially blocked from pursuing a scientific career but studied on her own, began investigating the impact and characteristics of soapy and greasy films in water. Using homemade materials, she developed an instrument known as a trough for measuring surface contaminants and their effects. With the support of renowned scientist Lord Rayleigh, her 1891 paper showed that surface contamination significantly reduces surface tension, and also that changing the characteristics of the surface (compressing or expanding it) also affects surface tension. Decades later, Irving Langmuir and Katharine Blodgett built on Pockels' work in their own trough and important advances in surface chemistry. Langmuir pioneered methods for producing single-molecule layers of film; Blodgett applied these to the development of non-reflective glass (critical for film-making and other applications), and also studied methods related to cleaning surfaces, which are important in semiconductor fabrication.

The IMFs of attraction between two different molecules are called adhesive forces. Consider what happens when water comes into contact with some surface. If the adhesive forces between water molecules and the molecules of the surface are weak compared to the cohesive forces between the water molecules, the water does not "wet" the surface. For example, water does not wet waxed surfaces or many plastics such as polyethylene. Water forms drops on these surfaces because the cohesive forces within the drops are greater than the adhesive forces between the water and the plastic. Water spreads out on glass because the adhesive force between water and glass is greater than the cohesive forces within the water. When water is confined in a glass tube, its meniscus (surface) has a concave shape because the water wets the glass and creeps up the side of the tube. On the other hand, the cohesive forces between mercury atoms are much greater than the adhesive forces between mercury and glass. Mercury therefore does not wet glass, and it forms a convex meniscus when confined in a tube because the cohesive forces within the mercury tend to draw it into a drop (Figure 28.4).

Figure 28.4
Differences in the relative strengths of cohesive and adhesive forces result in different meniscus shapes for mercury (left) and water (right) in glass tubes. (credit: Mark Ott)

If you place one end of a paper towel in spilled wine, as shown in Figure 28.5, the liquid wicks up the paper towel. A similar process occurs in a cloth towel when you use it to dry off after a shower. These are examples of capillary action -when a liquid flows within a porous material due to the attraction of the liquid molecules to the surface of the material and to other liquid molecules. The adhesive forces between the liquid and the porous material, combined with the cohesive forces within the liquid, may be strong enough to move the liquid upward against gravity.

Figure 28.5

Wine wicks up a paper towel (left) because of the strong attractions of water (and ethanol) molecules to the - OH groups on the towel's cellulose fibers and the strong attractions of water molecules to other water (and ethanol) molecules (right). (credit photo: modification of work by Mark Blaser)

Towels soak up liquids like water because the fibers of a towel are made of molecules that are attracted to water molecules. Most cloth towels are made of cotton, and paper towels are generally made from paper pulp. Both consist of long molecules of cellulose that contain many -OH groups. Water molecules are attracted to these -OH groups and form hydrogen bonds with them, which draws the $\mathrm{H}_{2} \mathrm{O}$ molecules up the cellulose molecules. The water molecules are also attracted to each other, so large amounts of water are drawn up the cellulose fibers.

Capillary action can also occur when one end of a small diameter tube is immersed in a liquid, as illustrated in Figure 28.6. If the liquid molecules are strongly attracted to the tube molecules, the liquid creeps up the inside of the tube until the weight of the liquid and the adhesive forces are in balance. The smaller the diameter of the tube is, the higher the liquid climbs. It is partly by capillary action occurring in plant cells called xylem that water and dissolved nutrients are brought from the soil up through the roots and into a plant. Capillary action is the basis for thin layer chromatography, a laboratory technique commonly used to separate small quantities of mixtures. You depend on a constant supply of tears to keep your eyes lubricated and on capillary action to pump tear fluid away.

Figure 28.6
Depending upon the relative strengths of adhesive and cohesive forces, a liquid may rise (such as water) or fall (such as mercury) in a glass capillary tube. The extent of the rise (or fall) is directly proportional to the surface tension of the liquid and inversely proportional to the density of the liquid and the radius of the tube.

The height to which a liquid will rise in a capillary tube is determined by several factors as shown in the following equation:

$$
h=\frac{2 T \cos \theta}{r \rho g}
$$

In this equation, h is the height of the liquid inside the capillary tube relative to the surface of the liquid outside the tube, T is the surface tension of the liquid, θ is the contact angle between the liquid and the tube, r is the radius of the tube, ρ is the density of the liquid, and g is the acceleration due to gravity, $9.8 \mathrm{~m} / \mathrm{s}^{2}$. When the tube is made of a material to which the liquid molecules are strongly attracted, they will spread out completely on the surface, which corresponds to a contact angle of 0°. This is the situation for water rising in a glass tube.

Example 28.1

Capillary Rise

At $25^{\circ} \mathrm{C}$, how high will water rise in a glass capillary tube with an inner diameter of 0.25 mm ?
For water, $T=71.99 \mathrm{mN} / \mathrm{m}$ and $\rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution

The liquid will rise to a height h given by:
$h=\frac{2 T \cos \theta}{r \rho g}$

The Newton is defined as a $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$, and so the provided surface tension is equivalent to $0.07199 \mathrm{~kg} / \mathrm{s}^{2}$. The provided density must be converted into units that will cancel appropriately: $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The diameter of the tube in meters is 0.00025 m , so the radius is 0.000125 m . For a glass tube immersed in water, the contact angle is $\theta=0^{\circ}$, so $\cos \theta=1$. Finally, acceleration due to gravity on the earth is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Substituting these values into the equation, and cancelling units, we have:

$$
h=\frac{2\left(0.07199 \mathrm{~kg} / \mathrm{s}^{2}\right)}{(0.000125 \mathrm{~m})\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.12 \mathrm{~m}=12 \mathrm{~cm}
$$

Check Your Learning

Water rises in a glass capillary tube to a height of 8.4 cm . What is the diameter of the capillary tube?

Answer

$$
\text { diameter }=0.36 \mathrm{~mm}
$$

Chemistry in Everyday Life

Biomedical Applications of Capillary Action

Many medical tests require drawing a small amount of blood, for example to determine the amount of glucose in someone with diabetes or the hematocrit level in an athlete. This procedure can be easily done because of capillary action, the ability of a liquid to flow up a small tube against gravity, as shown in Figure 28.7. When your finger is pricked, a drop of blood forms and holds together due to surface tension-the unbalanced intermolecular attractions at the surface of the drop. Then, when the open end of a narrow-diameter glass tube touches the drop of blood, the adhesive forces between the molecules in the blood and those at the glass surface draw the blood up the tube. How far the blood goes up the tube depends on the diameter of the tube (and the type of fluid). A small tube has a relatively large surface area for a given volume of blood, which results in larger (relative) attractive forces, allowing the blood to be drawn farther up the tube. The liquid itself is held together by its own cohesive forces. When the weight of the liquid in the tube generates a downward force equal to the upward force associated with capillary action, the liquid stops rising.

Figure 28.7
Blood is collected for medical analysis by capillary action, which draws blood into a small diameter glass tube. (credit: modification of work by Centers for Disease Control and Prevention)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Citation of Previous Version

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/10-2-properties-ofliquids

28.2 Intermolecular Interactions in Mixtures

Ion-Dipole interactions

A dipole that is close to a positive or negative ion will orient itself so that the end whose partial charge is opposite to the ion charge will point toward the ion. This kind of interaction is very important in aqueous solutions of ionic substances; $\mathrm{H}_{2} \mathrm{O}$ is a highly polar molecule, so that in a solution of sodium chloride, for example, the Na^{+}ions will be enveloped by a shell of water molecules with their oxygen-ends pointing toward these ions, while $\mathrm{H}_{2} \mathrm{O}$ molecules surrounding the Cl^{-} ions will have their hydrogen ends directed inward. As a consequence of ion-dipole interactions, all ionic species in aqueous solution are hydrated; this is what is denoted by the suffix in formulas such as $\mathrm{K}^{+}(\mathrm{aq})$, etc.

Figure 28.8: Ion-Dipole Interaction between a sodium ion and water
The strength of ion-dipole attraction depends on the magnitude of the dipole moment and on the charge density of the ion. This latter quantity is just the charge of the ion divided by its volume. Owing to their smaller sizes, positive ions tend to have larger charge densities than negative ions, and they should be more strongly hydrated in aqueous solution. The hydrogen ion, being nothing more than a bare proton of extremely small volume, has the highest charge density of any ion; it is for this reason that it exists entirely in its hydrated form $\mathrm{H}_{3} \mathrm{O}^{+}$in water.

Dipole-induced dipole interactions

A permanent dipole can induce a temporary one in a species that is normally nonpolar, and thus produce a net attractive force between the two particles (Figure 28.9). This attraction is usually rather weak, but in a few cases it can lead to the formation of loosely-bound compounds. This effect explains the otherwise surprising observation that a wide variety of neutral molecules such as hydrocarbons, and even some of the noble gas elements, form stable hydrate compounds with water.

Figure 28.9: Dipole-induced dipole Interaction between a dipole and water

Citation of Previous Version

Lower, S. (2022). Intermolecular Interactions. In Chem1 (Lower). LibreTexts.
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book\%3A_Chem1_(Lower)/07\%3A_Solids_and_Liqı

Files

Open in Google Drive

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/properties_of_water.

29

Applications of IMF

Identity Matter Applications of IMF

Phase transitions are processes that convert matter from one physical state into another. There are six phase transitions between the three phases of matter. Melting, vaporization, and sublimation are all endothermic processes, requiring an input of heat to overcome intermolecular attractions. The reciprocal transitions of freezing, condensation, and deposition are all exothermic processes, involving heat as intermolecular attractive forces are established or strengthened. The temperatures at which phase transitions occur are determined by the relative strengths of intermolecular attractions and are, therefore, dependent on the chemical identity of the substance.

29.1 Phase Transitions

Learning Objectives

By the end of this section, you will be able to:

- Define phase transitions and phase transition temperatures
- Explain the relation between phase transition temperatures and intermolecular attractive forces
- Describe the processes represented by typical heating and cooling curves, and compute heat flows and enthalpy changes accompanying these processes

We witness and utilize changes of physical state, or phase transitions, in a great number of ways. As one example of global significance, consider the evaporation, condensation, freezing, and melting of water. These changes of state are essential aspects of our earth's water cycle as well as many other natural phenomena and technological processes of central importance to our lives. In this module, the essential aspects of phase transitions are explored.

Vaporization and Condensation

When a liquid vaporizes in a closed container, gas molecules cannot escape. As these gas phase molecules move randomly about, they will occasionally collide with the surface of the condensed phase, and in some cases, these collisions will result in the molecules re-entering the condensed phase. The change from the gas phase to the liquid is called condensation. When the rate of condensation becomes equal to the rate of vaporization, neither the amount of
the liquid nor the amount of the vapor in the container changes. The vapor in the container is then said to be in equilibrium with the liquid. Keep in mind that this is not a static situation, as molecules are continually exchanged between the condensed and gaseous phases. Such is an example of a dynamic equilibrium, the status of a system in which reciprocal processes (for example, vaporization and condensation) occur at equal rates. The pressure exerted by the vapor in equilibrium with a liquid in a closed container at a given temperature is called the liquid's vapor pressure (or equilibrium vapor pressure). The area of the surface of the liquid in contact with a vapor and the size of the vessel have no effect on the vapor pressure, although they do affect the time required for the equilibrium to be reached. We can measure the vapor pressure of a liquid by placing a sample in a closed container, like that illustrated in Figure 29.1, and using a manometer to measure the increase in pressure that is due to the vapor in equilibrium with the condensed phase.

Figure 29.1

In a closed container, dynamic equilibrium is reached when (a) the rate of molecules escaping from the liquid to become the gas (b) increases and eventually (c) equals the rate of gas molecules entering the liquid. When this equilibrium is reached, the vapor pressure of the gas is constant, although the vaporization and condensation processes continue.

The chemical identities of the molecules in a liquid determine the types (and strengths) of intermolecular attractions possible; consequently, different substances will exhibit different equilibrium vapor pressures. Relatively strong intermolecular attractive forces will serve to impede vaporization as well as favoring "recapture" of gas-phase molecules when they collide with the liquid surface, resulting in a relatively low vapor pressure. Weak intermolecular attractions present less of a barrier to vaporization, and a reduced likelihood of gas recapture, yielding relatively high vapor pressures. The following example illustrates this dependence of vapor pressure on intermolecular attractive forces.

Example 29.1

Explaining Vapor Pressure in Terms of IMFs

Given the shown structural formulas for these four compounds, explain their relative vapor pressures in terms of types and extents of IMFs:

ethanol

ethylene glycol

and diethyl ether

water

Solution
Diethyl ether has a very small dipole and most of its intermolecular attractions are London forces. Although this molecule is the largest of the four under consideration, its IMFs are the weakest and, as a result, its molecules most readily escape from the liquid. It also has the highest vapor pressure. Due to its smaller size, ethanol exhibits weaker dispersion forces than diethyl ether. However, ethanol is capable of hydrogen bonding and, therefore, exhibits stronger overall IMFs, which means that fewer molecules escape from the liquid at any given temperature, and so ethanol has a lower vapor pressure than diethyl ether. Water is much smaller than either of the previous substances and exhibits weaker dispersion forces, but its extensive hydrogen bonding provides stronger intermolecular attractions, fewer molecules escaping the liquid, and a lower vapor pressure than for either diethyl ether or ethanol. Ethylene glycol has two -OH groups, so, like water, it exhibits extensive hydrogen bonding. It is much larger than water and thus experiences larger London forces. Its overall IMFs are the largest of these four substances, which means its vaporization rate will be the slowest and, consequently, its vapor pressure the lowest.

Check Your Learning

At $20^{\circ} \mathrm{C}$, the vapor pressures of several alcohols are given in this table. Explain these vapor pressures in terms of types and extents of IMFs for these alcohols:

Compound	methanol $\mathrm{CH}_{3} \mathrm{OH}$	ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	propanol $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	butanol $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$
Vapor Pressure at $20^{\circ} \mathrm{C}$	11.9 kPa	5.95 kPa	2.67 kPa	0.56 kPa

Answer

All these compounds exhibit hydrogen bonding; these strong IMFs are difficult for the molecules to overcome, so the vapor pressures are relatively low. As the size of molecule increases from methanol to butanol, dispersion forces increase, which means that the vapor pressures decrease as observed:
$P_{\text {methanol }}>P_{\text {ethanol }}>P_{\text {propanol }}>P_{\text {butanol }}$.

As temperature increases, the vapor pressure of a liquid also increases due to the increased average KE of its molecules. Recall that at any given temperature, the molecules of a substance experience a range of kinetic energies, with a certain fraction of molecules having a sufficient energy to overcome IMF and escape the liquid (vaporize). At a higher temperature, a greater fraction of molecules have enough energy to escape from the liquid, as shown in Figure 29.2. The escape of more molecules per unit of time and the greater average speed of the molecules that escape both contribute to the higher vapor pressure.

Figure 29.2
Temperature affects the distribution of kinetic energies for the molecules in a liquid. At the higher temperature, more molecules have the necessary kinetic energy, KE, to escape from the liquid into the gas phase.

Boiling Points

When the vapor pressure increases enough to equal the external atmospheric pressure, the liquid reaches its boiling point. The boiling point of a liquid is the temperature at which its equilibrium vapor pressure is equal to the pressure exerted on the liquid by its gaseous surroundings. For liquids in open containers, this pressure is that due to the earth's atmosphere. The normal boiling point of a liquid is defined as its boiling point when surrounding pressure is equal to 1 atm (101.3 kPa). Figure 29.3 shows the variation in vapor pressure with temperature for several different substances. Considering the definition of boiling point, these curves may be seen as depicting the dependence of a liquid's boiling point on surrounding pressure.

Figure 29.3
The boiling points of liquids are the temperatures at which their equilibrium vapor pressures equal the pressure of the surrounding atmosphere. Normal boiling points are those corresponding to a pressure of 1 atm (101.3 kPa.)

Example 29.2

A Boiling Point at Reduced Pressure

A typical atmospheric pressure in Leadville, Colorado (elevation 10,200 feet) is 68 kPa . Use the graph in Figure 29.3 to determine the boiling point of water at this elevation.

Solution

The graph of the vapor pressure of water versus temperature in Figure 29.3 indicates that the vapor pressure of water is 68 kPa at about $90^{\circ} \mathrm{C}$. Thus, at about $90^{\circ} \mathrm{C}$, the vapor pressure of water will equal the atmospheric pressure in Leadville, and water will boil.

Check Your Learning

The boiling point of ethyl ether was measured to be $10^{\circ} \mathrm{C}$ at a base camp on the slopes of Mount Everest. Use Figure 29.3 to determine the approximate atmospheric pressure at the camp.

Answer

Approximately 40 kPa (0.4 atm)

Enthalpy of Vaporization

Vaporization is an endothermic process. The cooling effect can be evident when you leave a swimming pool or a shower. When the water on your skin evaporates, it removes heat from your skin and causes you to feel cold. The energy change associated with the vaporization process is the enthalpy of vaporization, $\Delta H_{\text {vap }}$. For example, the vaporization of water at standard temperature is represented by:

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H_{\text {vap }}=44.01 \mathrm{~kJ} / \mathrm{mol}
$$

As described in the chapter on thermochemistry, the reverse of an endothermic process is exothermic. And so, the condensation of a gas releases heat:

$$
\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H_{\mathrm{con}}=-\Delta H_{\mathrm{vap}}=-44.01 \mathrm{~kJ} / \mathrm{mol}
$$

Example 29.3

Using Enthalpy of Vaporization

One way our body is cooled is by evaporation of the water in sweat (Figure 29.4). In very hot climates, we can lose as much as 1.5 L of sweat per day. Although sweat is not pure water, we can get an approximate value of the amount of heat removed by evaporation by assuming that it is. How much heat is required to evaporate 1.5 L of water (1.5 kg) at $T=37{ }^{\circ} \mathrm{C}$ (normal body temperature); $\Delta H_{\text {vap }}=43.46 \mathrm{~kJ} / \mathrm{mol}$ at $37^{\circ} \mathrm{C}$.
Figure 29.4
Evaporation of sweat helps cool the body. (credit: "Kullez"/Flickr)

Solution

We start with the known volume of sweat (approximated as just water) and use the given information to convert to the amount of heat needed:

$$
1.5 \mathrm{~L} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{18 \mathrm{~g}} \times \frac{43.46 \mathrm{~kJ}}{1 \mathrm{~mol}}=3.6 \times 10^{3} \mathrm{~kJ}
$$

Thus, 3600 kJ of heat are removed by the evaporation of 1.5 L of water.

Check Your Learning

How much heat is required to evaporate 100.0 g of liquid ammonia, NH_{3}, at its boiling point if its enthalpy of vaporization is $4.8 \mathrm{~kJ} / \mathrm{mol}$?

Answer

Melting and Freezing

When we heat a crystalline solid, we increase the average energy of its atoms, molecules, or ions and the solid gets hotter. At some point, the added energy becomes large enough to partially overcome the forces holding the molecules or ions of the solid in their fixed positions, and the solid begins the process of transitioning to the liquid state, or melting. At this point, the temperature of the solid stops rising, despite the continual input of heat, and it remains constant until all of the solid is melted. Only after all of the solid has melted will continued heating increase the temperature of the liquid (Figure 29.5).

Figure 29.5
(a) This beaker of ice has a temperature of $-12.0^{\circ} \mathrm{C}$. (b) After 10 minutes the ice has absorbed enough heat from the air to warm to $0^{\circ} \mathrm{C}$. A small amount has melted. (c) Thirty minutes later, the ice has absorbed more heat, but its temperature is still $0^{\circ} \mathrm{C}$. The ice melts without changing its temperature. (d) Only after all the ice has melted does the heat absorbed cause the temperature to increase to $22.2{ }^{\circ} \mathrm{C}$. (credit: modification of work by Mark Ott)

(a)

(b)

(c)

(d)

If we stop heating during melting and place the mixture of solid and liquid in a perfectly insulated container so no heat can enter or escape, the solid and liquid phases remain in equilibrium. This is almost the situation with a mixture of ice and water in a very good thermos bottle; almost no heat gets in or out, and the mixture of solid ice and liquid water remains for hours. In a mixture of solid and liquid at equilibrium, the reciprocal processes of melting and freezing occur at equal rates, and the quantities of solid and liquid therefore remain constant. The temperature at which the solid and liquid phases of a given substance are in equilibrium is called the melting point of the solid or the freezing point of the liquid. Use of one term or the other is normally dictated by the direction of the phase transition being considered, for example, solid to liquid (melting) or liquid to solid (freezing).

The enthalpy of fusion and the melting point of a crystalline solid depend on the strength of the attractive forces between the units present in the crystal. Molecules with weak attractive forces form crystals with low melting points. Crystals consisting of particles with stronger attractive forces melt at higher temperatures.

The amount of heat required to change one mole of a substance from the solid state to the liquid state is the enthalpy of fusion, $\Delta \mathrm{H}_{\text {fus }}$ of the substance. The enthalpy of fusion of ice is $6.0 \mathrm{~kJ} / \mathrm{mol}$ at $0^{\circ} \mathrm{C}$. Fusion (melting) is an endothermic process:

$$
\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H_{\mathrm{fus}}=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

The reciprocal process, freezing, is an exothermic process whose enthalpy change is $-6.0 \mathrm{~kJ} / \mathrm{mol}$ at $0^{\circ} \mathrm{C}$:

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s) \quad \Delta H_{\mathrm{frz}}=-\Delta H_{\text {fus }}=-6.01 \mathrm{~kJ} / \mathrm{mol}
$$

Sublimation and Deposition

Some solids can transition directly into the gaseous state, bypassing the liquid state, via a process known as sublimation. At room temperature and standard pressure, a piece of dry ice (solid CO_{2}) sublimes, appearing to gradually disappear without ever forming any liquid. Snow and ice sublime at temperatures below the melting point of water, a slow process that may be accelerated by winds and the reduced atmospheric pressures at high altitudes. When solid iodine is warmed, the solid sublimes and a vivid purple vapor forms (Figure 29.6). The reverse of sublimation is called deposition, a process in which gaseous substances condense directly into the solid state, bypassing the liquid state. The formation of frost is an example of deposition.

Figure 29.6
Sublimation of solid iodine in the bottom of the tube produces a purple gas that subsequently deposits as solid iodine on the colder part of the tube above. (credit: modification of work by Mark Ott)

Like vaporization, the process of sublimation requires an input of energy to overcome intermolecular attractions. The enthalpy of sublimation, $\Delta \mathrm{H}_{\text {sub }}$, is the energy required to convert one mole of a substance from the solid to the gaseous state. For example, the sublimation of carbon dioxide is represented by:

$$
\mathrm{CO}_{2}(s) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{\text {sub }}=26.1 \mathrm{~kJ} / \mathrm{mol}
$$

Likewise, the enthalpy change for the reverse process of deposition is equal in magnitude but opposite in sign to that for sublimation:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(s) \quad \Delta H_{\mathrm{dep}}=-\Delta H_{\mathrm{sub}}=-26.1 \mathrm{~kJ} / \mathrm{mol}
$$

Consider the extent to which intermolecular attractions must be overcome to achieve a given phase transition. Converting a solid into a liquid requires that these attractions be only partially overcome; transition to the gaseous state requires that they be completely overcome. As a result, the enthalpy of fusion for a substance is less than its enthalpy of vaporization. This same logic can be used to derive an approximate relation between the enthalpies of all phase changes for a given substance. Though not an entirely accurate description, sublimation may be conveniently modeled as a sequential two-step process of melting followed by vaporization in order to apply Hess's Law. Viewed in this manner, the enthalpy of sublimation for a substance may be estimated as the sum of its enthalpies of fusion and vaporization, as illustrated in Figure 29.7. For example:

\[

\]

Figure 29.7
For a given substance, the sum of its enthalpy of fusion and enthalpy of vaporization is approximately equal to its enthalpy of sublimation.

Heating and Cooling Curves

In the chapter on thermochemistry, the relation between the amount of heat absorbed or released by a substance, q, and its accompanying temperature change, ΔT, was introduced:

$$
q=m c \Delta T
$$

where m is the mass of the substance and c is its specific heat. The relation applies to matter being heated or cooled, but not undergoing a change in state. When a substance being heated or cooled reaches a temperature corresponding to one of its phase transitions, further gain or loss of heat is a result of diminishing or enhancing intermolecular attractions, instead of increasing or decreasing molecular kinetic energies. While a substance is undergoing a change in state, its temperature remains constant. Figure 29.8 shows a typical heating curve.

Consider the example of heating a pot of water to boiling. A stove burner will supply heat at a roughly constant rate; initially, this heat serves to increase the water's temperature. When the water reaches its boiling point, the temperature remains constant despite the continued input of heat from the stove burner. This same temperature is maintained by the water as long as it is boiling. If the burner setting is increased to provide heat at a greater rate, the water temperature does not rise, but instead the boiling becomes more vigorous (rapid). This behavior is observed for other phase transitions as well: For example, temperature remains constant while the change of state is in progress.

Figure 29.8
A typical heating curve for a substance depicts changes in temperature that result as the substance absorbs increasing amounts of heat. Plateaus in the curve (regions of constant temperature) are exhibited when the substance undergoes phase transitions.

Amount of heat added

Example 29.4

Total Heat Needed to Change Temperature and Phase for a Substance

How much heat is required to convert 135 g of ice at $-15^{\circ} \mathrm{C}$ into water vapor at $120^{\circ} \mathrm{C}$?

Solution

The transition described involves the following steps:

1. Heat ice from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
2. Melt ice
3. Heat water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
4. Boil water
5. Heat steam from $100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$

The heat needed to change the temperature of a given substance (with no change in phase) is: $q=m$
\times
c
\times
ΔT (see previous chapter on thermochemistry). The heat needed to induce a given change in phase is given by q = n
\times
ΔH.
Using these equations with the appropriate values for specific heat of ice, water, and steam, and enthalpies of fusion and vaporization, we have:

$$
\begin{gathered}
q_{\text {total }}=(m \cdot c \cdot \Delta T)_{\text {ice }}+n \cdot \Delta H_{\text {fus }}+(m \cdot c \cdot \Delta T)_{\text {water }}+n \cdot \Delta H_{\text {vap }}+(m \cdot c \cdot \Delta T)_{\text {steam }} \\
=\left(135 \mathrm{~g} \cdot 2.09 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \cdot 15^{\circ} \mathrm{C}\right)+\left(135 \cdot \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}} \cdot 6.01 \mathrm{~kJ} / \mathrm{mol}\right) \\
+\left(135 \mathrm{~g} \cdot 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \cdot 100^{\circ} \mathrm{C}\right)+\left(135 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}} \cdot 40.67 \mathrm{~kJ} / \mathrm{mol}\right) \\
+\left(135 \mathrm{~g} \cdot 1.84 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \cdot 20^{\circ} \mathrm{C}\right) \\
=4230 \mathrm{~J}+45.0 \mathrm{~kJ}+56,500 \mathrm{~J}+305 \mathrm{~kJ}+4970 \mathrm{~J}
\end{gathered}
$$

Converting the quantities in J to kJ permits them to be summed, yielding the total heat required:

$$
=4.23 \mathrm{~kJ}+45.0 \mathrm{~kJ}+56.5 \mathrm{~kJ}+305 \mathrm{~kJ}+4.97 \mathrm{~kJ}=416 \mathrm{~kJ}
$$

NOTE: The value of $\Delta \mathrm{H}_{\text {vap }}$ at the boiling point of water ($40.67 \mathrm{~kJ} / \mathrm{mol}$) is used here instead of the value at standard temperature ($44.01 \mathrm{~kJ} / \mathrm{mol}$).

Check Your Learning

What is the total amount of heat released when 94.0 g water at $80.0^{\circ} \mathrm{C}$ cools to form ice at $-30.0^{\circ} \mathrm{C}$?

Answer

68.7

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/10-3-phase-transitions

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/applications_of_imf.

30

Phase Diagrams

Relationships Pressure Phase Diagrams

The temperature and pressure conditions at which a substance exists in solid, liquid, and gaseous states are summarized in a phase diagram for that substance. Phase diagrams are combined plots of pressuretemperature equilibrium curves representing the relationships between phase transition temperatures and pressures. The point of intersection of any three curves in a phase diagram represents a substance's triple point -the temperature and pressure at which three different phases are in equilibrium. At pressures below a solid-liquid-gas triple point, a substance cannot exist in the liquid state, regardless of its temperature. The terminus of the liquid-gas curve represents the substance's critical point, the pressure and temperature above which a liquid phase cannot exist.

30.1 Phase Diagrams

Learning Objectives

By the end of this section, you will be able to:

- Explain the construction and use of a typical phase diagram
- Use phase diagrams to identify stable phases at given temperatures and pressures, and to describe phase transitions resulting from changes in these properties
- Describe the supercritical fluid phase of matter

In the previous module, the variation of a liquid's equilibrium vapor pressure with temperature was described. Considering the definition of boiling point, plots of vapor pressure versus temperature represent how the boiling point of the liquid varies with pressure. Also described was the use of heating and cooling curves to determine a substance's melting (or freezing) point. Making such measurements over a wide range of pressures yields data that may be presented graphically as a phase diagram. A phase diagram combines plots of pressure versus temperature for the liquid-gas, solid-liquid, and solid-gas phase-transition equilibria of a substance. These diagrams indicate the physical states that exist under specific conditions of pressure and temperature, and also provide the pressure dependence of the phase-transition temperatures (melting points, sublimation points, boiling points). A typical phase diagram for a pure substance is shown in Figure 30.1.

Figure 30.1
The physical state of a substance and its phase-transition temperatures are represented graphically in a phase diagram.

To illustrate the utility of these plots, consider the phase diagram for water shown in Figure 30.2.

Figure 30.2
The pressure and temperature axes on this phase diagram of water are not drawn to constant scale in order to illustrate several important properties.

We can use the phase diagram to identify the physical state of a sample of water under specified conditions of pressure and temperature. For example, a pressure of 50 kPa and a temperature of $-10^{\circ} \mathrm{C}$ correspond to the region of the diagram labeled "ice." Under these conditions, water exists only as a solid (ice). A pressure of 50 kPa and a temperature of $50^{\circ} \mathrm{C}$ correspond to the "water" region-here, water exists only as a liquid. At 25 kPa and $200^{\circ} \mathrm{C}$, water exists only in the gaseous state. Note that on the $\mathrm{H}_{2} \mathrm{O}$ phase diagram, the pressure and temperature axes are not drawn to a constant scale in order to permit the illustration of several important features as described here.

The curve BC in Figure 30.2 is the plot of vapor pressure versus temperature as described in the previous module of this chapter. This "liquid-vapor" curve separates the liquid and gaseous regions of the phase diagram and provides the boiling point for water at any pressure. For example, at 1 atm , the boiling point is $100^{\circ} \mathrm{C}$. Notice that the liquid-vapor curve terminates at a temperature of $374^{\circ} \mathrm{C}$ and a pressure of 218 atm , indicating that water cannot exist as a liquid above this temperature, regardless of the pressure. The physical properties of water under these conditions are intermediate between those of its liquid and gaseous phases. This unique state of matter is called a supercritical fluid, a topic that will be described in the next section of this module.

The solid-vapor curve, labeled AB in Figure 30.2, indicates the temperatures and pressures at which ice and water vapor are in equilibrium. These temperature-pressure data pairs correspond to the sublimation, or deposition, points for water. If we could zoom in on the solid-gas line in Figure 30.2, we would see that ice has a vapor pressure of about 0.20 kPa at $-10^{\circ} \mathrm{C}$. Thus, if we place a frozen sample in a vacuum with a pressure less than 0.20 kPa , ice will sublime. This is the basis for the "freeze-drying" process often used to preserve foods, such as the ice cream shown in Figure 30.3.

Figure 30.3
Freeze-dried foods, like this ice cream, are dehydrated by sublimation at pressures below the triple point for water. (credit: "/wao"/Flickr)

The solid-liquid curve labeled BD shows the temperatures and pressures at which ice and liquid water are in equilibrium, representing the melting/freezing points for water. Note that this curve exhibits a slight negative slope (greatly exaggerated for clarity), indicating that the melting point for water decreases slightly as pressure increases. Water is an unusual substance in this regard, as most substances exhibit an increase in melting point with increasing pressure. This behavior is partly responsible for the movement of glaciers, like the one shown in Figure 30.4. The bottom of a glacier experiences an immense pressure due to its weight that can melt some of the ice, forming a layer of liquid water on which the glacier may more easily slide.

Figure 30.4
The immense pressures beneath glaciers result in partial melting to produce a layer of water that provides lubrication to assist glacial movement. This satellite photograph shows the advancing edge of the Perito Moreno glacier in Argentina. (credit: NASA)

The point of intersection of all three curves is labeled B in Figure 30.2. At the pressure and temperature represented by this point, all three phases of water coexist in equilibrium. This temperature-pressure data pair is called the triple point. At pressures lower than the triple point, water cannot exist as a liquid, regardless of the temperature.

Example 30.1

Determining the State of Water

Using the phase diagram for water given in Figure 30.2, determine the state of water at the following temperatures and pressures:
(a) $-10^{\circ} \mathrm{C}$ and 50 kPa
(b) $25^{\circ} \mathrm{C}$ and 90 kPa
(c) $50^{\circ} \mathrm{C}$ and 40 kPa
(d) $80^{\circ} \mathrm{C}$ and 5 kPa
(e) $-10{ }^{\circ} \mathrm{C}$ and 0.3 kPa
(f) $50^{\circ} \mathrm{C}$ and 0.3 kPa

Solution

Using the phase diagram for water, we can determine that the state of water at each temperature and pressure given are as follows: (a) solid; (b) liquid; (c) liquid; (d) gas; (e) solid; (f) gas.

Check Your Learning

What phase changes can water undergo as the temperature changes if the pressure is held at 0.3 kPa ? If the pressure is held at 50 kPa ?

Answer

$$
\begin{aligned}
& \text { At } 0.3 \mathrm{kPa}: \\
& \mathrm{S} \longrightarrow \mathrm{~g} \\
& \text { at }-58^{\circ} \mathrm{C} \text {. At } 50 \mathrm{kPa}: \\
& \mathrm{S} \longrightarrow 1 \\
& \text { at } 0^{\circ} \mathrm{C}, \mathrm{I} \rightarrow \mathrm{~g} \text { at } 78^{\circ} \mathrm{C}
\end{aligned}
$$

Consider the phase diagram for carbon dioxide shown in Figure 30.5 as another example. The solid-liquid curve exhibits a positive slope, indicating that the melting point for CO_{2} increases with pressure as it does for most substances (water being a notable exception as described previously). Notice that the triple point is well above 1 atm, indicating that carbon dioxide cannot exist as a liquid under ambient pressure conditions. Instead, cooling gaseous carbon dioxide at 1 atm results in its deposition into the solid state. Likewise, solid carbon dioxide does not melt at 1 atm pressure but instead sublimes to yield gaseous CO_{2}. Finally, notice that the critical point for carbon dioxide is observed at a relatively modest temperature and pressure in comparison to water.

Figure 30.5

A phase diagram for carbon dioxide is shown. The pressure axis is plotted on a logarithmic scale to accommodate the large range of values.

Example 30.2

Determining the State of Carbon Dioxide

Using the phase diagram for carbon dioxide shown in Figure 30.5, determine the state of CO_{2} at the following temperatures and pressures:
(a) $-30^{\circ} \mathrm{C}$ and 2000 kPa
(b) $-90^{\circ} \mathrm{C}$ and 1000 kPa
(c) $-60^{\circ} \mathrm{C}$ and 100 kPa
(d) $-40^{\circ} \mathrm{C}$ and 1500 kPa
(e) $0^{\circ} \mathrm{C}$ and 100 kPa
(f) $20^{\circ} \mathrm{C}$ and 100 kPa

Solution

Using the phase diagram for carbon dioxide provided, we can determine that the state of CO_{2} at each temperature and pressure given are as follows: (a) liquid; (b) solid; (c) gas; (d) liquid; (e) gas; (f) gas.
Check Your Learning
Identify the phase changes that carbon dioxide will undergo as its temperature is increased from $-100{ }^{\circ} \mathrm{C}$ while holding its pressure constant at 1500 kPa . At 50 kPa . At what approximate temperatures do these phase changes occur?

Answer

at 1500 kPa :
$s \longrightarrow 1$
at $-55^{\circ} \mathrm{C}$,
$1 \longrightarrow \mathrm{~g}$
at $-10^{\circ} \mathrm{C}$;
at 50 kPa :
$\mathrm{S} \longrightarrow \mathrm{g}$
at $-60^{\circ} \mathrm{C}$

Supercritical Fluids

If we place a sample of water in a sealed container at $25^{\circ} \mathrm{C}$, remove the air, and let the vaporization-condensation equilibrium establish itself, we are left with a mixture of liquid water and water vapor at a pressure of 0.03 atm . A distinct boundary between the more dense liquid and the less dense gas is clearly observed. As we increase the temperature, the pressure of the water vapor increases, as described by the liquid-gas curve in the phase diagram for water (Figure 30.2), and a two-phase equilibrium of liquid and gaseous phases remains. At a temperature of $374^{\circ} \mathrm{C}$, the vapor pressure has risen to 218 atm, and any further increase in temperature results in the disappearance of the boundary between liquid and vapor phases. All of the water in the container is now present in a single phase whose physical properties are intermediate between those of the gaseous and liquid states. This phase of matter is called a supercritical fluid, and the temperature and pressure above which this phase exists is the critical point (Figure 30.6). Above its critical temperature, a gas cannot be liquefied no matter how much pressure is applied. The pressure required to liquefy a gas at its critical temperature is called the critical pressure. The critical temperatures and critical pressures of some common substances are given in the following table.

Substance	Critical Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Critical Pressure (kPa)
hydrogen	-240.0	1300
nitrogen	-147.2	3400
oxygen	-118.9	5000
carbon dioxide	31.1	7400
ammonia	132.4	11,300
sulfur dioxide	157.2	7800
water	374.0	22,000

Figure 30.6
(a) A sealed container of liquid carbon dioxide slightly below its critical point is heated, resulting in (b) the formation of the supercritical fluid phase. Cooling the supercritical fluid lowers its temperature and pressure below the critical point, resulting in the reestablishment of separate liquid and gaseous phases (c and d). Colored floats illustrate differences in density between the liquid, gaseous, and supercritical fluid states. (credit: modification of work by "mrmrobin"/YouTube)

Link to Learning

Observe the liquid-to-supercritical fluid transition for carbon dioxide.

Watch on YouTube

Like a gas, a supercritical fluid will expand and fill a container, but its density is much greater than typical gas densities, typically being close to those for liquids. Similar to liquids, these fluids are capable of dissolving nonvolatile solutes. They exhibit essentially no surface tension and very low viscosities, however, so they can more effectively penetrate very small openings in a solid mixture and remove soluble components. These properties make supercritical fluids extremely useful solvents for a wide range of applications. For example, supercritical carbon dioxide has become a very popular solvent in the food industry, being used to decaffeinate coffee, remove fats from potato chips, and extract flavor and fragrance compounds from citrus oils. It is nontoxic, relatively inexpensive, and not considered to be a pollutant. After use, the CO_{2} can be easily recovered by reducing the pressure and collecting the resulting gas.

Example 30.3

The Critical Temperature of Carbon Dioxide

If we shake a carbon dioxide fire extinguisher on a cool day $\left(18^{\circ} \mathrm{C}\right)$, we can hear liquid CO_{2} sloshing around inside the cylinder. However, the same cylinder appears to contain no liquid on a hot summer day $\left(35^{\circ} \mathrm{C}\right)$. Explain these observations.

Solution

On the cool day, the temperature of the CO_{2} is below the critical temperature of $\mathrm{CO}_{2}, 304 \mathrm{~K}$ or $31^{\circ} \mathrm{C}$, so liquid CO_{2} is present in the cylinder. On the hot day, the temperature of the CO_{2} is greater than its critical temperature of $31^{\circ} \mathrm{C}$. Above this temperature no amount of pressure can liquefy CO_{2} so no liquid CO_{2} exists in the fire extinguisher.
Check Your Learning
Ammonia can be liquefied by compression at room temperature; oxygen cannot be liquefied under these conditions. Why do the two gases exhibit different behavior?

Answer

The critical temperature of ammonia is 405.5 K , which is higher than room temperature. The critical temperature of oxygen is below room temperature; thus oxygen cannot be liquefied at room temperature.

Chemistry in Everyday Life

Decaffeinating Coffee Using Supercritical CO_{2}

Coffee is the world's second most widely traded commodity, following only petroleum. Across the globe, people love coffee's aroma and taste. Many of us also depend on one component of coffee-caffeine-to help us get going in the morning or stay alert in the afternoon. But late in the day, coffee's stimulant effect can keep you from sleeping, so you may choose to drink decaffeinated coffee in the evening.

Since the early 1900s, many methods have been used to decaffeinate coffee. All have advantages and disadvantages, and all depend on the physical and chemical properties of caffeine. Because caffeine is a somewhat polar molecule, it dissolves well in water, a polar liquid. However, since many of the other 400-plus compounds that contribute to coffee's taste and aroma also dissolve in $\mathrm{H}_{2} \mathrm{O}$, hot water decaffeination processes can also remove some of these compounds, adversely affecting the smell and taste of the decaffeinated coffee. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and ethyl acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ have similar polarity to caffeine, and are therefore very effective solvents for caffeine extraction, but both also remove some flavor and aroma components, and their use requires long extraction and cleanup times. Because both of these solvents are toxic, health concerns have been raised regarding the effect of residual solvent remaining in the decaffeinated coffee.

Supercritical fluid extraction using carbon dioxide is now being widely used as a more effective and environmentally friendly decaffeination method (Figure 30.7). At temperatures above 304.2 K and pressures above $7376 \mathrm{kPa}, \mathrm{CO}_{2}$ is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively dissolves certain substances. Supercritical carbon dioxide extraction of steamed coffee beans removes $97-99 \%$ of the caffeine, leaving coffee's flavor and aroma compounds intact. Because CO_{2} is a gas under standard conditions, its removal from the extracted coffee beans is easily accomplished, as is the recovery of the caffeine from the extract. The caffeine recovered from coffee beans via this process is a valuable product that can be used subsequently as an additive to other foods or drugs.

Figure 30.7
(a) Caffeine molecules have both polar and nonpolar regions, making it soluble in solvents of varying polarities.
(b) The schematic shows a typical decaffeination process involving supercritical carbon dioxide.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/10-4-phase-diagrams

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/phase_diagrams.

Unit IV

Reactions

Stoichiometry
Limiting Reactants, \% Yield
\% Composition, Empirical Formulas
Energy, Heat, and Work
Calorimetry Part 1
Calorimetry Part 2
Enthalpy Part 1
Enthalpy Part 2
Entropy
Gibb's Free Energy
Climate and Human Impacts

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/unit_iv.

31

Stoichiometry

Relationships Stoichiometry

Chemical equations are symbolic representations of chemical and physical changes. Formulas for the substances undergoing the change (reactants) and substances generated by the change (products) are separated by an arrow and preceded by integer coefficients indicating their relative numbers. Balanced equations are those whose coefficients result in equal numbers of atoms for each element in the reactants and products. Chemical reactions in aqueous solution that involve ionic reactants or products may be represented more realistically by complete ionic equations and, more succinctly, by net ionic equations. A balanced chemical equation may be used to describe a reaction's stoichiometry (the relationships between amounts of reactants and products). Coefficients from the equation are used to derive stoichiometric factors that subsequently may be used for computations relating reactant and product masses, molar amounts, and other quantitative properties.

31.1 Writing and Balancing Chemical Equations

Learning Objectives

By the end of this section, you will be able to:

- Derive chemical equations from narrative descriptions of chemical reactions.
- Write and balance chemical equations in molecular, total ionic, and net ionic formats.

An earlier chapter of this text introduced the use of element symbols to represent individual atoms. When atoms gain or lose electrons to yield ions, or combine with other atoms to form molecules, their symbols are modified or combined to generate chemical formulas that appropriately represent these species. Extending this symbolism to represent both the identities and the relative quantities of substances undergoing a chemical (or physical) change involves writing and balancing a chemical equation. Consider as an example the reaction between one methane molecule $\left(\mathrm{CH}_{4}\right)$ and two diatomic oxygen molecules $\left(\mathrm{O}_{2}\right)$ to produce one carbon dioxide molecule $\left(\mathrm{CO}_{2}\right)$ and two water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The chemical equation representing this process is provided in the upper half of Figure 31.1, with space-filling molecular models shown in the lower half of the figure.

Figure 31.1

The reaction between methane and oxygen to yield carbon dioxide and water (shown at bottom) may be represented by a chemical equation using formulas (top).

This example illustrates the fundamental aspects of any chemical equation:

1. The substances undergoing reaction are called reactants, and their formulas are placed on the left side of the equation.
2. The substances generated by the reaction are called products, and their formulas are placed on the right side of the equation.
3. Plus signs (+) separate individual reactant and product formulas, and an arrow (\longrightarrow) separates the reactant and product (left and right) sides of the equation.
4. The relative numbers of reactant and product species are represented by coefficients (numbers placed immediately to the left of each formula). A coefficient of 1 is typically omitted.

It is common practice to use the smallest possible whole-number coefficients in a chemical equation, as is done in this example. Realize, however, that these coefficients represent the relative numbers of reactants and products, and, therefore, they may be correctly interpreted as ratios. Methane and oxygen react to yield carbon dioxide and water in a 1:2:1:2 ratio. This ratio is satisfied if the numbers of these molecules are, respectively, 1-2-1-2, or 2-4-2-4, or 3-6-3-6, and so on (Figure 31.2). Likewise, these coefficients may be interpreted with regard to any amount (number) unit, and so this equation may be correctly read in many ways, including:

- One methane molecule and two oxygen molecules react to yield one carbon dioxide molecule and two water molecules.
- One dozen methane molecules and two dozen oxygen molecules react to yield one dozen carbon dioxide molecules and two dozen water molecules.
- One mole of methane molecules and 2 moles of oxygen molecules react to yield 1 mole of carbon dioxide molecules and 2 moles of water molecules.

Figure 31.2

Regardless of the absolute numbers of molecules involved, the ratios between numbers of molecules of each species that react (the reactants) and molecules of each species that form (the products) are the same and are given by the chemical reaction equation.

Balancing Equations

The chemical equation described in section 4.1 is balanced, meaning that equal numbers of atoms for each element involved in the reaction are represented on the reactant and product sides. This is a requirement the equation must satisfy to be consistent with the law of conservation of matter. It may be confirmed by simply summing the numbers of atoms on either side of the arrow and comparing these sums to ensure they are equal. Note that the number of atoms for a given element is calculated by multiplying the coefficient of any formula containing that element by the element's subscript in the formula. If an element appears in more than one formula on a given side of the equation, the number of atoms represented in each must be computed and then added together. For example, both product species in the example reaction, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, contain the element oxygen, and so the number of oxygen atoms on the product side of the equation is
$\left(1 \mathrm{CO}_{2}\right.$ molecule $\left.\times \frac{2 \mathrm{O} \text { atoms }}{\mathrm{CO}_{2} \text { molecule }}\right)+\left(2 \mathrm{H}_{2} \mathrm{O}\right.$ molecules $\left.\times \frac{1 \mathrm{O} \text { atom }}{\mathrm{H}_{2} \mathrm{O} \text { molecule }}\right)=4 \mathrm{O}$ atoms

The equation for the reaction between methane and oxygen to yield carbon dioxide and water is confirmed to be balanced per this approach, as shown here:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Element	Reactants	Products	Balanced?
C	$1 \times 1=1$	$1 \times 1=1$	$1=1$, yes
H	$4 \times 1=4$	$2 \times 2=4$	$4=4$, yes
0	$2 \times 2=4$	$(1 \times 2)+(2 \times 1)=4$	$4=4$, yes

A balanced chemical equation often may be derived from a qualitative description of some chemical reaction by a fairly simple approach known as balancing by inspection. Consider as an example the decomposition of water to yield molecular hydrogen and oxygen. This process is represented qualitatively by an unbalanced chemical equation:

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2} \quad \text { (unbalanced) }
$$

Comparing the number of H and O atoms on either side of this equation confirms its imbalance:

Element	Reactants	Products	Balanced?
H	$1 \times 2=2$	$1 \times 2=2$	$2=2$, yes
O	$1 \times 1=1$	$1 \times 2=2$	$1 \neq 2$, no

The numbers of H atoms on the reactant and product sides of the equation are equal, but the numbers of O atoms are not. To achieve balance, the coefficients of the equation may be changed as needed. Keep in mind, of course, that the formula subscripts define, in part, the identity of the substance, and so these cannot be changed without altering the qualitative meaning of the equation. For example, changing the reactant formula from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{O}_{2}$ would yield balance in the number of atoms, but doing so also changes the reactant's identity (it's now hydrogen peroxide and not water). The O atom balance may be achieved by changing the coefficient for $\mathrm{H}_{2} \mathrm{O}$ to 2 .

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2} \quad \text { (unbalanced) }
$$

Element	Reactants	Products	Balanced?
H	$2 \times 2=4$	$1 \times 2=2$	$4 \neq 2$, no
0	$2 \times 1=2$	$1 \times 2=2$	$2=2$, yes

The H atom balance was upset by this change, but it is easily reestablished by changing the coefficient for the H_{2} product to 2.

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad \text { (balanced) }
$$

Element	Reactants	Products	Balanced?
H	$2 \times 2=4$	$2 \times 2=4$	$4=4$, yes
0	$2 \times 1=2$	$1 \times 2=2$	$2=2$, yes

These coefficients yield equal numbers of both H and O atoms on the reactant and product sides, and the balanced equation is, therefore:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

Example 31.1

Balancing Chemical Equations

Write a balanced equation for the reaction of molecular nitrogen $\left(\mathrm{N}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ to form dinitrogen pentoxide.

Solution

First, write the unbalanced equation.

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5} \quad \text { (unbalanced) }
$$

Next, count the number of each type of atom present in the unbalanced equation.

Element	Reactants	Products	Balanced?
N	$1 \times 2=2$	$1 \times 2=2$	$2=2$, yes
O	$1 \times 2=2$	$1 \times 5=5$	$2 \neq 5$, no

Though nitrogen is balanced, changes in coefficients are needed to balance the number of oxygen atoms. To balance the number of oxygen atoms, a reasonable first attempt would be to change the coefficients for the O_{2} and $\mathrm{N}_{2} \mathrm{O}_{5}$ to integers that will yield 10 O atoms (the least common multiple for the O atom subscripts in these two formulas).

$$
\mathrm{N}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5} \quad \text { (unbalanced) }
$$

Element	Reactants	Products	Balanced?
N	$1 \times 2=2$	$2 \times 2=4$	$2 \neq 4$, no
O	$5 \times 2=10$	$2 \times 5=10$	$10=10$, yes

The N atom balance has been upset by this change; it is restored by changing the coefficient for the reactant N_{2} to 2 .

$$
2 \mathrm{~N}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}
$$

Element	Reactants	Products	Balanced?
N	$2 \times 2=4$	$2 \times 2=4$	$4=4$, yes
0	$5 \times 2=10$	$2 \times 5=10$	$10=10$, yes

The numbers of N and O atoms on either side of the equation are now equal, and so the equation is balanced.

Check Your Learning

Write a balanced equation for the decomposition of ammonium nitrate to form molecular nitrogen, molecular oxygen, and water. (Hint: Balance oxygen last, since it is present in more than one molecule on the right side of the equation.)

Answer

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

It is sometimes convenient to use fractions instead of integers as intermediate coefficients in the process of balancing a chemical equation. When balance is achieved, all the equation's coefficients may then be multiplied by a whole number to convert the fractional coefficients to integers without upsetting the atom balance. For example, consider the reaction of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ with oxygen to yield $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}, represented by the unbalanced equation:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \quad \text { (unbalanced) }
$$

Following the usual inspection approach, one might first balance C and H atoms by changing the coefficients for the two product species, as shown:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \quad \text { (unbalanced) }
$$

This results in seven 0 atoms on the product side of the equation, an odd number-no integer coefficient can be used with the O_{2} reactant to yield an odd number, so a fractional coefficient,

$\frac{7}{2}$,

is used instead to yield a provisional balanced equation:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}
$$

A conventional balanced equation with integer-only coefficients is derived by multiplying each coefficient by 2 :

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}
$$

Finally with regard to balanced equations, recall that convention dictates use of the smallest whole-number coefficients. Although the equation for the reaction between molecular nitrogen and molecular hydrogen to produce ammonia is, indeed, balanced,

$$
3 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \rightarrow 6 \mathrm{NH}_{3}
$$

the coefficients are not the smallest possible integers representing the relative numbers of reactant and product molecules. Dividing each coefficient by the greatest common factor, 3 , gives the preferred equation:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Link to Learning

Use this interactive tutorial for additional practice balancing equations.

Additional Information in Chemical Equations

The physical states of reactants and products in chemical equations very often are indicated with a parenthetical abbreviation following the formulas. Common abbreviations include s for solids, I for liquids, g for gases, and aq for substances dissolved in water (aqueous solutions, as introduced in the preceding chapter). These notations are illustrated in the example equation here:

$$
2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)
$$

This equation represents the reaction that takes place when sodium metal is placed in water. The solid sodium reacts with liquid water to produce molecular hydrogen gas and the ionic compound sodium hydroxide (a solid in pure form, but readily dissolved in water).

Special conditions necessary for a reaction are sometimes designated by writing a word or symbol above or below the equation's arrow. For example, a reaction carried out by heating may be indicated by the uppercase Greek letter delta (Δ) over the arrow.

$$
\mathrm{CaCO}_{3}(s) \xrightarrow{\Delta} \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

Other examples of these special conditions will be encountered in more depth in later chapters.

Equations for Ionic Reactions

Given the abundance of water on earth, it stands to reason that a great many chemical reactions take place in aqueous media. When ions are involved in these reactions, the chemical equations may be written with various levels of detail appropriate to their intended use. To illustrate this, consider a reaction between ionic compounds taking place in an aqueous solution. When aqueous solutions of CaCl_{2} and AgNO_{3} are mixed, a reaction takes place producing aqueous $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and solid AgCl :

$$
\mathrm{CaCl}_{2}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{AgCl}(s)
$$

This balanced equation, derived in the usual fashion, is called a molecular equation because it doesn't explicitly represent the ionic species that are present in solution. When ionic compounds dissolve in water, they may dissociate into their constituent ions, which are subsequently dispersed homogenously throughout the resulting solution (a thorough discussion of this important process is provided in the chapter on solutions). Ionic compounds dissolved in water are, therefore, more realistically represented as dissociated ions, in this case:

$$
\begin{aligned}
\mathrm{CaCl}_{2}(a q) & \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \\
2 \mathrm{AgNO}_{3}(a q) & \rightarrow 2 \mathrm{Ag}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \\
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q) & \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)
\end{aligned}
$$

Unlike these three ionic compounds, AgCl does not dissolve in water to a significant extent, as signified by its physical state notation, s.

Explicitly representing all dissolved ions results in a complete ionic equation. In this particular case, the formulas for the dissolved ionic compounds are replaced by formulas for their dissociated ions:

$$
\mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)+2 \mathrm{Ag}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+2 \mathrm{AgCl}(s)
$$

Examining this equation shows that two chemical species are present in identical form on both sides of the arrow, Ca^{2+} (aq) and
$\mathrm{NO}_{3}{ }^{-}(a q)$.

These spectator ions-ions whose presence is required to maintain charge neutrality-are neither chemically nor physically changed by the process, and so they may be eliminated from the equation to yield a more succinct representation called a net ionic equation:

$$
\begin{aligned}
\mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)+2 \mathrm{Ag}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) & \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+2 \mathrm{AgCl}(s) \\
2 \mathrm{Cl}^{-}(a q)+2 \mathrm{Ag}^{+}(a q) & \rightarrow 2 \mathrm{AgCl}(s)
\end{aligned}
$$

Following the convention of using the smallest possible integers as coefficients, this equation is then written:
$\mathrm{Cl}^{-}(a q)+\mathrm{Ag}^{+}(a q) \rightarrow \mathrm{AgCl}(s)$

This net ionic equation indicates that solid silver chloride may be produced from dissolved chloride and silver(I) ions, regardless of the source of these ions. These molecular and complete ionic equations provide additional information, namely, the ionic compounds used as sources of Cl^{-}and Ag^{+}.

Example 31.2

Ionic and Molecular Equations

When carbon dioxide is dissolved in an aqueous solution of sodium hydroxide, the mixture reacts to yield aqueous sodium carbonate and liquid water. Write balanced molecular, complete ionic, and net ionic equations for this process.

Solution

Begin by identifying formulas for the reactants and products and arranging them properly in chemical equation form:

$$
\mathrm{CO}_{2}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \quad \text { (unbalanced) }
$$

Balance is achieved easily in this case by changing the coefficient for NaOH to 2 , resulting in the molecular equation for this reaction:

$$
\mathrm{CO}_{2}(a q)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The two dissolved ionic compounds, NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$, can be represented as dissociated ions to yield the complete ionic equation:

$$
\mathrm{CO}_{2}(a q)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Finally, identify the spectator ion(s), in this case $\mathrm{Na}^{+}(\mathrm{aq})$, and remove it from each side of the equation to generate the net ionic equation:

$$
\begin{aligned}
\mathrm{CO}_{2}(a q)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{OH}^{-}(a q) & \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\
\mathrm{CO}_{2}(a q)+2 \mathrm{OH}^{-}(a q) & \rightarrow \mathrm{CO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

Check Your Learning

Diatomic chlorine and sodium hydroxide (lye) are commodity chemicals produced in large quantities, along with diatomic hydrogen, via the electrolysis of brine, according to the following unbalanced equation:

$$
\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \xrightarrow{\text { electricity }} \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)
$$

Write balanced molecular, complete ionic, and net ionic equations for this process.

Answer

$2 \mathrm{NaCl}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \quad$ (molecular)
$2 \mathrm{Na}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{Na}^{+}(a q)+2 \mathrm{OH}^{-}(a q)+\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)$
$2 \mathrm{Cl}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{OH}^{-}(a q)+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad$ (net ionic)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

31.2 Reaction Stoichiometry

Learning Objectives

By the end of this section, you will be able to:

- Explain the concept of stoichiometry as it pertains to chemical reactions
- Use balanced chemical equations to derive stoichiometric factors relating amounts of reactants and products
- Perform stoichiometric calculations involving mass, moles, and solution molarity

A balanced chemical equation provides a great deal of information in a very succinct format. Chemical formulas provide the identities of the reactants and products involved in the chemical change, allowing classification of the reaction. Coefficients provide the relative numbers of these chemical species, allowing a quantitative assessment of the relationships between the amounts of substances consumed and produced by the reaction. These quantitative relationships are known as the reaction's stoichiometry, a term derived from the Greek words stoicheion (meaning "element") and metron (meaning "measure"). In this module, the use of balanced chemical equations for various stoichiometric applications is explored.

The general approach to using stoichiometric relationships is similar in concept to the way people go about many common activities. Food preparation, for example, offers an appropriate comparison. A recipe for making eight pancakes calls for 1 cup pancake mix,
$\frac{3}{4}$
cup milk, and one egg. The "equation" representing the preparation of pancakes per this recipe is

1 cup mix $+\frac{3}{4}$ cup milk +1 egg $\rightarrow 8$ pancakes

If two dozen pancakes are needed for a big family breakfast, the ingredient amounts must be increased proportionally according to the amounts given in the recipe. For example, the number of eggs required to make 24 pancakes is

24 pancakes $\times \frac{1 \text { egg }}{8 \text { pancakes }}=3$ eggs

Balanced chemical equations are used in much the same fashion to determine the amount of one reactant required to react with a given amount of another reactant, or to yield a given amount of product, and so forth. The coefficients in the balanced equation are used to derive stoichiometric factors that permit computation of the desired quantity. To illustrate this idea, consider the production of ammonia by reaction of hydrogen and nitrogen:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

This equation shows ammonia molecules are produced from hydrogen molecules in a 2:3 ratio, and stoichiometric factors may be derived using any amount (number) unit:
$\frac{2 \mathrm{NH}_{3} \text { molecules }}{3 \mathrm{H}_{2} \text { molecules }}$ or $\frac{2 \text { doz } \mathrm{NH}_{3} \text { molecules }}{3 \text { doz } \mathrm{H}_{2} \text { molecules }}$ or $\frac{2 \mathrm{~mol} \mathrm{NH}_{3} \text { molecules }}{3 \mathrm{~mol} \mathrm{H}_{2} \text { molecules }}$

These stoichiometric factors can be used to compute the number of ammonia molecules produced from a given number of hydrogen molecules, or the number of hydrogen molecules required to produce a given number of ammonia molecules. Similar factors may be derived for any pair of substances in any chemical equation.

Example 31.3

Moles of Reactant Required in a Reaction

How many moles of I_{2} are required to react with 0.429 mol of Al according to the following equation (see Figure 31.3)?
$2 \mathrm{Al}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{AlI}_{3}$

Figure 31.3
Aluminum and iodine react to produce aluminum iodide. The heat of the reaction vaporizes some of the solid iodine as a purple vapor. (credit: modification of work by Mark Ott)

Solution

Referring to the balanced chemical equation, the stoichiometric factor relating the two substances of interest is

$$
\frac{3 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{molAl}}
$$

The molar amount of iodine is derived by multiplying the provided molar amount of aluminum by this factor:

$$
\begin{array}{r}
\mathrm{mol} \mathrm{I}_{2}=0.429 \mathrm{~mol} \mathrm{Al} \times \frac{3 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{~mol} \mathrm{Al}} \\
=0.644 \mathrm{~mol} \mathrm{I}_{2}
\end{array}
$$

Check Your Learning

How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are required to react with 1.36 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to produce $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ according to the equation
$3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O} ?$

Answer

2.04 mol

Example 31.4

Number of Product Molecules Generated by a Reaction

How many carbon dioxide molecules are produced when 0.75 mol of propane is combusted according to this equation?
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Solution

The approach here is the same as for Example 31.3, though the absolute number of molecules is requested, not the number of moles of molecules. This will simply require use of the moles-to-numbers conversion factor, Avogadro's number.
The balanced equation shows that carbon dioxide is produced from propane in a 3:1 ratio:
$\frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}$

Using this stoichiometric factor, the provided molar amount of propane, and Avogadro's number,

$0.75 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{6.022 \times 10^{23} \mathrm{CO}_{2} \text { molecules }}{\mathrm{mol} \mathrm{CO}_{2}}=1.4 \times 10^{24} \mathrm{CO}_{2}$ molecul

Check Your Learning

How many NH_{3} molecules are produced by the reaction of 4.0 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ according to the following equation:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Answer

4.8

\times
$10^{24} \mathrm{NH}_{3}$ molecules

These examples illustrate the ease with which the amounts of substances involved in a chemical reaction of known stoichiometry may be related. Directly measuring numbers of atoms and molecules is, however, not an easy task, and the practical application of stoichiometry requires that we use the more readily measured property of mass.

Example 31.5

Relating Masses of Reactants and Products

What mass of sodium hydroxide, NaOH , would be required to produce 16 g of the antacid milk of magnesia [magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$] by the following reaction?
$\operatorname{MgCl}_{2}(a q)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{NaCl}(a q)$

Solution

The approach used previously in Example 31.3 and in Example 31.4 is likewise used here; that is, we must derive an appropriate stoichiometric factor from the balanced chemical equation and use it to relate the amounts of the two substances of interest. In this case, however, masses (not molar amounts) are provided and requested, so additional steps of the sort learned in the previous chapter are required. The calculations required are outlined in this flowchart:

$16 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}{58.3 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}} \times \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{\mathrm{mol} \mathrm{NaOH}}=22 \mathrm{~g} \mathrm{NaOH}$

Check Your Learning

What mass of gallium oxide, $\mathrm{Ga}_{2} \mathrm{O}_{3}$, can be prepared from 29.0 g of gallium metal? The equation for the reaction is
$4 \mathrm{Ga}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Ga}_{2} \mathrm{O}_{3}$.

Answer

Example 31.6

Relating Masses of Reactants

What mass of oxygen gas, O_{2}, from the air is consumed in the combustion of 702 g of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, one of the principal components of gasoline?
$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$

Solution

The approach required here is the same as for Example 31.5, differing only in that the provided and requested masses are both for reactant species.

$702 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114.23 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{25 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=2.46 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}$

Check Your Learning

What mass of CO is required to react with 25.13 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ according to the equation
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} ?$

Answer

13.22 g

These examples illustrate just a few instances of reaction stoichiometry calculations. Numerous variations on the beginning and ending computational steps are possible depending upon what particular quantities are provided and sought (volumes, solution concentrations, and so forth). Regardless of the details, all these calculations share a common essential component: the use of stoichiometric factors derived from balanced chemical equations. Figure
31.6 provides a general outline of the various computational steps associated with many reaction stoichiometry calculations.

Figure 31.6
The flowchart depicts the various computational steps involved in most reaction stoichiometry calculations.

Chemistry in Everyday Life

Airbags

Airbags (Figure 31.7) are a safety feature provided in most automobiles since the 1990s. The effective operation of an airbag requires that it be rapidly inflated with an appropriate amount (volume) of gas when the vehicle is involved in a collision. This requirement is satisfied in many automotive airbag systems through use of explosive chemical reactions, one common choice being the decomposition of sodium azide, NaN_{3}. When sensors in the vehicle detect a collision, an electrical current is passed through a carefully measured amount of NaN_{3} to initiate its decomposition:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 3 \mathrm{~N}_{2}(g)+2 \mathrm{Na}(s)
$$

This reaction is very rapid, generating gaseous nitrogen that can deploy and fully inflate a typical airbag in a fraction of a second ($\sim 0.03-0.1 \mathrm{~s}$). Among many engineering considerations, the amount of sodium azide used must be appropriate for generating enough nitrogen gas to fully inflate the air bag and ensure its proper function. For example, a small mass $(\sim 100 \mathrm{~g})$ of NaN_{3} will generate approximately 50 L of N_{2}.

Figure 31.7
Airbags deploy upon impact to minimize serious injuries to passengers. (credit: Jon Seidman)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/7-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/stoichiometry.

32

Limiting Reactants, \% Yield

Stoichiometry Limiting reactants Percent yield

When reactions are carried out using less-than-stoichiometric quantities of reactants, the amount of product generated will be determined by the limiting reactant. The amount of product generated by a chemical reaction is its actual yield. This yield is often less than the amount of product predicted by the stoichiometry of the balanced chemical equation representing the reaction (its theoretical yield). The extent to which a reaction generates the theoretical amount of product is expressed as its percent yield.

32.1 Reaction Yields

Learning Objectives

By the end of this section, you will be able to:

- Explain the concepts of theoretical yield and limiting reactants/reagents.
- Derive the theoretical yield for a reaction under specified conditions.
- Calculate the percent yield for a reaction.

The relative amounts of reactants and products represented in a balanced chemical equation are often referred to as stoichiometric amounts. All the exercises of the preceding module involved stoichiometric amounts of reactants. For example, when calculating the amount of product generated from a given amount of reactant, it was assumed that any other reactants required were available in stoichiometric amounts (or greater). In this module, more realistic situations are considered, in which reactants are not present in stoichiometric amounts.

Limiting Reactant

Consider another food analogy, making grilled cheese sandwiches (Figure 32.1):

$$
1 \text { slice of cheese }+2 \text { slices of bread } \rightarrow 1 \text { sandwich }
$$

Stoichiometric amounts of sandwich ingredients for this recipe are bread and cheese slices in a $2: 1$ ratio. Provided with 28 slices of bread and 11 slices of cheese, one may prepare 11 sandwiches per the provided recipe, using all the
provided cheese and having six slices of bread left over. In this scenario, the number of sandwiches prepared has been limited by the number of cheese slices, and the bread slices have been provided in excess.

Figure 32.1
Sandwich making can illustrate the concepts of limiting and excess reactants.
1 sandwich $=2$ slices of bread +1 slice of cheese

Consider this concept now with regard to a chemical process, the reaction of hydrogen with chlorine to yield hydrogen chloride:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

The balanced equation shows the hydrogen and chlorine react in a 1:1 stoichiometric ratio. If these reactants are provided in any other amounts, one of the reactants will nearly always be entirely consumed, thus limiting the amount of product that may be generated. This substance is the limiting reactant, and the other substance is the excess reactant. Identifying the limiting and excess reactants for a given situation requires computing the molar amounts of each reactant provided and comparing them to the stoichiometric amounts represented in the balanced chemical equation. For example, imagine combining 3 moles of H_{2} and 2 moles of Cl_{2}. This represents a $3: 2$ (or 1.5:1) ratio of hydrogen to chlorine present for reaction, which is greater than the stoichiometric ratio of 1:1. Hydrogen, therefore, is present in excess, and chlorine is the limiting reactant. Reaction of all the provided chlorine (2 mol) will consume 2 mol of the 3 mol of hydrogen provided, leaving 1 mol of hydrogen unreacted.

An alternative approach to identifying the limiting reactant involves comparing the amount of product expected for the complete reaction of each reactant. Each reactant amount is used to separately calculate the amount of product that would be formed per the reaction's stoichiometry. The reactant yielding the lesser amount of product is the limiting reactant. For the example in the previous paragraph, complete reaction of the hydrogen would yield

$$
\mathrm{mol} \mathrm{HCl} \text { produced }=3 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}^{1 \mathrm{~mol} \mathrm{H}_{2}}}{1}=6 \mathrm{~mol} \mathrm{HCl}
$$

Complete reaction of the provided chlorine would produce

The chlorine will be completely consumed once 4 moles of HCl have been produced. Since enough hydrogen was provided to yield 6 moles of HCl , there will be unreacted hydrogen remaining once this reaction is complete. Chlorine, therefore, is the limiting reactant and hydrogen is the excess reactant (Figure 32.2).

Figure 32.2
When H_{2} and Cl_{2} are combined in nonstoichiometric amounts, one of these reactants will limit the amount of HCl that can be produced. This illustration shows a reaction in which hydrogen is present in excess and chlorine is the limiting reactant.

Link to Learning

View this interactive simulation illustrating the concepts of limiting and excess reactants.

Example 32.1

Identifying the Limiting Reactant

Silicon nitride is a very hard, high-temperature-resistant ceramic used as a component of turbine blades in jet engines. It is prepared according to the following equation:

$$
3 \mathrm{Si}(s)+2 \mathrm{~N}_{2}(g) \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}(s)
$$

Which is the limiting reactant when 2.00 g of Si and 1.50 g of N_{2} react?

Solution

Compute the provided molar amounts of reactants, and then compare these amounts to the balanced equation to identify the limiting reactant.

$$
\begin{gathered}
\mathrm{mol} \mathrm{Si}=2.00 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g} \mathrm{Si}}=0.0712 \mathrm{~mol} \mathrm{Si} \\
\mathrm{~mol} \mathrm{~N}_{2}=1.50 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=0.0535 \mathrm{~mol} \mathrm{~N}_{2}
\end{gathered}
$$

The provided $\mathrm{Si}: \mathrm{N}_{2}$ molar ratio is:

The stoichiometric $\mathrm{Si}: \mathrm{N}_{2}$ ratio is:

$$
\frac{3 \mathrm{~mol} \mathrm{Si}}{2 \mathrm{~mol} \mathrm{~N}_{2}}=\frac{1.5 \mathrm{~mol} \mathrm{Si}}{1 \mathrm{~mol} \mathrm{~N}_{2}}
$$

Comparing these ratios shows that Si is provided in a less-than-stoichiometric amount, and so is the limiting reactant.

Alternatively, compute the amount of product expected for complete reaction of each of the provided reactants. The 0.0712 moles of silicon would yield

$$
\text { mol Si } 3_{3} \mathrm{~N}_{4} \text { produced }=0.0712 \mathrm{~mol} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}}{3 \mathrm{~mol} \mathrm{Si}}=0.0237 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}
$$

while the 0.0535 moles of nitrogen would produce

$$
\mathrm{mol} \mathrm{Si}_{3} \mathrm{~N}_{4} \text { produced }=0.0535 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}}{2 \mathrm{~mol} \mathrm{~N}_{2}}=0.0268 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}
$$

Since silicon yields the lesser amount of product, it is the limiting reactant.

Check Your Learning

Which is the limiting reactant when 5.00 g of H_{2} and 10.0 g of O_{2} react and form water?

Answer

O_{2}

Percent Yield

The amount of product that may be produced by a reaction under specified conditions, as calculated per the stoichiometry of an appropriate balanced chemical equation, is called the theoretical yield of the reaction. In practice, the amount of product obtained is called the actual yield, and it is often less than the theoretical yield for a number of reasons. Some reactions are inherently inefficient, being accompanied by side reactions that generate other products. Others are, by nature, incomplete (consider the partial reactions of weak acids and bases discussed earlier in this chapter). Some products are difficult to collect without some loss, and so less than perfect recovery will reduce the actual yield. The extent to which a reaction's theoretical yield is achieved is commonly expressed as its percent yield:

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

Actual and theoretical yields may be expressed as masses or molar amounts (or any other appropriate property; e.g., volume, if the product is a gas). As long as both yields are expressed using the same units, these units will cancel when percent yield is calculated.

Here is a video showing how to calculate percent yield.

Example 32.2

Calculation of Percent Yield

Upon reaction of 1.274 g of copper sulfate with excess zinc metal, 0.392 g copper metal was obtained according to the equation:

$$
\mathrm{CuSO}_{4}(a q)+\mathrm{Zn}(s) \rightarrow \mathrm{Cu}(s)+\mathrm{ZnSO}_{4}(a q)
$$

What is the percent yield?

Solution

The provided information identifies copper sulfate as the limiting reactant, and so the theoretical yield is found by the approach illustrated in the previous module, as shown here:

Using this theoretical yield and the provided value for actual yield, the percent yield is calculated to be

$$
\text { percent yield }=\left(\frac{\text { actual yield }}{\text { theoretical yield }}\right) \times 100
$$

$$
\text { percent yield }=\left(\frac{0.392 \mathrm{~g} \mathrm{Cu}}{0.5072 \mathrm{gCu}}\right) \times 100
$$

$$
=77.3 \%
$$

Check Your Learning

What is the percent yield of a reaction that produces 12.5 g of the gas Freon $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ from 32.9 g of CCl_{4} and excess HF?

$$
\mathrm{CCl}_{4}+2 \mathrm{HF} \rightarrow \mathrm{CF}_{2} \mathrm{Cl}_{2}+2 \mathrm{HCl}
$$

Answer

48.3\%

How Sciences Interconnect

Green Chemistry and Atom Economy

The purposeful design of chemical products and processes that minimize the use of environmentally hazardous substances and the generation of waste is known as green chemistry. Green chemistry is a philosophical approach that is being applied to many areas of science and technology, and its practice is summarized by guidelines known as the "Twelve Principles of Green Chemistry" (see details about green chemistry to learn more). One of the 12 principles is aimed specifically at maximizing the efficiency of processes for synthesizing chemical products. The atom economy of a process is a measure of this efficiency, defined as the percentage by mass of the final product of a synthesis relative to the masses of all the reactants used:

$$
\text { atom economy }=\frac{\text { mass of product }}{\text { mass of reactants }} \times 100 \%
$$

Though the definition of atom economy at first glance appears very similar to that for percent yield, be aware that this property represents a difference in the theoretical efficiencies of different chemical processes. The percent yield of a given chemical process, on the other hand, evaluates the efficiency of a process by comparing the yield of product actually obtained to the maximum yield predicted by stoichiometry.

The synthesis of the common nonprescription pain medication, ibuprofen, nicely illustrates the success of a green chemistry approach (Figure 32.3). First marketed in the early 1960s, ibuprofen was produced using a sixstep synthesis that required 514 g of reactants to generate each mole $(206 \mathrm{~g})$ of ibuprofen, an atom economy of 40%. In the 1990s, an alternative process was developed by the BHC Company (now BASF Corporation) that requires only three steps and has an atom economy of $\sim 80 \%$, nearly twice that of the original process. The BHC process generates significantly less chemical waste; uses less-hazardous and recyclable materials; and provides significant cost-savings to the manufacturer (and, subsequently, the consumer). In recognition of the positive environmental impact of the BHC process, the company received the Environmental Protection Agency's Greener Synthetic Pathways Award in 1997.

Figure 32.3
(a) Ibuprofen is a popular nonprescription pain medication commonly sold as 200 mg tablets. (b) The BHC process for synthesizing ibuprofen requires only three steps and exhibits an impressive atom economy. (credit a: modification of work by Derrick Coetzee)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/7-4-reaction-yields

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/limiting_reactants_yield.

\% Composition, Empirical Formulas

Identity Isomers Bonding Percent Composition Empirical Formulas

A molecular formula uses chemical symbols and subscripts to indicate the exact numbers of different atoms in a molecule or compound. An empirical formula gives the simplest, whole-number ratio of atoms in a compound. A structural formula indicates the bonding arrangement of the atoms in the molecule. Ball-and-stick and spacefilling models show the geometric arrangement of atoms in a molecule. Isomers are compounds with the same molecular formula but different arrangements of atoms. A convenient amount unit for expressing very large numbers of atoms or molecules is the mole. Experimental measurements have determined the number of entities composing 1 mole of substance to be 6.022×10^{23}, a quantity called Avogadro's number. The mass in grams of 1 mole of substance is its molar mass. The chemical identity of a substance is defined by the types and relative numbers of atoms composing its fundamental entities (molecules in the case of covalent compounds, ions in the case of ionic compounds). A compound's percent composition provides the mass percentage of each element in the compound, and it is often experimentally determined and used to derive the compound's empirical formula. The empirical formula mass of a covalent compound may be compared to the compound's molecular or molar mass to derive a molecular formula.

33.1 Molecular and Empirical Formulas

Learning Objectives

By the end of this section, you will be able to:

- Symbolize the composition of molecules using molecular formulas and empirical formulas
- Represent the bonding arrangement of atoms within molecules using structural formulas
- Define the amount unit mole and the related quantity Avogadro's number
- Explain the relation between mass, moles, and numbers of atoms or molecules and perform calculations deriving these quantities from one another

A molecular formula is a representation of a molecule that uses chemical symbols to indicate the types of atoms followed by subscripts to show the number of atoms of each type in the molecule. (A subscript is used only when more
than one atom of a given type is present.) Molecular formulas are also used as abbreviations for the names of compounds.

The structural formula for a compound gives the same information as its molecular formula (the types and numbers of atoms in the molecule) but also shows how the atoms are connected in the molecule. The structural formula for methane contains symbols for one C atom and four H atoms, indicating the number of atoms in the molecule (Figure 33.1). The lines represent bonds that hold the atoms together. (A chemical bond is an attraction between atoms or ions that holds them together in a molecule or a crystal.) We will discuss chemical bonds and see how to predict the arrangement of atoms in a molecule later. For now, simply know that the lines are an indication of how the atoms are connected in a molecule. A ball-and-stick model shows the geometric arrangement of the atoms with atomic sizes not to scale, and a space-filling model shows the relative sizes of the atoms.

Figure 33.1
A methane molecule can be represented as (a) a molecular formula, (b) a structural formula, (c) a ball-and-stick model, and (d) a space-filling model. Carbon and hydrogen atoms are represented by black and white spheres, respectively.

Although many elements consist of discrete, individual atoms, some exist as molecules made up of two or more atoms of the element chemically bonded together. For example, most samples of the elements hydrogen, oxygen, and nitrogen are composed of molecules that contain two atoms each (called diatomic molecules) and thus have the molecular formulas $\mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2}, respectively. Other elements commonly found as diatomic molecules are fluorine (F_{2}), chlorine $\left(\mathrm{Cl}_{2}\right)$, bromine $\left(\mathrm{Br}_{2}\right)$, and iodine $\left(\mathrm{I}_{2}\right)$. The most common form of the element sulfur is composed of molecules that consist of eight atoms of sulfur; its molecular formula is S_{8} (Figure 33.2).

Figure 33.2
A molecule of sulfur is composed of eight sulfur atoms and is therefore written as S_{8}. It can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. Sulfur atoms are represented by yellow spheres.

(a)

(b)

(c)

It is important to note that a subscript following a symbol and a number in front of a symbol do not represent the same thing; for example, H_{2} and 2 H represent distinctly different species. H_{2} is a molecular formula; it represents a diatomic molecule of hydrogen, consisting of two atoms of the element that are chemically bonded together. The expression 2 H ,
on the other hand, indicates two separate hydrogen atoms that are not combined as a unit. The expression $2 \mathrm{H}_{2}$ represents two molecules of diatomic hydrogen (Figure 33.3).

Figure 33.3
The symbols $\mathrm{H}, 2 \mathrm{H}, \mathrm{H}_{2}$, and $2 \mathrm{H}_{2}$ represent very different entities.

One H atom

2 H

Two H atoms
H_{2}

One H_{2} molecule
$2 \mathrm{H}_{2}$

Two H_{2} molecules

Compounds are formed when two or more elements chemically combine, resulting in the formation of bonds. For example, hydrogen and oxygen can react to form water, and sodium and chlorine can react to form table salt. We sometimes describe the composition of these compounds with an empirical formula, which indicates the types of atoms present and the simplest whole-number ratio of the number of atoms (or ions) in the compound. For example, titanium dioxide (used as pigment in white paint and in the thick, white, blocking type of sunscreen) has an empirical formula of TiO_{2}. This identifies the elements titanium (Ti) and oxygen (O) as the constituents of titanium dioxide, and indicates the presence of twice as many atoms of the element oxygen as atoms of the element titanium (Figure 33.4).

Figure 33.4
(a) The white compound titanium dioxide provides effective protection from the sun. (b) A crystal of titanium dioxide, TiO_{2}, contains titanium and oxygen in a ratio of 1 to 2 . The titanium atoms are gray and the oxygen atoms are red. (credit a: modification of work by "osseous"/Flickr)

As discussed previously, we can describe a compound with a molecular formula, in which the subscripts indicate the actual numbers of atoms of each element in a molecule of the compound. In many cases, the molecular formula of a substance is derived from experimental determination of both its empirical formula and its molecular mass (the sum of atomic masses for all atoms composing the molecule). For example, it can be determined experimentally that benzene contains two elements, carbon (C) and hydrogen (H), and that for every carbon atom in benzene, there is one hydrogen atom. Thus, the empirical formula is CH . An experimental determination of the molecular mass reveals that a molecule
of benzene contains six carbon atoms and six hydrogen atoms, so the molecular formula for benzene is $\mathrm{C}_{6} \mathrm{H}_{6}$ (Figure 33.5).

Figure 33.5
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is produced during oil refining and has many industrial uses. A benzene molecule can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. (d) Benzene is a clear liquid. (credit d: modification of work by Sahar Atwa)

(a)

(b)

(c)

(d)

If we know a compound's formula, we can easily determine the empirical formula. (This is somewhat of an academic exercise; the reverse chronology is generally followed in actual practice.) For example, the molecular formula for acetic acid, the component that gives vinegar its sharp taste, is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. This formula indicates that a molecule of acetic acid (Figure 33.6) contains two carbon atoms, four hydrogen atoms, and two oxygen atoms. The ratio of atoms is 2:4:2. Dividing by the lowest common denominator (2) gives the simplest, whole-number ratio of atoms, 1:2:1, so the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$. Note that a molecular formula is always a whole-number multiple of an empirical formula.

Figure 33.6
(a) Vinegar contains acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, which has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$. It can be represented as (b) a structural formula and (c) as a ball-and-stick model. (credit a: modification of work by "HomeSpot HQ"/Flickr)

(a)

(b)

(c)

Example 33.1

Empirical and Molecular Formulas

Molecules of glucose (blood sugar) contain 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. What are the molecular and empirical formulas of glucose?

Solution

The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ because one molecule actually contains $6 \mathrm{C}, 12 \mathrm{H}$, and 60 atoms. The simplest whole-number ratio of C to H to O atoms in glucose is $1: 2: 1$, so the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$.
Check Your Learning
A molecule of metaldehyde (a pesticide used for snails and slugs) contains 8 carbon atoms, 16 hydrogen atoms, and 4 oxygen atoms. What are the molecular and empirical formulas of metaldehyde?

Answer

Molecular formula, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}$; empirical formula, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Link to Learning

You can explore molecule building using this simulation:

Portrait of a Chemist

Lee Cronin

What is it that chemists do? According to Lee Cronin (Figure 33.7), chemists make very complicated molecules by "chopping up" small molecules and "reverse engineering" them. He wonders if we could "make a really cool universal chemistry set" by what he calls "app-ing" chemistry. Could we "app" chemistry?

In a 2012 TED talk, Lee describes one fascinating possibility: combining a collection of chemical "inks" with a 3D printer capable of fabricating a reaction apparatus (tiny test tubes, beakers, and the like) to fashion a "universal toolkit of chemistry." This toolkit could be used to create custom-tailored drugs to fight a new superbug or to "print" medicine personally configured to your genetic makeup, environment, and health situation. Says Cronin, "What Apple did for music, I'd like to do for the discovery and distribution of prescription drugs." ${ }^{1}$

Figure 33.7
Chemist Lee Cronin has been named one of the UK's 10 most inspirational scientists. The youngest chair at the University of Glasgow, Lee runs a large research group, collaborates with many scientists worldwide, has published over 250 papers in top scientific journals, and has given more than 150 invited talks. His research focuses on complex chemical systems and their potential to transform technology, but also branches into nanoscience, solar fuels, synthetic biology, and even artificial life and evolution. (credit: image courtesy of Lee Cronin)

It is important to be aware that it may be possible for the same atoms to be arranged in different ways: Compounds with the same molecular formula may have different atom-to-atom bonding and therefore different structures. For example, could there be another compound with the same formula as acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$? And if so, what would be the structure of its molecules?

If you predict that another compound with the formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ could exist, then you demonstrated good chemical insight and are correct. Two C atoms, four H atoms, and two O atoms can also be arranged to form a methyl formate, which is used in manufacturing, as an insecticide, and for quick-drying finishes. Methyl formate molecules have one of the oxygen atoms between the two carbon atoms, differing from the arrangement in acetic acid molecules. Acetic acid and methyl formate are examples of isomers-compounds with the same chemical formula but different molecular structures (Figure 33.8). Note that this small difference in the arrangement of the atoms has a major effect on their respective chemical properties. You would certainly not want to use a solution of methyl formate as a substitute for a solution of acetic acid (vinegar) when you make salad dressing.

Figure 33.8
Molecules of (a) acetic acid and methyl formate (b) are structural isomers; they have the same formula $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ but different structures (and therefore different chemical properties).

Many types of isomers exist (Figure 33.9). Acetic acid and methyl formate are structural isomers, compounds in which the molecules differ in how the atoms are connected to each other. There are also various types of spatial isomers, in which the relative orientations of the atoms in space can be different. For example, the compound carvone (found in caraway seeds, spearmint, and mandarin orange peels) consists of two isomers that are mirror images of each other. S -$(+)$-carvone smells like caraway, and $R-(-)$-carvone smells like spearmint.

Figure 33.9
Molecules of carvone are spatial isomers; they only differ in the relative orientations of the atoms in space. (credit bottom left: modification of work by "Miansari66"/Wikimedia Commons; credit bottom right: modification of work by Forest \& Kim Starr)

Link to Learning

Visit the National Science Foundation's Multimedia Gallery for an explanation of isomers, spatial isomers, and why they have different smells (select the video titled "Mirror Molecule: Carvone").

Footnotes

1. Lee Cronin, "Print Your Own Medicine," Talk presented at TED Global 2012, Edinburgh, Scotland, June 2012.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

33.2 Percent Composition

The elemental makeup of a compound defines its chemical identity, and chemical formulas are the most succinct way of representing this elemental makeup. When a compound's formula is unknown, measuring the mass of each of its constituent elements is often the first step in the process of determining the formula experimentally. The results of these measurements permit the calculation of the compound's percent composition, defined as the percentage by mass of each element in the compound. For example, consider a gaseous compound composed solely of carbon and hydrogen. The percent composition of this compound could be represented as follows:

$$
\begin{aligned}
& \% \mathrm{H}=\frac{\text { mass } \mathrm{H}}{\text { mass compound }} \times 100 \% \\
& \% \mathrm{C}=\frac{\text { mass } \mathrm{C}}{\text { mass compound }} \times 100 \%
\end{aligned}
$$

If analysis of a $10.0-\mathrm{g}$ sample of this gas showed it to contain 2.5 g H and 7.5 g C , the percent composition would be calculated to be $25 \% \mathrm{H}$ and $75 \% \mathrm{C}$:

$$
\begin{aligned}
& \% \mathrm{H}=\frac{2.5 \mathrm{~g} \mathrm{H}}{10.0 \mathrm{~g} \text { compound }} \times 100 \%=25 \% \\
& \% \mathrm{C}=\frac{7.5 \mathrm{~g} \mathrm{C}}{10.0 \mathrm{~g} \text { compound }} \times 100 \%=75 \%
\end{aligned}
$$

Example 33.2

Calculation of Percent Composition

Analysis of a $12.04-\mathrm{g}$ sample of a liquid compound composed of carbon, hydrogen, and nitrogen showed it to contain $7.34 \mathrm{~g} \mathrm{C}, 1.85 \mathrm{~g} \mathrm{H}$, and 2.85 g N . What is the percent composition of this compound?

Solution

To calculate percent composition, divide the experimentally derived mass of each element by the overall mass of the compound, and then convert to a percentage:

$$
\begin{aligned}
& \% \mathrm{C}=\frac{7.34 \mathrm{~g} \mathrm{C}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=61.0 \% \\
& \% \mathrm{H}=\frac{1.85 \mathrm{~g} \mathrm{H}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=15.4 \% \\
& \% \mathrm{~N}=\frac{2.85 \mathrm{~g} \mathrm{~N}}{12.04 \mathrm{~g} \text { compound }} \times 100 \%=23.7 \%
\end{aligned}
$$

The analysis results indicate that the compound is $61.0 \% \mathrm{C}, 15.4 \% \mathrm{H}$, and $23.7 \% \mathrm{~N}$ by mass.

Check Your Learning

A 24.81-g sample of a gaseous compound containing only carbon, oxygen, and chlorine is determined to contain $3.01 \mathrm{~g} \mathrm{C}, 4.00 \mathrm{~g} \mathrm{O}$, and 17.81 g Cl . What is this compound's percent composition?

Answer

$12.1 \% \mathrm{C}, 16.1 \% \mathrm{O}, 71.79 \% \mathrm{Cl}$

Determining Percent Composition from Molecular or Empirical Formulas

Percent composition is also useful for evaluating the relative abundance of a given element in different compounds of known formulas. As one example, consider the common nitrogen-containing fertilizers ammonia $\left(\mathrm{NH}_{3}\right)$, ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, and urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$. The element nitrogen is the active ingredient for agricultural purposes, so the mass percentage of nitrogen in the compound is a practical and economic concern for consumers choosing among these fertilizers. For these sorts of applications, the percent composition of a compound is easily derived from its formula mass and the atomic masses of its constituent elements. A molecule of NH_{3} contains one N atom weighing 14.01 amu and three H atoms weighing a total of (3
\times
$1.008 \mathrm{amu})=3.024 \mathrm{amu}$. The formula mass of ammonia is therefore $(14.01 \mathrm{amu}+3.024 \mathrm{amu})=17.03 \mathrm{amu}$, and its percent composition is:

$$
\begin{aligned}
& \% \mathrm{~N}=\frac{14.01 \mathrm{amu} \mathrm{~N}}{17.03 \mathrm{amuNH}} \times 100 \%=82.27 \% \\
& \% \mathrm{H}=\frac{3.02 \mathrm{amuH}}{17.03 \mathrm{amuNH}} \times 100 \%=17.76 \%
\end{aligned}
$$

This same approach may be taken considering a pair of molecules, a dozen molecules, or a mole of molecules, etc. The latter amount is most convenient and would simply involve the use of molar masses instead of atomic and formula masses, as demonstrated in Example 33.3. As long as the molecular or empirical formula of the compound in question is known, the percent composition may be derived from the atomic or molar masses of the compound's elements.

Example 33.3

Determining Percent Composition from a Molecular Formula

Aspirin is a compound with the molecular formula $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. What is its percent composition?

Solution

To calculate the percent composition, the masses of C, H, and O in a known mass of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ are needed. It is convenient to consider 1 mol of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ and use its molar mass ($180.159 \mathrm{~g} / \mathrm{mole}$, determined from the chemical formula) to calculate the percentages of each of its elements:

$$
\left.\begin{array}{l}
\% \mathrm{C}=\frac{9 \mathrm{~mol} \mathrm{C} \times \text { molar mass } \mathrm{C}}{\text { molar mass } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}} \times 100=\frac{9 \times 12.01 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100=\frac{108.09 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100 \\
\% \mathrm{C}=60.00 \% \mathrm{C}
\end{array} \quad \begin{array}{r}
\% \mathrm{H}=\frac{8 \mathrm{~mol} \mathrm{H} \times \text { molar mass } \mathrm{H}}{\text { molar mass } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}} \times 100=\frac{8 \times 1.008 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100=\frac{8.064 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100 \\
\% \mathrm{H}=4.476 \% \mathrm{H}
\end{array}\right] \begin{gathered}
\% \mathrm{O}=\frac{4 \mathrm{~mol} \mathrm{O} \times \text { molar mass } \mathrm{O}}{\text { molar mass } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}} \times 100=\frac{4 \times 16.00 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100=\frac{64.00 \mathrm{~g} / \mathrm{mol}}{180.159 \mathrm{~g} / \mathrm{mol}} \times 100 \\
\% \mathrm{O}=35.52 \%
\end{gathered}
$$

Note that these percentages sum to equal 100.00% when appropriately rounded.

Check Your Learning

To three significant digits, what is the mass percentage of iron in the compound $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

Answer

69.9\% Fe

Determination of Empirical Formulas

As previously mentioned, the most common approach to determining a compound's chemical formula is to first measure the masses of its constituent elements. However, keep in mind that chemical formulas represent the relative numbers, not masses, of atoms in the substance. Therefore, any experimentally derived data involving mass must be used to derive the corresponding numbers of atoms in the compound. This is accomplished using molar masses to convert the mass of each element to a number of moles. These molar amounts are used to compute whole-number ratios that can be used to derive the empirical formula of the substance. Consider a sample of compound determined to contain 1.71 g C and 0.287 g H . The corresponding numbers of atoms (in moles) are:

$$
\begin{gathered}
1.71 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=0.142 \mathrm{~mol} \mathrm{C} \\
0.287 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=0.284 \mathrm{~mol} \mathrm{H}
\end{gathered}
$$

Thus, this compound may be represented by the formula $\mathrm{C}_{0.142} \mathrm{H}_{0.284}$. Per convention, formulas contain whole-number subscripts, which can be achieved by dividing each subscript by the smaller subscript:

$$
\mathrm{C}_{\frac{0.142}{0.142}} \mathrm{H}_{\frac{0.284}{0.142}} \text { or } \mathrm{CH}_{2}
$$

(Recall that subscripts of " 1 " are not written but rather assumed if no other number is present.)
The empirical formula for this compound is thus CH_{2}. This may or may not be the compound's molecular formula as well; however, additional information is needed to make that determination (as discussed later in this section).

Consider as another example a sample of compound determined to contain 5.31 g Cl and 8.40 g O . Following the same approach yields a tentative empirical formula of:

$$
\mathrm{Cl}_{0.150} \mathrm{O}_{0.525}=\mathrm{Cl}_{\frac{0.150}{0.150}} \mathrm{O}_{\frac{0.525}{0.150}}=\mathrm{ClO}_{3.5}
$$

In this case, dividing by the smallest subscript still leaves us with a decimal subscript in the empirical formula. To convert this into a whole number, multiply each of the subscripts by two, retaining the same atom ratio and yielding $\mathrm{Cl}_{2} \mathrm{O}_{7}$ as the final empirical formula.

In summary, empirical formulas are derived from experimentally measured element masses by:

1. Deriving the number of moles of each element from its mass
2. Dividing each element's molar amount by the smallest molar amount to yield subscripts for a tentative empirical formula
3. Multiplying all coefficients by an integer, if necessary, to ensure that the smallest whole-number ratio of subscripts is obtained

Figure 33.10 outlines this procedure in flow chart fashion for a substance containing elements A and X .
Figure 33.10
The empirical formula of a compound can be derived from the masses of all elements in the sample.

Example 33.4

Determining a Compound's Empirical Formula from the Masses of Its Elements

A sample of the black mineral hematite (Figure 33.11), an oxide of iron found in many iron ores, contains 34.97 g of iron and 15.03 g of oxygen. What is the empirical formula of hematite?
Figure 33.11
Hematite is an iron oxide that is used in jewelry. (credit: Mauro Cateb)

Solution

This problem provides the mass in grams of each element. Begin by finding the moles of each:

$$
\begin{aligned}
34.97 \mathrm{~g} \mathrm{Fe}\left(\frac{\mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g}}\right) & =0.6261 \mathrm{~mol} \mathrm{Fe} \\
15.03 \mathrm{~g} \mathrm{O}\left(\frac{\mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}}\right) & =0.9394 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Next, derive the iron-to-oxygen molar ratio by dividing by the lesser number of moles:

$$
\begin{aligned}
& \frac{0.6261}{0.6261}=1.000 \mathrm{~mol} \mathrm{Fe} \\
& \frac{0.934}{0.6261}=1.500 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

The ratio is 1.000 mol of iron to 1.500 mol of oxygen $\left(\mathrm{Fe}_{1} \mathrm{O}_{1.5}\right)$. Finally, multiply the ratio by two to get the smallest possible whole number subscripts while still maintaining the correct iron-to-oxygen ratio:

$$
2\left(\mathrm{Fe}_{1} \mathrm{O}_{1.5}\right)=\mathrm{Fe}_{2} \mathrm{O}_{3}
$$

The empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Check Your Learning

What is the empirical formula of a compound if a sample contains 0.130 g of nitrogen and 0.370 g of oxygen?

Answer

$\mathrm{N}_{2} \mathrm{O}_{5}$

Link to Learning

For additional worked examples illustrating the derivation of empirical formulas, watch this brief video clip.

Watch on YouTube

Deriving Empirical Formulas from Percent Composition

Finally, with regard to deriving empirical formulas, consider instances in which a compound's percent composition is available rather than the absolute masses of the compound's constituent elements. In such cases, the percent composition can be used to calculate the masses of elements present in any convenient mass of compound; these masses can then be used to derive the empirical formula in the usual fashion.

Example 33.5

Determining an Empirical Formula from Percent Composition

The bacterial fermentation of grain to produce ethanol forms a gas with a percent composition of $27.29 \% \mathrm{C}$ and 72.71\% O (Figure 33.12). What is the empirical formula for this gas?

Figure 33.12
An oxide of carbon is removed from these fermentation tanks through the large copper pipes at the top. (credit: "Dual Freq"/Wikimedia Commons)

Solution

Since the scale for percentages is 100, it is most convenient to calculate the mass of elements present in a sample weighing 100 g . The calculation is "most convenient" because, per the definition for percent composition, the mass of a given element in grams is numerically equivalent to the element's mass percentage. This numerical equivalence results from the definition of the "percentage" unit, whose name is derived from the Latin phrase per centum meaning "by the hundred." Considering this definition, the mass percentages provided may be more conveniently expressed as fractions:

$$
\begin{aligned}
& 27.29 \% \mathrm{C}=\frac{27.29 \mathrm{~g} \mathrm{C}}{100 \mathrm{~g} \text { compound }} \\
& 72.71 \% \mathrm{O}=\frac{72.71 \mathrm{~g} \mathrm{O}}{100 \mathrm{~g} \text { compound }}
\end{aligned}
$$

The molar amounts of carbon and oxygen in a 100-g sample are calculated by dividing each element's mass by its molar mass:

$$
\begin{aligned}
& 27.29 \mathrm{~g} \mathrm{C}\left(\frac{\mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}}\right)=2.272 \mathrm{~mol} \mathrm{C} \\
& 72.71 \mathrm{~g} \mathrm{O}\left(\frac{\mathrm{molO}}{16.00 \mathrm{~g}}\right)=4.544 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Coefficients for the tentative empirical formula are derived by dividing each molar amount by the lesser of the two:

$$
\begin{aligned}
& \frac{2.272 \mathrm{~mol} \mathrm{C}}{2.272}=1 \\
& \frac{4.544 \mathrm{~mol} \mathrm{O}}{2.272}=2
\end{aligned}
$$

Since the resulting ratio is one carbon to two oxygen atoms, the empirical formula is CO_{2}.

Check Your Learning

What is the empirical formula of a compound containing $40.0 \% \mathrm{C}, 6.71 \% \mathrm{H}$, and $53.28 \% \mathrm{O}$?

Answer

$\mathrm{CH}_{2} \mathrm{O}$

Derivation of Molecular Formulas

Recall that empirical formulas are symbols representing the relative numbers of a compound's elements. Determining the absolute numbers of atoms that compose a single molecule of a covalent compound requires knowledge of both its empirical formula and its molecular mass or molar mass. These quantities may be determined experimentally by various measurement techniques. Molecular mass, for example, is often derived from the mass spectrum of the compound (see discussion of this technique in a previous chapter on atoms and molecules). Molar mass can be measured by a number of experimental methods, many of which will be introduced in later chapters of this text.

Molecular formulas are derived by comparing the compound's molecular or molar mass to its empirical formula mass. As the name suggests, an empirical formula mass is the sum of the average atomic masses of all the atoms represented in an empirical formula. If the molecular (or molar) mass of the substance is known, it may be divided by the empirical formula mass to yield the number of empirical formula units per molecule (n):

$$
\frac{\text { molecular or molar mass }\left(\mathrm{amu} \text { or } \frac{\mathrm{g}}{\mathrm{~mol}}\right)}{\text { empirical formula mass }\left(\mathrm{amu} \text { or } \frac{\mathrm{g}}{\mathrm{~mol}}\right)}=n \text { formula units/molecule }
$$

The molecular formula is then obtained by multiplying each subscript in the empirical formula by n, as shown by the generic empirical formula $A_{x} B_{y}$:

$$
\left(\mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{y}}\right)_{\mathrm{n}}=\mathrm{A}_{\mathrm{nx}} \mathrm{~B}_{\mathrm{ny}}
$$

For example, consider a covalent compound whose empirical formula is determined to be $\mathrm{CH}_{2} \mathrm{O}$. The empirical formula mass for this compound is approximately 30 amu (the sum of 12 amu for one C atom, 2 amu for two H atoms, and 16 amu for one 0 atom). If the compound's molecular mass is determined to be 180 amu , this indicates that molecules of this compound contain six times the number of atoms represented in the empirical formula:

$$
\frac{180 \mathrm{amu} / \text { molecule }}{30 \frac{\text { amu }}{\text { formula unit }}}=6 \text { formula units } / \text { molecule }
$$

Molecules of this compound are then represented by molecular formulas whose subscripts are six times greater than those in the empirical formula:

$$
\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Note that this same approach may be used when the molar mass ($\mathrm{g} / \mathrm{mol}$) instead of the molecular mass (amu) is used. In this case, one mole of empirical formula units and molecules is considered, as opposed to single units and molecules.

Example 33.6

Determination of the Molecular Formula for Nicotine

Nicotine, an alkaloid in the nightshade family of plants that is mainly responsible for the addictive nature of cigarettes, contains $74.02 \% \mathrm{C}, 8.710 \% \mathrm{H}$, and $17.27 \% \mathrm{~N}$. If 40.57 g of nicotine contains 0.2500 mol nicotine, what is the molecular formula?

Solution

Determining the molecular formula from the provided data will require comparison of the compound's empirical formula mass to its molar mass. As the first step, use the percent composition to derive the compound's empirical formula. Assuming a convenient, a 100-g sample of nicotine yields the following molar amounts of its elements:

$$
\begin{aligned}
(74.02 \mathrm{~g} \mathrm{C})\left(\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}\right) & =6.163 \mathrm{~mol} \mathrm{C} \\
(8.710 \mathrm{~g} \mathrm{H})\left(\frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}\right) & =8.624 \mathrm{~mol} \mathrm{H} \\
(17.27 \mathrm{~g} \mathrm{~N})\left(\frac{1 \mathrm{~mol}}{14.01 \mathrm{~g} \mathrm{~N}}\right) & =1.233 \mathrm{~mol} \mathrm{~N}
\end{aligned}
$$

Next, calculate the molar ratios of these elements relative to the least abundant element, N .
$6.163 \mathrm{~mol} \mathrm{C} \mathrm{/} 1.233 \mathrm{~mol} \mathrm{~N}=5$
$8.264 \mathrm{~mol} \mathrm{H} / 1.233 \mathrm{~mol} \mathrm{~N}=7$
$1.233 \mathrm{~mol} \mathrm{~N} / 1.233 \mathrm{~mol} \mathrm{~N}=1$

$$
\begin{aligned}
& \frac{1.233}{1.233}=1.000 \mathrm{~mol} \mathrm{~N} \\
& \frac{6.163}{1.233}=4.998 \mathrm{~mol} \mathrm{C} \\
& \frac{8.624}{1.233}=6.994 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

The C-to- N and H -to- N molar ratios are adequately close to whole numbers, and so the empirical formula is $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$. The empirical formula mass for this compound is therefore $81.13 \mathrm{amu} /$ formula unit, or $81.13 \mathrm{~g} / \mathrm{mol}$ formula unit.

Calculate the molar mass for nicotine from the given mass and molar amount of compound:

$$
\frac{40.57 \mathrm{~g} \text { nicotine }}{0.2500 \mathrm{~mol} \text { nicotine }}=\frac{162.3 \mathrm{~g}}{\mathrm{~mol}}
$$

Comparing the molar mass and empirical formula mass indicates that each nicotine molecule contains two formula units:

$$
\frac{162.3 \mathrm{~g} / \mathrm{mol}}{81.13 \frac{\mathrm{~g}}{\text { formula unit }}}=2 \text { formula units } / \text { molecule }
$$

Finally, derive the molecular formula for nicotine from the empirical formula by multiplying each subscript by two:

$$
\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}\right)_{2}=\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}
$$

Check Your Learning

What is the molecular formula of a compound with a percent composition of $49.47 \% \mathrm{C}, 5.201 \% \mathrm{H}, 28.84 \% \mathrm{~N}$, and $16.48 \% \mathrm{O}$, and a molecular mass of 194.2 amu ?

Answer

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

```
Open in Google Drive
```


Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/Percent_composition_Empiric_formulas.

34

Energy, Heat, and Work

Matter Energy Heat Work

Energy is the capacity to supply heat or do work (applying a force to move matter). Kinetic energy (KE) is the energy of motion; potential energy is energy due to relative position, composition, or condition. When energy is converted from one form into another, energy is neither created nor destroyed (law of conservation of energy or first law of thermodynamics). The thermal energy of matter is due to the kinetic energies of its constituent atoms or molecules. Temperature is an intensive property of matter reflecting hotness or coldness that increases as the average kinetic energy increases. Heat is the transfer of thermal energy between objects at different temperatures. Chemical and physical processes can absorb heat (endothermic) or release heat (exothermic). The SI unit of energy, heat, and work is the joule (J). Specific heat and heat capacity are measures of the energy needed to change the temperature of a substance or object. The amount of heat absorbed or released by a substance depends directly on the type of substance, its mass, and the temperature change it undergoes. The first law of thermodynamics states that energy cannot be created or destroyed but can be transformed from one type into another type or transferred from system to surroundings or vice versa. The total energy change of the system, U, is the sum of the heat, q, and work, w. Energy is a state function, which means that the initial and final states are what determine the energy, not the path taken.

34.1 Energy Basics

Learning Objectives

By the end of this section, you will be able to:

- Define energy, distinguish types of energy, and describe the nature of energy changes that accompany chemical and physical changes
- Distinguish the related properties of heat, thermal energy, and temperature
- Define and distinguish specific heat and heat capacity, and describe the physical implications of both
- Perform calculations involving heat, specific heat, and temperature change

Chemical changes and their accompanying changes in energy are important parts of our everyday world (Figure 34.1). The macronutrients in food (proteins, fats, and carbohydrates) undergo metabolic reactions that provide the energy to keep our bodies functioning. We burn a variety of fuels (gasoline, natural gas, coal) to produce energy for transportation,
heating, and the generation of electricity. Industrial chemical reactions use enormous amounts of energy to produce raw materials (such as iron and aluminum). Energy is then used to manufacture those raw materials into useful products, such as cars, skyscrapers, and bridges.

Figure 34.1

The energy involved in chemical changes is important to our daily lives: (a) A cheeseburger for lunch provides the energy you need to get through the rest of the day; (b) the combustion of gasoline provides the energy that moves your car (and you) between home, work, and school; and (c) coke, a processed form of coal, provides the energy needed to convert iron ore into iron, which is essential for making many of the products we use daily. (credit a: modification of work by "Pink Sherbet Photography"/Flickr; credit b: modification of work by Jeffery Turner)

Over 90% of the energy we use comes originally from the sun. Every day, the sun provides the earth with almost 10,000 times the amount of energy necessary to meet all of the world's energy needs for that day. Our challenge is to find ways to convert and store incoming solar energy so that it can be used in reactions or chemical processes that are both convenient and nonpolluting. Plants and many bacteria capture solar energy through photosynthesis. We release the energy stored in plants when we burn wood or plant products such as ethanol. We also use this energy to fuel our bodies by eating food that comes directly from plants or from animals that got their energy by eating plants. Burning coal and petroleum also releases stored solar energy: These fuels are fossilized plant and animal matter.

This chapter will introduce the basic ideas of an important area of science concerned with the amount of heat absorbed or released during chemical and physical changes-an area called thermochemistry. The concepts introduced in this chapter are widely used in almost all scientific and technical fields. Food scientists use them to determine the energy content of foods. Biologists study the energetics of living organisms, such as the metabolic combustion of sugar into carbon dioxide and water. The oil, gas, and transportation industries, renewable energy providers, and many others endeavor to find better methods to produce energy for our commercial and personal needs. Engineers strive to improve energy efficiency, find better ways to heat and cool our homes, refrigerate our food and drinks, and meet the energy and cooling needs of computers and electronics, among other applications. Understanding thermochemical principles is essential for chemists, physicists, biologists, geologists, every type of engineer, and just about anyone who studies or does any kind of science.

Energy

Energy can be defined as the capacity to supply heat or do work. One type of work (w) is the process of causing matter to move against an opposing force. For example, we do work when we inflate a bicycle tire-we move matter (the air in the pump) against the opposing force of the air already in the tire.

Like matter, energy comes in different types. One scheme classifies energy into two types: potential energy, the energy an object has because of its relative position, composition, or condition, and kinetic energy, the energy that an object possesses because of its motion. Water at the top of a waterfall or dam has potential energy because of its position; when it flows downward through generators, it has kinetic energy that can be used to do work and produce electricity in
a hydroelectric plant (Figure 34.2). A battery has potential energy because the chemicals within it can produce electricity that can do work.

Figure 34.2
(a) Water at a higher elevation, for example, at the top of Victoria Falls, has a higher potential energy than water at a lower elevation. As the water falls, some of its potential energy is converted into kinetic energy. (b) If the water flows through generators at the bottom of a dam, such as the Hoover Dam shown here, its kinetic energy is converted into electrical energy. (credit a: modification of work by Steve Jurvetson; credit b: modification of work by "curimedia"/Wikimedia commons)

Energy can be converted from one form into another, but all of the energy present before a change occurs always exists in some form after the change is completed. This observation is expressed in the law of conservation of energy: during a chemical or physical change, energy can be neither created nor destroyed, although it can be changed in form. (This is also one version of the first law of thermodynamics, as you will learn later.)

When one substance is converted into another, there is always an associated conversion of one form of energy into another. Heat is usually released or absorbed, but sometimes the conversion involves light, electrical energy, or some other form of energy. For example, chemical energy (a type of potential energy) is stored in the molecules that compose gasoline. When gasoline is combusted within the cylinders of a car's engine, the rapidly expanding gaseous products of this chemical reaction generate mechanical energy (a type of kinetic energy) when they move the cylinders' pistons.

According to the law of conservation of matter (seen in an earlier chapter), there is no detectable change in the total amount of matter during a chemical change. When chemical reactions occur, the energy changes are relatively modest and the mass changes are too small to measure, so the laws of conservation of matter and energy hold well. However, in nuclear reactions, the energy changes are much larger (by factors of a million or so), the mass changes are measurable, and matter-energy conversions are significant. This will be examined in more detail in a later chapter on nuclear chemistry.

Thermal Energy, Temperature, and Heat

Thermal energy is kinetic energy associated with the random motion of atoms and molecules. Temperature is a quantitative measure of "hot" or "cold." When the atoms and molecules in an object are moving or vibrating quickly, they
have a higher average kinetic energy (KE), and we say that the object is "hot." When the atoms and molecules are moving slowly, they have lower average KE, and we say that the object is "cold" (Figure 34.3). Assuming that no chemical reaction or phase change (such as melting or vaporizing) occurs, increasing the amount of thermal energy in a sample of matter will cause its temperature to increase. And, assuming that no chemical reaction or phase change (such as condensation or freezing) occurs, decreasing the amount of thermal energy in a sample of matter will cause its temperature to decrease.

Figure 34.3
(a) The molecules in a sample of hot water move more rapidly than (b) those in a sample of cold water.

Hot liquid
(a)

Cold liquid
(b)

Link to Learning

Click on this interactive simulation to view the effects of temperature on molecular motion.

Most substances expand as their temperature increases and contract as their temperature decreases. This property can be used to measure temperature changes, as shown in Figure 34.4. The operation of many thermometers depends on the expansion and contraction of substances in response to temperature changes.

Figure 34.4
(a) In an alcohol or mercury thermometer, the liquid (dyed red for visibility) expands when heated and contracts when cooled, much more so than the glass tube that contains the liquid. (b) In a bimetallic thermometer, two different metals (such as brass and steel) form a two-layered strip. When heated or cooled, one of the metals (brass) expands or contracts more than the other metal (steel), causing the strip to coil or uncoil. Both types of thermometers have a calibrated scale that indicates the temperature. (credit a: modification of work by "dwstucke"/Flickr)

Link to Learning

The following demonstration allows one to view the effects of heating and cooling a coiled bimetallic strip.

Heat (q) is the transfer of thermal energy between two bodies at different temperatures. Heat flow (a redundant term, but one commonly used) increases the thermal energy of one body and decreases the thermal energy of the other. Suppose we initially have a high temperature (and high thermal energy) substance (H) and a low temperature (and low thermal energy) substance (L). The atoms and molecules in H have a higher average KE than those in L . If we place substance H in contact with substance L, the thermal energy will flow spontaneously from substance H to substance L. The temperature of substance H will decrease, as will the average KE of its molecules; the temperature of substance L will increase, along with the average KE of its molecules. Heat flow will continue until the two substances are at the same temperature (Figure 34.5).

Figure 34.5
(a) Substances H and L are initially at different temperatures, and their atoms have different average kinetic energies.
(b) When they contact each other, collisions between the molecules result in the transfer of kinetic (thermal) energy from the hotter to the cooler matter. (c) The two objects reach "thermal equilibrium" when both substances are at the same temperature and their molecules have the same average kinetic energy.

Link to Learning

Click on the PhET simulation to explore energy forms and changes. Visit the Energy Systems tab to create combinations of energy sources, transformation methods, and outputs. Click on Energy Symbols to visualize the transfer of energy.

Matter undergoing chemical reactions and physical changes can release or absorb heat. A change that releases heat is called an exothermic process. For example, the combustion reaction that occurs when using an oxyacetylene torch is an exothermic process-this process also releases energy in the form of light as evidenced by the torch's flame (Figure 34.6). A reaction or change that absorbs heat is an endothermic process. A cold pack used to treat muscle strains provides an example of an endothermic process. When the substances in the cold pack (water and a salt like ammonium nitrate) are brought together, the resulting process absorbs heat, leading to the sensation of cold.

Figure 34.6

(a) An oxyacetylene torch produces heat by the combustion of acetylene in oxygen. The energy released by this exothermic reaction heats and then melts the metal being cut. The sparks are tiny bits of the molten metal flying away. (b) A cold pack uses an endothermic process to create the sensation of cold. (credit a: modification of work by "Skatebiker"/Wikimedia commons)

(a)

(b)

Historically, energy was measured in units of calories (cal). A calorie is the amount of energy required to raise one gram of water by 1 degree C (1 kelvin). However, this quantity depends on the atmospheric pressure and the starting temperature of the water. The ease of measurement of energy changes in calories has meant that the calorie is still frequently used. The Calorie (with a capital C), or large calorie, commonly used in quantifying food energy content, is a kilocalorie. The SI unit of heat, work, and energy is the joule. A joule (J) is defined as the amount of energy used when a force of 1 newton moves an object 1 meter. It is named in honor of the English physicist James Prescott Joule. One joule is equivalent to $1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$, which is also called 1 newton-meter. A kilojoule (kJ) is 1000 joules. To standardize its definition, 1 calorie has been set to equal 4.184 joules.

We now introduce two concepts useful in describing heat flow and temperature change. The heat capacity (C) of a body of matter is the quantity of heat (q) it absorbs or releases when it experiences a temperature change (ΔT) of 1 degree Celsius (or equivalently, 1 kelvin):

$$
C=\frac{q}{\Delta T}
$$

Heat capacity is determined by both the type and amount of substance that absorbs or releases heat. It is therefore an extensive property-its value is proportional to the amount of the substance.

For example, consider the heat capacities of two cast iron frying pans. The heat capacity of the large pan is five times greater than that of the small pan because, although both are made of the same material, the mass of the large pan is five times greater than the mass of the small pan. More mass means more atoms are present in the larger pan, so it takes more energy to make all of those atoms vibrate faster. The heat capacity of the small cast iron frying pan is found by observing that it takes $18,150 \mathrm{~J}$ of energy to raise the temperature of the pan by $50.0^{\circ} \mathrm{C}$:

$$
C_{\text {small pan }}=\frac{18,140 \mathrm{~J}}{50.0^{\circ} \mathrm{C}}=363 \mathrm{~J} /{ }^{\circ} \mathrm{C}
$$

The larger cast iron frying pan, while made of the same substance, requires $90,700 \mathrm{~J}$ of energy to raise its temperature by $50.0^{\circ} \mathrm{C}$. The larger pan has a (proportionally) larger heat capacity because the larger amount of material requires a (proportionally) larger amount of energy to yield the same temperature change:

$$
C_{\text {large pan }}=\frac{90,700 \mathrm{~J}}{50.0^{\circ} \mathrm{C}}=1814 \mathrm{~J} /{ }^{\circ} \mathrm{C}
$$

The specific heat capacity (c) of a substance, commonly called its "specific heat," is the quantity of heat required to raise the temperature of 1 gram of a substance by 1 degree Celsius (or 1 kelvin):

$$
c=\frac{q}{\mathrm{~m} \Delta \mathrm{~T}}
$$

Specific heat capacity depends only on the kind of substance absorbing or releasing heat. It is an intensive propertythe type, but not the amount, of the substance is all that matters. For example, the small cast iron frying pan has a mass of 808 g . The specific heat of iron (the material used to make the pan) is therefore:

$$
c_{\text {iron }}=\frac{18,140 \mathrm{~J}}{(808 \mathrm{~g})\left(50.0^{\circ} \mathrm{C}\right)}=0.449 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}
$$

The large frying pan has a mass of 4040 g . Using the data for this pan, we can also calculate the specific heat of iron:

$$
c_{\text {iron }}=\frac{90,700 \mathrm{~J}}{(4040 \mathrm{~g})\left(50.0^{\circ} \mathrm{C}\right)}=0.449 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}
$$

Although the large pan is more massive than the small pan, since both are made of the same material, they both yield the same value for specific heat (for the material of construction, iron). Note that specific heat is measured in units of energy per temperature per mass and is an intensive property, being derived from a ratio of two extensive properties (heat and mass). The molar heat capacity, also an intensive property, is the heat capacity per mole of a particular substance and has units of $\mathrm{J} / \mathrm{mol}{ }^{\circ} \mathrm{C}$ (Figure 34.7).

Figure 34.7
Because of its larger mass, a large frying pan has a larger heat capacity than a small frying pan. Because they are made of the same material, both frying pans have the same specific heat. (credit: Mark Blaser)

Water has a relatively high specific heat (about $4.2 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ for the liquid and $2.09 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ for the solid); most metals have much lower specific heats (usually less than $1 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$). The specific heat of a substance varies somewhat with temperature. However, this variation is usually small enough that we will treat specific heat as constant over the range of temperatures that will be considered in this chapter. Specific heats of some common substances are listed in Table 34.1.

Table 34.1
Specific Heats of Common Substances at $25^{\circ} \mathrm{C}$ and 1 bar

Substance	Symbol (state)	Specific Heat $\left(\mathbf{J} / \mathbf{g}^{\circ} \mathbf{C}\right)$
helium	$\mathrm{He}(g)$	5.193
water	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	4.184
ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{l})$	2.376
ice	$\mathrm{H}_{2} \mathrm{O}(s)$	$2.093\left(\mathrm{at}-10^{\circ} \mathrm{C}\right)$
water vapor	$\mathrm{H}_{2} \mathrm{O}(g)$	1.864
nitrogen	$\mathrm{N}_{2}(g)$	1.040
air		1.007
oxygen	$\mathrm{O}_{2}(g)$	0.918
aluminum	$\mathrm{Al}(s)$	0.897
carbon dioxide	$\mathrm{CO}(g)$	0.853
argon	$\mathrm{Ar}(g)$	0.522
iron	$\mathrm{Fe}(s)$	0.449
copper	$\mathrm{Cu}(s)$	0.385
lead	$\mathrm{Pb}(s)$	0.130
gold	$\mathrm{Au}(s)$	0.129
silicon	$\mathrm{Si}(s)$	0.712

If we know the mass of a substance and its specific heat, we can determine the amount of heat, q, entering or leaving the substance by measuring the temperature change before and after the heat is gained or lost:

$$
\begin{gathered}
q=(\text { specific heat }) \times(\text { mass of substance }) \times(\text { temperature change }) \\
q=c \times m \times \Delta \mathrm{T}=c \times m \times\left(T_{\text {final }}-T_{\text {initial }}\right)
\end{gathered}
$$

In this equation, c is the specific heat of the substance, m is its mass, and ΔT (which is read "delta $T^{\prime \prime}$) is the temperature change, $T_{\text {final }}-T_{\text {initial }}$. If a substance gains thermal energy, its temperature increases, its final temperature is higher than its initial temperature, $T_{\text {final }}-T_{\text {initial }}$ has a positive value, and the value of q is positive. If a substance loses thermal energy, its temperature decreases, the final temperature is lower than the initial temperature, $T_{\text {final }}-T_{\text {initial }}$ has a negative value, and the value of q is negative.

Example 34.1

Measuring Heat

A flask containing 8.0
\times
$10^{2} \mathrm{~g}$ of water is heated, and the temperature of the water increases from $21^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. How much heat did the water absorb?

Solution

To answer this question, consider these factors:

- the specific heat of the substance being heated (in this case, water)
- the amount of substance being heated (in this case, $8.0 \times 10^{2} \mathrm{~g}$)
- the magnitude of the temperature change (in this case, from $21^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$).

The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, so to heat 1 g of water by $1^{\circ} \mathrm{C}$ requires 4.184 J . We note that since 4.184 J is required to heat 1 g of water by $1^{\circ} \mathrm{C}$, we will need 800 times as much to heat $8.0 \times 10^{2} \mathrm{~g}$ of water by 1 ${ }^{\circ} \mathrm{C}$. Finally, we observe that since 4.184 J are required to heat 1 g of water by $1^{\circ} \mathrm{C}$, we will need 64 times as much to heat it by $64^{\circ} \mathrm{C}$ (that is, from $21^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$).

This can be summarized using the equation:

$$
\begin{aligned}
& q=c \times m \times \Delta T=c \times m \times\left(T_{\text {final }}-T_{\text {initial }}\right) \\
& =\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times\left(8.0 \times 10^{2} \mathrm{~g}\right) \times(85-21)^{\circ} \mathrm{C} \\
& =\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times\left(8.0 \times 10^{2} \mathrm{~g}\right) \times(64)^{\circ} \mathrm{C} \\
& \quad=210,000 \mathrm{~J}\left(=2.1 \times 10^{2} \mathrm{~kJ}\right)
\end{aligned}
$$

Because the temperature increased, the water absorbed heat and q is positive.

Check Your Learning

How much heat, in joules, must be added to a 502 g iron skillet to increase its temperature from $25^{\circ} \mathrm{C}$ to 250 ${ }^{\circ} \mathrm{C}$? The specific heat of iron is $0.449 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

Answer

5.07
\times
$10^{4} \mathrm{~J}$

Note that the relationship between heat, specific heat, mass, and temperature change can be used to determine any of these quantities (not just heat) if the other three are known or can be deduced.

Example 34.2

Determining Other Quantities

A piece of unknown metal weighs 348 g . When the metal piece absorbs 6.64 kJ of heat, its temperature increases from $22.4^{\circ} \mathrm{C}$ to $43.6^{\circ} \mathrm{C}$. Determine the specific heat of this metal (which might provide a clue to its identity).

Solution

Since mass, heat, and temperature change are known for this metal, we can determine its specific heat using the relationship:

$$
q=c \times m \times \Delta \mathrm{T}=c \times m \times\left(T_{\text {final }}-T_{\text {initial }}\right)
$$

Substituting the known values:

$$
6640 \mathrm{~J}=c \times(348 \mathrm{~g}) \times(43.6-22.4)^{\circ} \mathrm{C}
$$

Solving:

$$
c=\frac{6640 \mathrm{~J}}{(348 \mathrm{~g}) \times\left(21.2^{\circ} \mathrm{C}\right)}=0.900 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

Comparing this value with the values in Table 34.1, this value matches the specific heat of aluminum, which suggests that the unknown metal may be aluminum.

Check Your Learning

A piece of unknown metal weighs 217 g . When the metal piece absorbs 1.43 kJ of heat, its temperature increases from $24.5^{\circ} \mathrm{C}$ to $39.1^{\circ} \mathrm{C}$. Determine the specific heat of this metal, and predict its identity.

Answer

$c=0.451 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$; the metal is likely to be iron

Chemistry in Everyday Life

Solar Thermal Energy Power Plants

The sunlight that reaches the earth contains thousands of times more energy than we presently capture. Solar thermal systems provide one possible solution to the problem of converting energy from the sun into energy we can use. Large-scale solar thermal plants have different design specifics, but all concentrate sunlight to heat some substance; the heat "stored" in that substance is then converted into electricity.

The Solana Generating Station in Arizona's Sonora Desert produces 280 megawatts of electrical power. It uses parabolic mirrors that focus sunlight on pipes filled with a heat transfer fluid (HTF) (Figure 34.8). The HTF then does two things: It turns water into steam, which spins turbines, which in turn produces electricity, and it melts and heats a mixture of salts, which functions as a thermal energy storage system. After the sun goes down, the molten salt mixture can then release enough of its stored heat to produce steam to run the turbines for 6 hours. Molten salts are used because they possess a number of beneficial properties, including high heat capacities and thermal conductivities.

Figure 34.8
This solar thermal plant uses parabolic trough mirrors to concentrate sunlight. (credit a: modification of work by Bureau of Land Management)

(a)

(b)

The 377-megawatt Ivanpah Solar Generating System, located in the Mojave Desert in California, is the largest solar thermal power plant in the world (Figure 34.9). Its 170,000 mirrors focus huge amounts of sunlight on three water-filled towers, producing steam at over $538{ }^{\circ} \mathrm{C}$ that drives electricity-producing turbines. It produces enough energy to power 140,000 homes. Water is used as the working fluid because of its large heat capacity and heat of vaporization.

Figure 34.9
(a) The Ivanpah solar thermal plant uses 170,000 mirrors to concentrate sunlight on water-filled towers. (b) It covers 4000 acres of public land near the Mojave Desert and the California-Nevada border. (credit a: modification of work by Craig Dietrich; credit b: modification of work by "USFWS Pacific Southwest Region"/Flickr)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

34.2 The First Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

- State the first law of thermodynamics
- Define state function

Thermochemistry is a branch of chemical thermodynamics, the science that deals with the relationships between heat, work, and other forms of energy in the context of chemical and physical processes. As we concentrate on thermochemistry in this chapter, we need to consider some widely used concepts of thermodynamics.

Substances act as reservoirs of energy, meaning that energy can be added to them or removed from them. Energy is stored in a substance when the kinetic energy of its atoms or molecules is raised. The greater kinetic energy may be in the form of increased translations (travel or straight-line motions), vibrations, or rotations of the atoms or molecules. When thermal energy is lost, the intensities of these motions decrease and the kinetic energy falls. The total of all possible kinds of energy present in a substance is called the internal energy ($($), sometimes symbolized as E.

As a system undergoes a change, its internal energy can change, and energy can be transferred from the system to the surroundings, or from the surroundings to the system. Energy is transferred into a system when it absorbs heat (q) from the surroundings or when the surroundings do work (w) on the system. For example, energy is transferred into roomtemperature metal wire if it is immersed in hot water (the wire absorbs heat from the water), or if you rapidly bend the wire back and forth (the wire becomes warmer because of the work done on it). Both processes increase the internal
energy of the wire, which is reflected in an increase in the wire's temperature. Conversely, energy is transferred out of a system when heat is lost from the system, or when the system does work on the surroundings.

The relationship between internal energy, heat, and work can be represented by the equation:

$$
\Delta U=q+w
$$

as shown in Figure 34.10. This is one version of the first law of thermodynamics, and it shows that the internal energy of a system changes through heat flow into or out of the system (positive q is heat flow in; negative q is heat flow out) or work done on or by the system. The work, w, is positive if it is done on the system and negative if it is done by the system.

Figure 34.10
The internal energy, U, of a system can be changed by heat flow and work. If heat flows into the system, $q_{i n}$, or work is done on the system, $w_{\text {on, }}$ its internal energy increases, $\Delta U>0$. If heat flows out of the system, $q_{\text {out }}$ or work is done by the system, $w_{\text {by }}$ its internal energy decreases, $\Delta U<0$.

A type of work called expansion work (or pressure-volume work) occurs when a system pushes back the surroundings against a restraining pressure, or when the surroundings compress the system. An example of this occurs during the operation of an internal combustion engine. The reaction of gasoline and oxygen is exothermic. Some of this energy is given off as heat, and some does work pushing the piston in the cylinder. The substances involved in the reaction are the system, and the engine and the rest of the universe are the surroundings. The system loses energy by both heating and doing work on the surroundings, and its internal energy decreases. (The engine is able to keep the car moving because this process is repeated many times per second while the engine is running.) We will consider how to determine the amount of work involved in a chemical or physical change in the chapter on thermodynamics.

Link to Learning

This view of an internal combustion engine illustrates the conversion of energy produced by the exothermic combustion reaction of a fuel such as gasoline into energy of motion.

As discussed, the relationship between internal energy, heat, and work can be represented as $\Delta U=q+w$. Internal energy is an example of a state function (or state variable), whereas heat and work are not state functions. The value of a state function depends only on the state that a system is in, and not on how that state is reached. If a quantity is not a state function, then its value does depend on how the state is reached. An example of a state function is altitude or elevation. If you stand on the summit of Mt. Kilimanjaro, you are at an altitude of 5895 m , and it does not matter whether you hiked there or parachuted there. The distance you traveled to the top of Kilimanjaro, however, is not a state function. You could climb to the summit by a direct route or by a more roundabout, circuitous path (Figure 34.11). The distances traveled would differ (distance is not a state function) but the elevation reached would be the same (altitude is a state function).

Figure 34.11
Paths X and Y represent two different routes to the summit of Mt. Kilimanjaro. Both have the same change in elevation (altitude or elevation on a mountain is a state function; it does not depend on path), but they have very different distances traveled (distance walked is not a state function; it depends on the path). (credit: modification of work by Paul Shaffner)

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/9-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/energy_heat_and_work.

35

Calorimetry Part 1

Calorimetry

Calorimetry is used to measure the amount of thermal energy transferred in a chemical or physical process. This requires careful measurement of the temperature change that occurs during the process and the masses of the system and surroundings. These measured quantities are then used to compute the amount of heat produced or consumed in the process using known mathematical relations.

35.1 Calorimetry

Learning Objectives

By the end of this section, you will be able to:

- Explain the technique of calorimetry
- Calculate and interpret heat and related properties using typical calorimetry data

One technique we can use to measure the amount of heat involved in a chemical or physical process is known as calorimetry. Calorimetry is used to measure amounts of heat transferred to or from a substance. To do so, the heat is exchanged with a calibrated object (calorimeter). The temperature change measured by the calorimeter is used to derive the amount of heat transferred by the process under study. The measurement of heat transfer using this approach requires the definition of a system (the substance or substances undergoing the chemical or physical change) and its surroundings (all other matter, including components of the measurement apparatus, that serve to either provide heat to the system or absorb heat from the system).

A calorimeter is a device used to measure the amount of heat involved in a chemical or physical process. For example, when an exothermic reaction occurs in solution in a calorimeter, the heat produced by the reaction is absorbed by the solution, which increases its temperature. When an endothermic reaction occurs, the heat required is absorbed from the thermal energy of the solution, which decreases its temperature (Figure 35.1). The temperature change, along with the specific heat and mass of the solution, can then be used to calculate the amount of heat involved in either case.

Figure 35.1

In a calorimetric determination, either (a) an exothermic process occurs and heat, q, is negative, indicating that thermal energy is transferred from the system to its surroundings, or (b) an endothermic process occurs and heat, q, is positive, indicating that thermal energy is transferred from the surroundings to the system.

(a)

(b)

Calorimetry measurements are important in understanding the heat transferred in reactions involving everything from microscopic proteins to massive machines. During her time at the National Bureau of Standards, research chemist Reatha Clark King performed calorimetric experiments to understand the precise heats of various flourine compounds. Her work was important to NASA in their quest for better rocket fuels.

Scientists use well-insulated calorimeters that all but prevent the transfer of heat between the calorimeter and its environment, which effectively limits the "surroundings" to the nonsystem components with the calorimeter (and the calorimeter itself). This enables the accurate determination of the heat involved in chemical processes, the energy content of foods, and so on. General chemistry students often use simple calorimeters constructed from polystyrene cups (Figure 35.2). These easy-to-use "coffee cup" calorimeters allow more heat exchange with the outside environment, and therefore produce less accurate energy values.

Figure 35.2
A simple calorimeter can be constructed from two polystyrene cups. A thermometer and stirrer extend through the cover into the reaction mixture.

Commercial solution calorimeters are also available. Relatively inexpensive calorimeters often consist of two thinwalled cups that are nested in a way that minimizes thermal contact during use, along with an insulated cover, handheld stirrer, and simple thermometer. More expensive calorimeters used for industry and research typically have a wellinsulated, fully enclosed reaction vessel, motorized stirring mechanism, and a more accurate temperature sensor (Figure 35.3).

Figure 35.3
Commercial solution calorimeters range from (a) simple, inexpensive models for student use to (b) expensive, more accurate models for industry and research.

Before discussing the calorimetry of chemical reactions, consider a simpler example that illustrates the core idea behind calorimetry. Suppose we initially have a high-temperature substance, such as a hot piece of metal (M), and a low-temperature substance, such as cool water (W). If we place the metal in the water, heat will flow from M to W . The temperature of M will decrease, and the temperature of W will increase, until the two substances have the same temperature-that is, when they reach thermal equilibrium (Figure 35.4). If this occurs in a calorimeter, ideally all of this heat transfer occurs between the two substances, with no heat gained or lost by either its external environment. Under these ideal circumstances, the net heat change is zero:

$$
q_{\text {substance } \mathrm{M}}+q_{\text {substance } \mathrm{W}}=0
$$

This relationship can be rearranged to show that the heat gained by substance M is equal to the heat lost by substance W:

$$
q_{\text {substance } \mathrm{M}}=-q_{\text {substance } \mathrm{W}}
$$

The magnitude of the heat (change) is therefore the same for both substances, and the negative sign merely shows that $q_{\text {substance } \mathrm{M}}$ and $q_{\text {substance } \mathrm{W}}$ are opposite in direction of heat flow (gain or loss) but does not indicate the arithmetic sign of either q value (that is determined by whether the matter in question gains or loses heat, per definition). In the specific situation described, $q_{\text {substance } M}$ is a negative value and $q_{\text {substance } W}$ is positive, since heat is transferred from M to W .

Figure 35.4
In a simple calorimetry process, (a) heat, q, is transferred from the hot metal, M, to the cool water, W, until (b) both are at the same temperature.

Example 35.1

Heat Transfer between Substances at Different Temperatures

A 360.0-g piece of rebar (a steel rod used for reinforcing concrete) is dropped into 425 mL of water at $24.0^{\circ} \mathrm{C}$. The final temperature of the water was measured as $42.7^{\circ} \mathrm{C}$. Calculate the initial temperature of the piece of rebar. Assume the specific heat of steel is approximately the same as that for iron (Table 35.1), and that all heat transfer occurs between the rebar and the water (there is no heat exchange with the surroundings).

Solution

The temperature of the water increases from $24.0^{\circ} \mathrm{C}$ to $42.7^{\circ} \mathrm{C}$, so the water absorbs heat. That heat came from the piece of rebar, which initially was at a higher temperature. Assuming that all heat transfer was between the rebar and the water, with no heat "lost" to the outside environment, then heat given off by rebar = -heat taken in by water, or:

$$
q_{\text {rebar }}=-q_{\text {water }}
$$

Since we know how heat is related to other measurable quantities, we have:

$$
(c \times m \times \Delta \mathrm{T})_{\mathrm{rebar}}=-(c \times m \times \Delta \mathrm{T})_{\mathrm{water}}
$$

Letting $f=$ final and $i=$ initial, in expanded form, this becomes:

$$
c_{\text {rebar }} \times m_{\text {rebar }} \times\left(T_{\mathrm{f}, \text { rebar }}-T_{\mathrm{i}, \text { rebar }}\right)=-c_{\mathrm{water}} \times m_{\text {water }} \times\left(T_{\mathrm{f}, \text { water }}-T_{\mathrm{i}, \text { water }}\right)
$$

The density of water is $1.0 \mathrm{~g} / \mathrm{mL}$, so 425 mL of water $=425 \mathrm{~g}$. Noting that the final temperature of both the rebar and water is $42.7^{\circ} \mathrm{C}$, substituting known values yields:

$$
\begin{gathered}
\left(0.449 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(360.0 \mathrm{~g})\left(42.7^{\circ} \mathrm{C}-T_{\mathrm{i}, \text { rebar }}\right)=-\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(425 \mathrm{~g})\left(42.7^{\circ} \mathrm{C}-24.0^{\circ} \mathrm{C}\right) \\
T_{\mathrm{i}, \text { rebar }}=\frac{\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(425 \mathrm{~g})\left(42.7^{\circ} \mathrm{C}-24.0^{\circ} \mathrm{C}\right)}{\left(0.449 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(360.0 \mathrm{~g})}+42.7^{\circ} \mathrm{C}
\end{gathered}
$$

Solving this gives $T_{i, r e b a r}=248{ }^{\circ} \mathrm{C}$, so the initial temperature of the rebar was $248{ }^{\circ} \mathrm{C}$.

Check Your Learning

A 248-g piece of copper is dropped into 390 mL of water at $22.6^{\circ} \mathrm{C}$. The final temperature of the water was measured as $39.9^{\circ} \mathrm{C}$. Calculate the initial temperature of the piece of copper. Assume that all heat transfer occurs between the copper and the water.

Answer

The initial temperature of the copper was $335.6^{\circ} \mathrm{C}$.

Check Your Learning

A $248-\mathrm{g}$ piece of copper initially at $314^{\circ} \mathrm{C}$ is dropped into 390 mL of water initially at $22.6^{\circ} \mathrm{C}$. Assuming that all heat transfer occurs between the copper and the water, calculate the final temperature.

Answer

The final temperature (reached by both copper and water) is $38.7^{\circ} \mathrm{C}$.

This method can also be used to determine other quantities, such as the specific heat of an unknown metal.

Example 35.2

Identifying a Metal by Measuring Specific Heat

A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at $22.0^{\circ} \mathrm{C}$. The final temperature is $28.5^{\circ} \mathrm{C}$. Use these data to determine the specific heat of the metal. Use this result to identify the metal.

Solution

Assuming perfect heat transfer, heat given off by metal = -heat taken in by water, or:

$$
q_{\text {metal }}=-q_{\text {water }}
$$

In expanded form, this is:

$$
c_{\text {metal }} \times m_{\text {metal }} \times\left(T_{\mathrm{f}, \text { metal }}-T_{\mathrm{i}, \text { metal }}\right)=-c_{\text {water }} \times m_{\text {water }} \times\left(T_{\mathrm{f}, \text { water }}-T_{\mathrm{i}, \text { water }}\right)
$$

Noting that since the metal was submerged in boiling water, its initial temperature was $100.0^{\circ} \mathrm{C}$; and that for water, $60.0 \mathrm{~mL}=60.0 \mathrm{~g}$; we have:

$$
\left(c_{\text {metal }}\right)(59.7 \mathrm{~g})\left(28.5^{\circ} \mathrm{C}-100.0^{\circ} \mathrm{C}\right)=-\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(60.0 \mathrm{~g})\left(28.5^{\circ} \mathrm{C}-22.0^{\circ} \mathrm{C}\right)
$$

Solving this:

$$
c_{\text {metal }}=\frac{-\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(60.0 \mathrm{~g})\left(6.5^{\circ} \mathrm{C}\right)}{(59.7 \mathrm{~g})\left(-71.5^{\circ} \mathrm{C}\right)}=0.38 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}
$$

Comparing this with values in Table 35.1, our experimental specific heat is closest to the value for copper (0.39 $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$), so we identify the metal as copper.

Check Your Learning

A 92.9-g piece of a silver/gray metal is heated to $178.0^{\circ} \mathrm{C}$, and then quickly transferred into 75.0 mL of water initially at $24.0^{\circ} \mathrm{C}$. After 5 minutes, both the metal and the water have reached the same temperature: $29.7^{\circ} \mathrm{C}$. Determine the specific heat and the identity of the metal. (Note: You should find that the specific heat is close to that of two different metals. Explain how you can confidently determine the identity of the metal).

Answer

$$
c_{\text {metal }}=0.13 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

This specific heat is close to that of either gold or lead. It would be difficult to determine which metal this was based solely on the numerical values. However, the observation that the metal is silver/gray in addition to the value for the specific heat indicates that the metal is lead.

When we use calorimetry to determine the heat involved in a chemical reaction, the same principles we have been discussing apply. The amount of heat absorbed by the calorimeter is often small enough that we can neglect it (though not for highly accurate measurements, as discussed later), and the calorimeter minimizes energy exchange with the outside environment. Because energy is neither created nor destroyed during a chemical reaction, the heat produced or consumed in the reaction (the "system"), $q_{\text {reaction, }}$ plus the heat absorbed or lost by the solution (the "surroundings"), $q_{\text {solution }}$, must add up to zero:

$$
q_{\text {reaction }}+q_{\text {solution }}=0
$$

This means that the amount of heat produced or consumed in the reaction equals the amount of heat absorbed or lost by the solution:

$$
q_{\text {reaction }}=-q_{\text {solution }}
$$

This concept lies at the heart of all calorimetry problems and calculations.

Example 35.3

Heat Produced by an Exothermic Reaction

When 50.0 mL of $1.00 \mathrm{M} \mathrm{HCl}(a q)$ and 50.0 mL of $1.00 \mathrm{M} \mathrm{NaOH}(a q)$, both at $22.0^{\circ} \mathrm{C}$, are added to a coffee cup calorimeter, the temperature of the mixture reaches a maximum of $28.9^{\circ} \mathrm{C}$. What is the approximate amount of heat produced by this reaction?

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Solution

To visualize what is going on, imagine that you could combine the two solutions so quickly that no reaction took place while they mixed; then after mixing, the reaction took place. At the instant of mixing, you have 100.0 mL of a mixture of HCl and NaOH at $22.0^{\circ} \mathrm{C}$. The HCl and NaOH then react until the solution temperature reaches 28.9 ${ }^{\circ} \mathrm{C}$.
The heat given off by the reaction is equal to that taken in by the solution. Therefore:

$$
q_{\text {reaction }}=-q_{\text {solution }}
$$

(It is important to remember that this relationship only holds if the calorimeter does not absorb any heat from the reaction, and there is no heat exchange between the calorimeter and the outside environment.)

Next, we know that the heat absorbed by the solution depends on its specific heat, mass, and temperature change:

$$
q_{\text {solution }}=(c \times m \times \Delta T)_{\text {solution }}
$$

To proceed with this calculation, we need to make a few more reasonable assumptions or approximations. Since the solution is aqueous, we can proceed as if it were water in terms of its specific heat and mass values. The density of water is approximately $1.0 \mathrm{~g} / \mathrm{mL}$, so 100.0 mL has a mass of about 1.0

$$
\times
$$

$10^{2} \mathrm{~g}$ (two significant figures). The specific heat of water is approximately $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, so we use that for the specific heat of the solution. Substituting these values gives:

$$
q_{\text {solution }}=\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)\left(1.0 \times 10^{2} \mathrm{~g}\right)\left(28.9^{\circ} \mathrm{C}-22.0^{\circ} \mathrm{C}\right)=2.9 \times 10^{3} \mathrm{~J}
$$

Finally, since we are trying to find the heat of the reaction, we have:

$$
q_{\text {reaction }}=-q_{\text {solution }}=-2.9 \times 10^{3} \mathrm{~J}
$$

The negative sign indicates that the reaction is exothermic. It produces 2.9 kJ of heat.

Check Your Learning

When 100 mL of $0.200 \mathrm{M} \mathrm{NaCl}(a q)$ and 100 mL of $0.200 \mathrm{M} \mathrm{AgNO}_{3}(a q)$, both at $21.9^{\circ} \mathrm{C}$, are mixed in a coffee cup calorimeter, the temperature increases to $23.5^{\circ} \mathrm{C}$ as solid AgCl forms. How much heat is produced by this precipitation reaction? What assumptions did you make to determine your value?

Answer

\times
1.3 kJ ; assume no heat is absorbed by the calorimeter, no heat is exchanged between the calorimeter and its surroundings, and that the specific heat and mass of the solution are the same as those for water

Chemistry in Everyday Life

Thermochemistry of Hand Warmers

When working or playing outdoors on a cold day, you might use a hand warmer to warm your hands (Figure 35.5). A common reusable hand warmer contains a supersaturated solution of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (sodium acetate) and a metal disc. Bending the disk creates nucleation sites around which the metastable $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ quickly crystallizes (a later chapter on solutions will investigate saturation and supersaturation in more detail).

The process
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(s)$
is exothermic, and the heat produced by this process is absorbed by your hands, thereby warming them (at least for a while). If the hand warmer is reheated, the $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ redissolves and can be reused.

Figure 35.5
Chemical hand warmers produce heat that warms your hand on a cold day. In this one, you can see the metal disc that initiates the exothermic precipitation reaction. (credit: modification of work by Science Buddies TV/YouTube)

Another common hand warmer produces heat when it is ripped open, exposing iron and water in the hand warmer to oxygen in the air. One simplified version of this exothermic reaction is
$2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$.

Salt in the hand warmer catalyzes the reaction, so it produces heat more rapidly; cellulose, vermiculite, and activated carbon help distribute the heat evenly. Other types of hand warmers use lighter fluid (a platinum catalyst helps lighter fluid oxidize exothermically), charcoal (charcoal oxidizes in a special case), or electrical units that produce heat by passing an electrical current from a battery through resistive wires.

Link to Learning

Watch the precipitation reaction that occurs when the disk in a chemical hand warmer is flexed.

Example 35.4

Heat Flow in an Instant Ice Pack

When solid ammonium nitrate dissolves in water, the solution becomes cold. This is the basis for an "instant ice pack" (Figure 35.6). When 3.21 g of solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolves in 50.0 g of water at $24.9^{\circ} \mathrm{C}$ in a calorimeter, the temperature decreases to $20.3^{\circ} \mathrm{C}$.
Calculate the value of q for this reaction and explain the meaning of its arithmetic sign. State any assumptions that you made.

Figure 35.6
An instant cold pack consists of a bag containing solid ammonium nitrate and a second bag of water. When the bag of water is broken, the pack becomes cold because the dissolution of ammonium nitrate is an endothermic process that removes thermal energy from the water. The cold pack then removes thermal energy from your body.

Solution

We assume that the calorimeter prevents heat transfer between the solution and its external environment (including the calorimeter itself), in which case:

$$
q_{\mathrm{rxn}}=-q_{\mathrm{soln}}
$$

with "rxn" and "soln" used as shorthand for "reaction" and "solution," respectively.

Assuming also that the specific heat of the solution is the same as that for water, we have:

$$
\begin{gathered}
q_{\mathrm{rxn}}=-q_{\text {soln }}=-(c \times m \times \Delta T)_{\text {soln }} \\
=-\left[\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times(53.2 \mathrm{~g}) \times\left(20.3^{\circ} \mathrm{C}-24.9^{\circ} \mathrm{C}\right)\right] \\
=-\left[\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times(53.2 \mathrm{~g}) \times\left(-4.6^{\circ} \mathrm{C}\right)\right] \\
+1.0 \times 10^{3} \mathrm{~J}=+1.0 \mathrm{~kJ}
\end{gathered}
$$

The positive sign for q indicates that the dissolution is an endothermic process.

Check Your Learning

When a $3.00-\mathrm{g}$ sample of KCl was added to 3.00
\times
$10^{2} \mathrm{~g}$ of water in a coffee cup calorimeter, the temperature decreased by $1.05^{\circ} \mathrm{C}$. How much heat is involved in the dissolution of the KCl? What assumptions did you make?

Answer

1.33 kJ ; assume that the calorimeter prevents heat transfer between the solution and its external environment (including the calorimeter itself) and that the specific heat of the solution is the same as that for water

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/9-2-calorimetry

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/calorimetry_part_1.

Calorimetry Part 2

Calorimetry

Calorimeters are designed to minimize energy exchange between their contents and the external environment. They range from simple coffee cup calorimeters used by introductory chemistry students to sophisticated bomb calorimeters used to determine the energy content of food.

36.1 Bomb Calorimetry

Learning Objectives

By the end of this section, you will be able to:

- Understand the function of a bomb calorimeter.

If the amount of heat absorbed by a calorimeter is too large to neglect or if we require more accurate results, then we must take into account the heat absorbed both by the solution and by the calorimeter.

The calorimeters described are designed to operate at constant (atmospheric) pressure and are convenient to measure heat flow accompanying processes that occur in solution. A different type of calorimeter that operates at constant volume, colloquially known as a bomb calorimeter, is used to measure the energy produced by reactions that yield large amounts of heat and gaseous products, such as combustion reactions. (The term "bomb" comes from the observation that these reactions can be vigorous enough to resemble explosions that would damage other calorimeters.) This type of calorimeter consists of a robust steel container (the "bomb") that contains the reactants and is itself submerged in water (Figure 36.1). The sample is placed in the bomb, which is then filled with oxygen at high pressure. A small electrical spark is used to ignite the sample. The energy produced by the reaction is absorbed by the steel bomb and the surrounding water. The temperature increase is measured and, along with the known heat capacity of the calorimeter, is used to calculate the energy produced by the reaction. Bomb calorimeters require calibration to determine the heat capacity of the calorimeter and ensure accurate results. The calibration is accomplished using a reaction with a known q, such as a measured quantity of benzoic acid ignited by a spark from a nickel fuse wire that is weighed before and after the reaction. The temperature change produced by the known reaction is used to determine the heat capacity of the calorimeter. The calibration is generally performed each time before the calorimeter is used to gather research data.

Figure 36.1
(a) A bomb calorimeter is used to measure heat produced by reactions involving gaseous reactants or products, such as combustion. (b) The reactants are contained in the gas-tight "bomb," which is submerged in water and surrounded by insulating materials. (credit a: modification of work by "Harbor1"/Wikimedia commons)

(a)

(b)

Link to Learning

Watch how a bomb calorimeter is prepared for action.

Watch on YouTube

You can also look at calorimetric calculations using sample data.

Example 36.1

Bomb Calorimetry

When 3.12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is burned in a bomb calorimeter, the temperature of the calorimeter increases from $23.8^{\circ} \mathrm{C}$ to $35.6^{\circ} \mathrm{C}$. The calorimeter contains 775 g of water, and the bomb itself has a heat capacity of 893 $\mathrm{J} /{ }^{\circ} \mathrm{C}$. How much heat was produced by the combustion of the glucose sample?

Solution

The combustion produces heat that is primarily absorbed by the water and the bomb. (The amounts of heat absorbed by the reaction products and the unreacted excess oxygen are relatively small and dealing with them is beyond the scope of this text. We will neglect them in our calculations.)
The heat produced by the reaction is absorbed by the water and the bomb:

$$
\begin{gathered}
q_{\mathrm{rxn}}=-\left(q_{\mathrm{water}}+q_{\mathrm{bomb}}\right) \\
=-\left[\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times(775 \mathrm{~g}) \times\left(35.6^{\circ} \mathrm{C}-23.8^{\circ} \mathrm{C}\right)+893 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times\left(35.6^{\circ} \mathrm{C}-23.8^{\circ} \mathrm{C}\right)\right] \\
=-(38,300 \mathrm{~J}+10,500 \mathrm{~J}) \\
=-48,800 \mathrm{~J}=-48.8 \mathrm{~kJ}
\end{gathered}
$$

This reaction released 48.7 kJ of heat when 3.12 g of glucose was burned.

Check Your Learning

When 0.963 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is burned in a bomb calorimeter, the temperature of the calorimeter increases by $8.39^{\circ} \mathrm{C}$. The bomb has a heat capacity of $784 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ and is submerged in 925 mL of water. How much heat was produced by the combustion of the benzene sample?

Answer

$$
\mathrm{q}_{\mathrm{rx}}=-39.0 \mathrm{~kJ} \text { (the reaction produced } 39.0 \mathrm{~kJ} \text { of heat) }
$$

Since the first one was constructed in 1899, 35 calorimeters have been built to measure the heat produced by a living person. ${ }^{2}$ These whole-body calorimeters of various designs are large enough to hold an individual human being. More recently, whole-room calorimeters allow for relatively normal activities to be performed, and these calorimeters generate data that more closely reflect the real world. These calorimeters are used to measure the metabolism of individuals under different environmental conditions, different dietary regimes, and with different health conditions, such as diabetes.

For example Carla Prado's team at University of Alberta undertook whole-body calorimetry to understand the energy expenditures of women who had recently given birth. Studies like this help develop better recommendations and regimens for nutrition, exercise, and general wellbeing during this period of significant physiological change. In humans, metabolism is typically measured in Calories per day. A nutritional calorie (Calorie) is the energy unit used to quantify the amount of energy derived from the metabolism of foods; one Calorie is equal to 1000 calories (1 kcal), the amount of energy needed to heat 1 kg of water by $1^{\circ} \mathrm{C}$.

Chemistry in Everyday Life

Measuring Nutritional Calories

In your day-to-day life, you may be more familiar with energy being given in Calories, or nutritional calories, which are used to quantify the amount of energy in foods. One calorie (cal) = exactly 4.184 joules, and one Calorie (note the capitalization) = 1000 cal , or 1 kcal . (This is approximately the amount of energy needed to heat 1 kg of water by $1^{\circ} \mathrm{C}$.)

The macronutrients in food are proteins, carbohydrates, and fats or oils. Proteins provide about 4 Calories per gram, carbohydrates also provide about 4 Calories per gram, and fats and oils provide about 9 Calories/g. Nutritional labels on food packages show the caloric content of one serving of the food, as well as the breakdown into Calories from each of the three macronutrients (Figure 36.2).

Figure 36.2
(a) Macaroni and cheese contain energy in the form of the macronutrients in the food. (b) The food's nutritional information is shown on the package label. In the US, the energy content is given in Calories (per serving); the rest of the world usually uses kilojoules. (credit a: modification of work by "Rex Roof"/Flickr)

For the example shown in (b), the total energy per 228-g portion is calculated by:
$(5 \mathrm{~g}$ protein $\times 4$ Calories $/ \mathrm{g})+(31 \mathrm{~g}$ carb $\times 4$ Calories $/ \mathrm{g})+(12 \mathrm{~g}$ fat $\times 9$ Calories $/ \mathrm{g})=252 \mathrm{Ca}$

So, you can use food labels to count your Calories. But where do the values come from? And how accurate are they? The caloric content of foods can be determined by using bomb calorimetry; that is, by burning the food and measuring the energy it contains. A sample of food is weighed, mixed in a blender, freeze-dried, ground into powder, and formed into a pellet. The pellet is burned inside a bomb calorimeter, and the measured temperature change is converted into energy per gram of food.

Today, the caloric content on food labels is derived using a method called the Atwater system that uses the average caloric content of the different chemical constituents of food, protein, carbohydrate, and fats. The average amounts are those given in the equation and are derived from the various results given by bomb calorimetry of whole foods. The carbohydrate amount is discounted a certain amount for the fiber content, which is indigestible carbohydrate. To determine the energy content of a food, the quantities of carbohydrate, protein, and fat are each multiplied by the average Calories per gram for each and the products summed to obtain the total energy.

Link to Learning

The US Department of Agriculture (USDA) National Nutrient Database has a database containing nutritional information on over 8000 foods.

Footnotes

1. Francis D. Reardon et al. "The Snellen human calorimeter revisited, re-engineered and upgraded: Design and performance characteristics." Medical and Biological Engineering and Computing 8 (2006)721-28, http://link.springer.com/article/10.1007/s11517-006-0086-5.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/9-2-calorimetry

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/calorimetry_part_2.

37

Enthalpy Part 1

Enthalpy

If a chemical change is carried out at constant pressure and the only work done is caused by expansion or contraction, q for the change is called the enthalpy change with the symbol ΔH, or ΔH° for reactions occurring under standard state conditions at 298 K . The value of ΔH for a reaction in one direction is equal in magnitude, but opposite in sign, to ΔH for the reaction in the opposite direction, and ΔH is directly proportional to the quantity of reactants and products. The standard enthalpy of formation, $\Delta H^{\circ}{ }_{\sigma}$ is the enthalpy change accompanying the formation of 1 mole of a substance from the elements in their most stable states at 1 bar and 298.15 K. If the enthalpies of formation are available for the reactants and products of a reaction, the enthalpy change can be calculated using Hess's law: If a process can be written as the sum of several stepwise processes, the enthalpy change of the total process equals the sum of the enthalpy changes of the various steps.

37.1 Enthalpy

Learning Objectives

By the end of this section, you will be able to:

- Define enthalpy and explain its classification as a state function
- Write and balance thermochemical equations
- Calculate enthalpy changes for various chemical reactions
- Explain Hess's law and use it to compute reaction enthalpies

Chemists ordinarily use a property known as enthalpy (H) to describe the thermodynamics of chemical and physical processes. Enthalpy is defined as the sum of a system's internal energy (U) and the mathematical product of its pressure (P) and volume (V :

$$
H=U+P V
$$

Enthalpy is also a state function. Enthalpy values for specific substances cannot be measured directly; only enthalpy changes for chemical or physical processes can be determined. For processes that take place at constant pressure (a common condition for many chemical and physical changes), the enthalpy change (ΔH) is:

$$
\Delta H=\Delta U+P \Delta V
$$

The mathematical product $P \Delta V$ represents work (w), namely, expansion or pressure-volume work as noted. By their definitions, the arithmetic signs of ΔV and w will always be opposite:

$$
P \Delta V=-w
$$

Substituting this equation and the definition of internal energy into the enthalpy-change equation yields:

$$
\begin{gathered}
\Delta H=\Delta U+P \Delta V \\
=q_{\mathrm{p}}+w-w \\
=q_{\mathrm{p}}
\end{gathered}
$$

where q_{p} is the heat of reaction under conditions of constant pressure.
And so, if a chemical or physical process is carried out at constant pressure with the only work done caused by expansion or contraction, then the heat flow $\left(q_{p}\right)$ and enthalpy change (ΔH) for the process are equal.

The heat given off when you operate a Bunsen burner is equal to the enthalpy change of the methane combustion reaction that takes place, since it occurs at the essentially constant pressure of the atmosphere. On the other hand, the heat produced by a reaction measured in a bomb calorimeter is not equal to ΔH because the closed, constant-volume metal container prevents the pressure from remaining constant (it may increase or decrease if the reaction yields increased or decreased amounts of gaseous species). Chemists usually perform experiments under normal atmospheric conditions, at constant external pressure with $q=\Delta H$, which makes enthalpy the most convenient choice for determining heat changes for chemical reactions.

The following conventions apply when using ΔH :

- A negative value of an enthalpy change, $\Delta H<0$, indicates an exothermic reaction; a positive value, $\Delta H>0$, indicates an endothermic reaction. If the direction of a chemical equation is reversed, the arithmetic sign of its ΔH is changed (a process that is endothermic in one direction is exothermic in the opposite direction).
- Chemists use a thermochemical equation to represent the changes in both matter and energy. In a thermochemical equation, the enthalpy change of a reaction is shown as a ΔH value following the equation for the reaction. This ΔH value indicates the amount of heat associated with the reaction involving the number of moles of reactants and products as shown in the chemical equation. For example, consider this equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-286 \mathrm{~kJ}
$$

This equation indicates that when 1 mole of hydrogen gas and
$\frac{1}{2}$
mole of oxygen gas at some temperature and pressure change to 1 mole of liquid water at the same temperature and pressure, 286 kJ of heat are released to the surroundings. If the coefficients of the chemical equation are multiplied by some factor, the enthalpy change must be multiplied by that same factor (ΔH is an extensive property):
(two-fold increase in amounts)
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=2 \times(-286 \mathrm{~kJ})=-572 \mathrm{~kJ}$
(two-fold decrease in amounts)

$$
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=\frac{1}{2} \times(-286 \mathrm{~kJ})=-143 \mathrm{~kJ}
$$

- The enthalpy change of a reaction depends on the physical states of the reactants and products, so these must be shown. For example, when 1 mole of hydrogen gas and

$\frac{1}{2}$

mole of oxygen gas change to 1 mole of liquid water at the same temperature and pressure, 286 kJ of heat are released. If gaseous water forms, only 242 kJ of heat are released.

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-242 \mathrm{~kJ}
$$

Example 37.1

Writing Thermochemical Equations

When 0.0500 mol of $\mathrm{HCl}(a q)$ reacts with 0.0500 mol of $\mathrm{NaOH}(a q)$ to form 0.0500 mol of $\mathrm{NaCl}(a q), 2.9 \mathrm{~kJ}$ of heat are produced. Write a balanced thermochemical equation for the reaction of one mole of HCl .

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Solution

For the reaction of 0.0500 mol acid $(\mathrm{HCl}), q=-2.9 \mathrm{~kJ}$. The reactants are provided in stoichiometric amounts (same molar ratio as in the balanced equation), and so the amount of acid may be used to calculate a molar enthalpy change. Since ΔH is an extensive property, it is proportional to the amount of acid neutralized:

$$
\Delta \mathrm{H}=1 \mathrm{~mol} \mathrm{HCl} \times \frac{-2.9 \mathrm{~kJ}}{0.0500 \mathrm{~mol} \mathrm{HCl}}=-58 \mathrm{~kJ}
$$

The thermochemical equation is then

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \quad \Delta \mathrm{H}=-58 \mathrm{~kJ}
$$

Check Your Learning

When $1.34 \mathrm{~g} \mathrm{Zn}(s)$ reacts with 60.0 mL of $0.750 \mathrm{M} \mathrm{HCl}(a q), 3.14 \mathrm{~kJ}$ of heat are produced. Determine the enthalpy change per mole of zinc reacting for the reaction:

$$
\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(\mathrm{~g})
$$

Answer

$\Delta H=-153 \mathrm{~kJ}$

Be sure to take both stoichiometry and limiting reactants into account when determining the ΔH for a chemical reaction.

Example 37.2

Writing Thermochemical Equations

A gummy bear contains 2.67 g sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. When it reacts with 7.19 g potassium chlorate, $\mathrm{KClO}_{3}, 43.7$ kJ of heat are produced. Write a thermochemical equation for the reaction of one mole of sucrose:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)+8 \mathrm{KClO}_{3}(a q) \rightarrow 12 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(l)+8 \mathrm{KCl}(a q) .
$$

Solution

Unlike the previous example exercise, this one does not involve the reaction of stoichiometric amounts of reactants, and so the limiting reactant must be identified (it limits the yield of the reaction and the amount of thermal energy produced or consumed).
The provided amounts of the two reactants are
$(2.67 \mathrm{~g})(1 \mathrm{~mol} / 342.3 \mathrm{~g})=0.00780 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$(7.19 \mathrm{~g})(1 \mathrm{~mol} / 122.5 \mathrm{~g})=0.0587 \mathrm{~mol} \mathrm{KCIO}_{3}$

The provided molar ratio of perchlorate-to-sucrose is then

$$
0.0587 \mathrm{~mol} \mathrm{KCIO}_{3} / 0.00780 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=7.52
$$

The balanced equation indicates $8 \mathrm{~mol} \mathrm{KClO}_{3}$ are required for reaction with $1 \mathrm{~mol}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. Since the provided amount of KClO_{3} is less than the stoichiometric amount, it is the limiting reactant and may be used to compute the enthalpy change:

$$
\triangle \mathrm{H}=-43.7 \mathrm{~kJ} / 0.0587 \mathrm{~mol} \mathrm{KCIO} 3=744 \mathrm{~kJ} / \mathrm{mol} \mathrm{KCIO}_{3}
$$

Because the equation, as written, represents the reaction of $8 \mathrm{~mol} \mathrm{KClO}_{3}$, the enthalpy change is

$$
\left(744 \mathrm{~kJ} / \mathrm{mol} \mathrm{KCIO}_{3}\right)(8 \mathrm{~mol} \mathrm{KCIO} 3)=5960 \mathrm{~kJ}
$$

The enthalpy change for this reaction is -5960 kJ , and the thermochemical equation is:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+8 \mathrm{KClO}_{3} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{KCl} \quad \Delta \mathrm{H}=-5960 \mathrm{~kJ}
$$

Check Your Learning

When 1.42 g of iron reacts with 1.80 g of chlorine, 3.22 g of $\mathrm{FeCl}_{2}(s)$ and 8.60 kJ of heat is produced. What is the enthalpy change for the reaction when 1 mole of $\mathrm{FeCl}_{2}(s)$ is produced?

Answer

$\Delta H=-338 \mathrm{~kJ}$

Enthalpy changes are typically tabulated for reactions in which both the reactants and products are at the same conditions. A standard state is a commonly accepted set of conditions used as a reference point for the determination of properties under other different conditions. For chemists, the IUPAC standard state refers to materials under a pressure of 1 bar and solutions at 1 M , and does not specify a temperature. Many thermochemical tables list values with a standard state of 1 atm . Because the ΔH of a reaction changes very little with such small changes in pressure (1 bar $=0.987 \mathrm{~atm}$), ΔH values (except for the most precisely measured values) are essentially the same under both sets of standard conditions. We will include a superscripted "o" in the enthalpy change symbol to designate standard state. Since the usual (but not technically standard) temperature is 298.15 K , this temperature will be assumed unless some other temperature is specified. Thus, the symbol
$\left(\Delta H^{\circ}\right)$
is used to indicate an enthalpy change for a process occurring under these conditions. (The symbol ΔH is used to indicate an enthalpy change for a reaction occurring under nonstandard conditions.)

The enthalpy changes for many types of chemical and physical processes are available in the reference literature, including those for combustion reactions, phase transitions, and formation reactions. As we discuss these quantities, it is important to pay attention to the extensive nature of enthalpy and enthalpy changes. Since the enthalpy change for a given reaction is proportional to the amounts of substances involved, it may be reported on that basis (i.e., as the ΔH for specific amounts of reactants). However, we often find it more useful to divide one extensive property (ΔH) by another (amount of substance), and report a per-amount intensive value of ΔH, often "normalized" to a per-mole basis. (Note that this is similar to determining the intensive property specific heat from the extensive property heat capacity, as seen previously.)

Standard Enthalpy of Combustion

Standard enthalpy of combustion
$\left(\Delta H_{C}^{\circ}\right)$
is the enthalpy change when 1 mole of a substance burns (combines vigorously with oxygen) under standard state conditions; it is sometimes called "heat of combustion." For example, the enthalpy of combustion of ethanol, -1366.8 $\mathrm{kJ} / \mathrm{mol}$, is the amount of heat produced when one mole of ethanol undergoes complete combustion at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure, yielding products also at $25^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H^{\circ}=-1366.8 \mathrm{~kJ}
$$

Enthalpies of combustion for many substances have been measured; a few of these are listed in Table 37.1. Many readily available substances with large enthalpies of combustion are used as fuels, including hydrogen, carbon (as coal or charcoal), and hydrocarbons (compounds containing only hydrogen and carbon), such as methane, propane, and the major components of gasoline.

Table 37.1

Standard Molar Enthalpies of Combustion

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH_{c}° $\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
carbon	$\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	-393.5
hydrogen	$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8
magnesium	$\mathrm{Mg}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(s)$	-601.6
sulfur	$\mathrm{S}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)$	-296.8
carbon	$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$	-283.0
monoxide	$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$	-890.8
methane	$\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$	-1301.1
acetylene	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)-1366.8$	
ethanol	$\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$	-726.1
methanol	$\mathrm{C}_{8} \mathrm{H}_{18}(l)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(l)$	-5461
isooctane		

Example 37.3

Using Enthalpy of Combustion

As Figure 37.1 suggests, the combustion of gasoline is a highly exothermic process. Let us determine the approximate amount of heat produced by burning 1.00 L of gasoline, assuming the enthalpy of combustion of gasoline is the same as that of isooctane, a common component of gasoline. The density of isooctane is 0.692 g / mL.
Figure 37.1
The combustion of gasoline is very exothermic. (credit: modification of work by "AlexEagle"/Flickr)

Solution

Starting with a known amount (1.00 L of isooctane), we can perform conversions between units until we arrive at the desired amount of heat or energy. The enthalpy of combustion of isooctane provides one of the necessary conversions. Table 37.1 gives this value as -5460 kJ per 1 mole of isooctane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$. Using these data,
$1.00 \mathrm{LC}_{8} \mathrm{H}_{18} \times \frac{1000 \mathrm{mLC}_{8} \mathrm{H}_{18}}{1 \mathrm{LC}_{8} \mathrm{H}_{18}} \times \frac{0.692 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}{1 \mathrm{mLC}_{8} \mathrm{H}_{18}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{-5460 \mathrm{~kJ}}{1 \mathrm{molC}_{8} \mathrm{H}_{18}}=-3$.

The combustion of 1.00 L of isooctane produces $33,100 \mathrm{~kJ}$ of heat. (This amount of energy is enough to melt 99.2 kg, or about 218 lbs , of ice.)

Note: If you do this calculation one step at a time, you would find:

$$
\begin{gathered}
1.00 \mathrm{LC}_{8} \mathrm{H}_{18} \rightarrow 1.00 \times 10^{3} \mathrm{mLC}_{8} \mathrm{H}_{18} \\
1.00 \times 10^{3} \mathrm{mLCC}_{8} \mathrm{H}_{18} \rightarrow 692 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \\
692 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 6.07 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \\
6.07 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \rightarrow-3.31 \times 10^{4} \mathrm{~kJ}
\end{gathered}
$$

Check Your Learning

How much heat is produced by the combustion of 125 g of acetylene?

Answer
6.25
\times
$10^{3} \mathrm{~kJ}$

Chemistry in Everyday Life

Emerging Algae-Based Energy Technologies (Biofuels)

As reserves of fossil fuels diminish and become more costly to extract, the search is ongoing for replacement fuel sources for the future. Among the most promising biofuels are those derived from algae (Figure 37.2). The species of algae used are nontoxic, biodegradable, and among the world's fastest growing organisms. About 50% of algal weight is oil, which can be readily converted into fuel such as biodiesel. Algae can yield 26,000 gallons of biofuel per hectare-much more energy per acre than other crops. Some strains of algae can flourish in brackish water that is not usable for growing other crops. Algae can produce biodiesel, biogasoline, ethanol, butanol, methane, and even jet fuel.

Figure 37.2
(a) Tiny algal organisms can be (b) grown in large quantities and eventually (c) turned into a useful fuel such as biodiesel. (credit a: modification of work by Micah Sittig; credit b: modification of work by Robert Kerton; credit c: modification of work by John F. Williams)

According to the US Department of Energy, only 39,000 square kilometers (about 0.4% of the land mass of the US or less than

$\frac{1}{7}$

of the area used to grow corn) can produce enough algal fuel to replace all the petroleum-based fuel used in the US. The cost of algal fuels is becoming more competitive-for instance, the US Air Force is producing jet fuel from algae at a total cost of under $\$ 5$ per gallon. ${ }^{3}$ The process used to produce algal fuel is as follows: grow the algae (which use sunlight as their energy source and CO_{2} as a raw material); harvest the algae; extract the fuel compounds (or precursor compounds); process as necessary (e.g., perform a transesterification reaction to make biodiesel); purify; and distribute (Figure 37.3).

Figure 37.3

Algae convert sunlight and carbon dioxide into oil that is harvested, extracted, purified, and transformed into a variety of renewable fuels.

Link to Learning

Watch this video to learn more about the process of creating algae biofuel.

Watch on YouTube

Standard Enthalpy of Formation

A standard enthalpy of formation
$\Delta H_{\mathrm{f}}^{\circ}$
is an enthalpy change for a reaction in which exactly 1 mole of a pure substance is formed from free elements in their most stable states under standard state conditions. These values are especially useful for computing or predicting
enthalpy changes for chemical reactions that are impractical or dangerous to carry out, or for processes for which it is difficult to make measurements. If we have values for the appropriate standard enthalpies of formation, we can determine the enthalpy change for any reaction, which we will practice in the next section on Hess's law.

The standard enthalpy of formation of $\mathrm{CO}_{2}(g)$ is $-393.5 \mathrm{~kJ} / \mathrm{mol}$. This is the enthalpy change for the exothermic reaction:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}^{\circ}=\Delta H^{\circ}=-393.5 \mathrm{~kJ}
$$

starting with the reactants at a pressure of 1 atm and $25^{\circ} \mathrm{C}$ (with the carbon present as graphite, the most stable form of carbon under these conditions) and ending with one mole of CO_{2}, also at 1 atm and $25^{\circ} \mathrm{C}$. For nitrogen dioxide, $\mathrm{NO}_{2}(\mathrm{~g})$,
$\Delta H_{\mathrm{f}}^{\circ}$
is $33.2 \mathrm{~kJ} / \mathrm{mol}$. This is the enthalpy change for the reaction:

$$
\frac{1}{2} \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) \quad \Delta H_{\mathrm{f}}^{\circ}=\Delta H^{\circ}=+33.2 \mathrm{~kJ}
$$

A reaction equation with
$\frac{1}{2}$
mole of N_{2} and 1 mole of O_{2} is correct in this case because the standard enthalpy of formation always refers to 1 mole of product, $\mathrm{NO}_{2}(\mathrm{~g})$.

These values indicate that formation reactions range from highly exothermic (such as $-2984 \mathrm{~kJ} / \mathrm{mol}$ for the formation of $\mathrm{P}_{4} \mathrm{O}_{10}$) to strongly endothermic (such as $+226.7 \mathrm{~kJ} / \mathrm{mol}$ for the formation of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$). By definition, the standard enthalpy of formation of an element in its most stable form is equal to zero under standard conditions, which is 1 atm for gases and 1 M for solutions.

Example 37.4

Evaluating an Enthalpy of Formation

Ozone, $\mathrm{O}_{3}(\mathrm{~g})$, forms from oxygen, $\mathrm{O}_{2}(\mathrm{~g})$, by an endothermic process. Ultraviolet radiation is the source of the energy that drives this reaction in the upper atmosphere. Assuming that both the reactants and products of the reaction are in their standard states, determine the standard enthalpy of formation,
$\Delta H_{\mathrm{f}}^{\circ}$
of ozone from the following information:

$$
3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=+286 \mathrm{~kJ}
$$

Solution

$\Delta H_{\mathrm{f}}^{\circ}$
is the enthalpy change for the formation of one mole of a substance in its standard state from the elements in their standard states. Thus,
$\Delta H_{\mathrm{f}}^{\circ}$
for $\mathrm{O}_{3}(\mathrm{~g})$ is the enthalpy change for the reaction:

$$
\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})
$$

For the formation of 2 mol of $\mathrm{O}_{3}(\mathrm{~g})$,
$\Delta H^{\circ}=+286 \mathrm{~kJ}$.

This ratio,
$\left(\frac{286 \mathrm{~kJ}}{2 \mathrm{molO}_{3}}\right)$,
can be used as a conversion factor to find the heat produced when 1 mole of $\mathrm{O}_{3}(g)$ is formed, which is the enthalpy of formation for $\mathrm{O}_{3}(\mathrm{~g})$:
$\Delta \mathrm{H}^{\circ}$ for 1 mole of $\mathrm{O}_{3}(\mathrm{~g})=1 \mathrm{~mol} \mathrm{O}_{3} \times \frac{286 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{O}_{3}}=143 \mathrm{~kJ}$

Therefore,
$\Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{O}_{3}(\mathrm{~g})\right]=+143 \mathrm{~kJ} / \mathrm{mol}$.

Check Your Learning

Hydrogen gas, H_{2}, reacts explosively with gaseous chlorine, Cl_{2}, to form hydrogen chloride, $\mathrm{HCl}(g)$. What is the enthalpy change for the reaction of 1 mole of $\mathrm{H}_{2}(g)$ with 1 mole of $\mathrm{Cl}_{2}(g)$ if both the reactants and products are at standard state conditions? The standard enthalpy of formation of $\mathrm{HCl}(g)$ is $-92.3 \mathrm{~kJ} / \mathrm{mol}$.

Answer

For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta H^{\circ}=-184.6 \mathrm{~kJ}$

Example 37.5

Writing Reaction Equations for

$\Delta H_{\mathrm{f}}^{\circ}$

Write the heat of formation reaction equations for:
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}()$
(b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$

Solution

Remembering that
$\Delta H_{\mathrm{f}}^{\circ}$
reaction equations are for forming 1 mole of the compound from its constituent elements under standard conditions, we have:
(a)
$2 \mathrm{C}(s$, graphite $)+3 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$
(b)
$3 \mathrm{Ca}(s)+\frac{1}{2} \mathrm{P}_{4}(s)+4 \mathrm{O}_{2}(g) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$

Note: The standard state of carbon is graphite, and phosphorus exists as P_{4}.

Check Your Learning

Write the heat of formation reaction equations for:
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ ()
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$

Answer

(a)
$4 \mathrm{C}(s$, graphite $)+5 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}(l) ;$
(b)
$2 \mathrm{Na}(s)+\mathrm{C}(s$, graphite $)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)$

Hess's Law

There are two ways to determine the amount of heat involved in a chemical change: measure it experimentally, or calculate it from other experimentally determined enthalpy changes. Some reactions are difficult, if not impossible, to investigate and make accurate measurements for experimentally. And even when a reaction is not hard to perform or measure, it is convenient to be able to determine the heat involved in a reaction without having to perform an experiment.

This type of calculation usually involves the use of Hess's law, which states: If a process can be written as the sum of several stepwise processes, the enthalpy change of the total process equals the sum of the enthalpy changes of the various steps. Hess's law is valid because enthalpy is a state function: Enthalpy changes depend only on where a chemical process starts and ends, but not on the path it takes from start to finish. For example, we can think of the reaction of carbon with oxygen to form carbon dioxide as occurring either directly or by a two-step process. The direct process is written:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-394 \mathrm{~kJ}
$$

In the two-step process, first carbon monoxide is formed:

$$
\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(g) \quad \Delta H^{\circ}=-111 \mathrm{~kJ}
$$

Then, carbon monoxide reacts further to form carbon dioxide:

$$
\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=-283 \mathrm{~kJ}
$$

The equation describing the overall reaction is the sum of these two chemical changes:

> Step 1: $\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
> Step 2: $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
> Sum: $\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(g)+\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)+\mathrm{CO}_{2}(g)$

Because the CO produced in Step 1 is consumed in Step 2, the net change is:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

According to Hess's law, the enthalpy change of the reaction will equal the sum of the enthalpy changes of the steps.

$$
\begin{array}{cc}
\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g}) & \Delta H^{\circ}=-111 \mathrm{~kJ} \\
\frac{\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})}{\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})} & \frac{\Delta H^{\circ}=-283 \mathrm{~kJ}}{\Delta H^{\circ}=-394 \mathrm{~kJ}}
\end{array}
$$

The result is shown in Figure 37.4. We see that ΔH of the overall reaction is the same whether it occurs in one step or two. This finding (overall ΔH for the reaction $=$ sum of ΔH values for reaction "steps" in the overall reaction) is true in general for chemical and physical processes.

Figure 37.4
The formation of $\mathrm{CO}_{2}(g)$ from its elements can be thought of as occurring in two steps, which sum to the overall reaction, as described by Hess's law. The horizontal blue lines represent enthalpies. For an exothermic process, the products are at lower enthalpy than are the reactants.

Before we further practice using Hess's law, let us recall two important features of ΔH.

1. ΔH is directly proportional to the quantities of reactants or products. For example, the enthalpy change for the reaction forming 1 mole of $\mathrm{NO}_{2}(g)$ is +33.2 kJ :

$$
\frac{1}{2} \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}=+33.2 \mathrm{~kJ}
$$

When 2 moles of NO_{2} (twice as much) are formed, the ΔH will be twice as large:

$$
\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+66.4 \mathrm{~kJ}
$$

In general, if we multiply or divide an equation by a number, then the enthalpy change should also be multiplied or divided by the same number.
2. ΔH for a reaction in one direction is equal in magnitude and opposite in sign to ΔH for the reaction in the reverse direction. For example, given that:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta \mathrm{H}=-184.6 \mathrm{~kJ}
$$

Then, for the "reverse" reaction, the enthalpy change is also "reversed":

$$
2 \mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+184.6 \mathrm{~kJ}
$$

Example 37.6

Stepwise Calculation of

$\Delta H_{\mathrm{f}}^{\circ}$

Using Hess's Law

Determine the enthalpy of formation,
$\Delta H_{\mathrm{f}}^{\circ}$,
of $\mathrm{FeCl}_{3}(s)$ from the enthalpy changes of the following two-step process that occurs under standard state conditions:

$$
\begin{array}{cr}
\mathrm{Fe}(s)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeCl}_{2}(s) & \Delta \mathrm{H}^{\circ}=-341.8 \mathrm{~kJ} \\
\mathrm{FeCl}_{2}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{FeCl}_{3}(s) & \Delta \mathrm{H}^{\circ}=-57.7 \mathrm{~kJ}
\end{array}
$$

Solution

We are trying to find the standard enthalpy of formation of $\mathrm{FeCl}_{3}(s)$, which is equal to ΔH° for the reaction:

$$
\mathrm{Fe}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{FeCl}_{3}(s) \quad \Delta H_{\mathrm{f}}^{\circ}=?
$$

Looking at the reactions, we see that the reaction for which we want to find ΔH° is the sum of the two reactions with known ΔH values, so we must sum their $\Delta H \mathrm{~s}$:

$$
\begin{array}{cc}
\mathrm{Fe}(s)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{FeCl}_{2}(s) & \Delta H^{\circ}=-341.8 \mathrm{~kJ} \\
\frac{\mathrm{FeCl}_{2}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{FeCl}_{3}(s)}{\mathrm{Fe}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{FeCl}_{3}(s)} & \frac{\Delta H^{\circ}=-57.7 \mathrm{~kJ}}{\Delta H^{\circ}=-399.5 \mathrm{~kJ}}
\end{array}
$$

The enthalpy of formation,
$\Delta H_{\mathrm{f}}^{\circ}$,
of $\mathrm{FeCl}_{3}(s)$ is $-399.5 \mathrm{~kJ} / \mathrm{mol}$.

Check Your Learning

Calculate ΔH for the process:

$$
\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

from the following information:

$$
\begin{array}{cl}
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g) & \Delta \mathrm{H}=180.5 \mathrm{~kJ} \\
\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) & \Delta \mathrm{H}=-57.06 \mathrm{~kJ}
\end{array}
$$

Answer

66.4 kJ

Here is a less straightforward example that illustrates the thought process involved in solving many Hess's law problems. It shows how we can find many standard enthalpies of formation (and other values of ΔH) if they are difficult to determine experimentally.

Example 37.7

A More Challenging Problem Using Hess's Law

Chlorine monofluoride can react with fluorine to form chlorine trifluoride:
(i)
$\mathrm{ClF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{ClF}_{3}(g) \quad \Delta \mathrm{H}^{\circ}=?$

Use the reactions here to determine the ΔH° for reaction (i):
(ii)
$2 \mathrm{OF}_{2}(g) \rightarrow \mathrm{O}_{2}(g)+2 \mathrm{~F}_{2}(g) \quad \Delta H_{(i i)}^{\circ}=-49.4 \mathrm{~kJ}$
(iii)
$2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{OF}_{2}(g)$

$$
\Delta H_{(i i i)}^{\circ}=+214.0 \mathrm{~kJ}
$$

(iv)
$\mathrm{ClF}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+\frac{3}{2} \mathrm{OF}_{2}(\mathrm{~g}) \quad \Delta H_{(i v)}^{\circ}=+236.2 \mathrm{~kJ}$

Solution

Our goal is to manipulate and combine reactions (ii), (iii), and (iv) such that they add up to reaction (i). Going from left to right in (i), we first see that $\operatorname{CIF}(g)$ is needed as a reactant. This can be obtained by multiplying reaction (iii) by
$\frac{1}{2}$,
which means that the ΔH° change is also multiplied by
$\frac{1}{2}:$

$$
\mathrm{ClF}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{OF}_{2}(g) \quad \Delta \mathrm{H}^{\circ}=\frac{1}{2}(214.0)=+107.0 \mathrm{~kJ}
$$

Next, we see that F_{2} is also needed as a reactant. To get this, reverse and halve reaction (ii), which means that the ΔH° changes sign and is halved:

$$
\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{OF}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+24.7 \mathrm{~kJ}
$$

To get ClF_{3} as a product, reverse (iv), changing the sign of ΔH° :

$$
\frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(g)+\frac{3}{2} \mathrm{OF}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g)+\mathrm{O}_{2}(g) \quad \Delta \mathrm{H}^{\circ}=-236.2 \mathrm{~kJ}
$$

Now check to make sure that these reactions add up to the reaction we want:

$$
\begin{array}{cc}
\mathrm{ClF}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{OF}_{2}(g) & \Delta H^{\circ}=+107.0 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{O}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{OF}_{2}(g) & \Delta H^{\circ}=+24.7 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(g)+\frac{3}{2} \mathrm{OF}_{2}(g) \rightarrow \mathrm{ClF}_{3}(g)+\mathrm{O}_{2}(g) \\
\mathrm{ClF}(g)+\mathrm{F}_{2} \rightarrow \mathrm{ClF}_{3}(g) & \frac{\Delta H^{\circ}=-236.2 \mathrm{~kJ}}{\Delta H^{\circ}}=-104.5 \mathrm{~kJ}
\end{array}
$$

Reactants
$\frac{1}{2} \mathrm{O}_{2}$
and
$\frac{1}{2} \mathrm{O}_{2}$
cancel out product O_{2}; product
$\frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}$
cancels reactant
$\frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}$;
and reactant
$\frac{3}{2} \mathrm{OF}_{2}$
is cancelled by products
$\frac{1}{2} \mathrm{OF}_{2}$
and OF_{2}. This leaves only reactants $\mathrm{CIF}(g)$ and $\mathrm{F}_{2}(g)$ and product $\mathrm{CIF}_{3}(g)$, which are what we want. Since summing these three modified reactions yields the reaction of interest, summing the three modified ΔH° values will give the desired ΔH° :

$$
\Delta H^{\circ}=(+107.0 \mathrm{~kJ})+(24.7 \mathrm{~kJ})+(-236.2 \mathrm{~kJ})=-104.5 \mathrm{~kJ}
$$

Check Your Learning

Aluminum chloride can be formed from its elements:
(i)

$$
2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(s) \quad \Delta H^{\circ}=?
$$

Use the reactions here to determine the ΔH° for reaction (i):
(ii)
$\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{HCl}(a q) \quad \Delta H_{(i i)}^{\circ}=-74.8 \mathrm{~kJ}$
(iii)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta H_{(i i i)}^{\circ}=-185 \mathrm{~kJ}$
(iv)
$\mathrm{AlCl}_{3}(a q) \rightarrow \mathrm{AlCl}_{3}(s) \quad \Delta H_{(i v)}^{\circ}=+323 \mathrm{~kJ} / \mathrm{mol}$
(v)

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2}(g) \quad \Delta H_{(v)}^{\circ}=-1049 \mathrm{~kJ}
$$

Answer

$$
-1407 \text { kJ }
$$

We also can use Hess's law to determine the enthalpy change of any reaction if the corresponding enthalpies of formation of the reactants and products are available. The stepwise reactions we consider are: (i) decompositions of the reactants into their component elements (for which the enthalpy changes are proportional to the negative of the enthalpies of formation of the reactants), followed by (ii) re-combinations of the elements to give the products (with the enthalpy changes proportional to the enthalpies of formation of the products). The standard enthalpy change of the overall reaction is therefore equal to: (ii) the sum of the standard enthalpies of formation of all the products plus (i) the sum of the negatives of the standard enthalpies of formation of the reactants. This is usually rearranged slightly to be written as follows, with \sum representing "the sum of" and n standing for the stoichiometric coefficients:

$$
\Delta H_{\text {reaction }}^{\circ}=\sum n \times \Delta H_{\mathrm{f}}^{\circ}(\text { products })-\sum n \times \Delta H_{\mathrm{f}}^{\circ}(\text { reactants })
$$

The following example shows in detail why this equation is valid, and how to use it to calculate the enthalpy change for a reaction of interest.

Example 37.8

Using Hess's Law

What is the standard enthalpy change for the reaction:

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) \quad \Delta \mathrm{H}^{\circ}=?
$$

Solution: Using the Equation

Use the special form of Hess's law given previously, and values from OpenStax's Appendix G:

$$
\begin{gathered}
\Delta H_{\text {reaction }}^{\circ}=\sum n \times \Delta H_{\mathrm{f}}^{\circ}(\text { products })-\sum n \times \Delta H_{\mathrm{f}}^{\circ}(\text { reactants }) \\
=\left[2 \mathrm{~mol} \mathrm{HNO}_{3}(a q) \times \frac{-207.4 \mathrm{~kJ}}{\mathrm{moliNO}_{3}(a q)}+1 \mathrm{~mol} \mathrm{NO}(g) \times \frac{+90.2 \mathrm{~kJ}}{\mathrm{molNO}(g)}\right] \\
-\left[3 \mathrm{~mol} \mathrm{NO}_{2}(\mathrm{~g}) \times \frac{+33.2 \mathrm{~kJ}}{\mathrm{molNO}_{2}(g)}+1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(l) \times \frac{-285.8 \mathrm{~kJ}}{\mathrm{molH} \mathrm{O}(\mathrm{I})}\right] \\
=[2 \times(-206.64)+90.25]-[3 \times 33.2+-(-285.83)] \\
=-323.03+186.23 \\
=-136.80 \mathrm{~kJ}
\end{gathered}
$$

Solution: Supporting Why the General Equation Is Valid

Alternatively, we can write this reaction as the sum of the decompositions of $3 \mathrm{NO}_{2}(g)$ and $1 \mathrm{H}_{2} \mathrm{O}(\Omega)$ into their constituent elements, and the formation of $2 \mathrm{HNO}_{3}(\mathrm{aq})$ and $1 \mathrm{NO}(\mathrm{g})$ from their constituent elements. Writing out these reactions, and noting their relationships to the
$\Delta H_{\mathrm{f}}^{\circ}$
values for these compounds (from OpenStax's Appendix G), we have:

$$
\begin{gathered}
3 \mathrm{NO}_{2}(g) \rightarrow 3 / 2 \mathrm{~N}_{2}(g)+3 \mathrm{O}_{2}(g) \quad \Delta H_{1}^{\circ}=-99.6 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H_{2}^{\circ}=+285.8 \mathrm{~kJ}\left[-1 \times \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq}) \quad \Delta H_{3}^{\circ}=-414.8 \mathrm{~kJ}\left[2 \times \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{HNO}_{3}\right)\right] \\
\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(\mathrm{~g}) \quad \Delta H_{4}^{\circ}=+90.2 \mathrm{~kJ}[1 \times(\mathrm{NO})]
\end{gathered}
$$

Summing these reaction equations gives the reaction we are interested in:

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

Summing their enthalpy changes gives the value we want to determine:

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{1}^{\circ}+\Delta H_{2}^{\circ}+\Delta H_{3}^{\circ}+\Delta H_{4}^{\circ}=(-99.6 \mathrm{kJJ})+(+285.8 \mathrm{~kJ})+(-414.8 \mathrm{~kJ})+(+90.2 \mathrm{~kJ}) \\
=-138.4 \mathrm{~kJ}
\end{gathered}
$$

So the standard enthalpy change for this reaction is $\Delta H^{\circ}=-138.4 \mathrm{~kJ}$.
Note that this result was obtained by (1) multiplying the
$\Delta H_{\mathrm{f}}^{\circ}$
of each product by its stoichiometric coefficient and summing those values, (2) multiplying the
$\Delta H_{\mathrm{f}}^{\circ}$
of each reactant by its stoichiometric coefficient and summing those values, and then (3) subtracting the result found in (2) from the result found in (1). This is also the procedure in using the general equation, as shown.

Check Your Learning

Calculate the heat of combustion of 1 mole of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\Omega)$, when $\mathrm{H}_{2} \mathrm{O}(\Omega)$ and $\mathrm{CO}_{2}(g)$ are formed. Use the following enthalpies of formation: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}),-278 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{H}_{2} \mathrm{O}(\mathrm{l}),-286 \mathrm{~kJ} / \mathrm{mol}$; and $\mathrm{CO}_{2}(\mathrm{~g}),-394 \mathrm{~kJ} / \mathrm{mol}$.

Answer

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

1. For more on algal fuel, see http://www.theguardian.com/environment/2010/feb/13/algae-solve-pentagon-fuelproblem.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/9-3-enthalpy

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/enthalpy_part_1.

38

Enthalpy Part 2

Energy Enthalpy

The strength of a covalent bond is measured by its bond dissociation energy, that is, the amount of energy required to break that particular bond in a mole of molecules. Multiple bonds are stronger than single bonds between the same atoms. The enthalpy of a reaction can be estimated based on the energy input required to break bonds and the energy released when new bonds are formed. For ionic bonds, the lattice energy is the energy required to separate one mole of a compound into its gas phase ions. Lattice energy increases for ions with higher charges and shorter distances between ions. Lattice energies are often calculated using the BornHaber cycle, a thermochemical cycle including all of the energetic steps involved in converting elements into an ionic compound.

Learning Objectives

By the end of this section, you will be able to:

- Describe the energetics of covalent and ionic bond formation and breakage
- Use the Born-Haber cycle to compute lattice energies for ionic compounds
- Use average covalent bond energies to estimate enthalpies of reaction

A bond's strength describes how strongly each atom is joined to another atom, and therefore how much energy is required to break the bond between the two atoms.

It is essential to remember that energy must be added to break chemical bonds (an endothermic process), whereas forming chemical bonds releases energy (an exothermic process). In the case of H_{2}, the covalent bond is very strong; a large amount of energy, 436 kJ , must be added to break the bonds in one mole of hydrogen molecules and cause the atoms to separate:

$$
\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g}) \quad \text { bond energy }=436 \mathrm{~kJ}
$$

Conversely, the same amount of energy is released when one mole of H_{2} molecules forms from two moles of H atoms:
$2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad$ bond energy $=-436 \mathrm{~kJ}$

Bond Strength: Covalent Bonds

Stable molecules exist because covalent bonds hold the atoms together. We measure the strength of a covalent bond by the energy required to break it, that is, the energy necessary to separate the bonded atoms. Separating any pair of bonded atoms requires energy (see Figure 38.1). The stronger a bond, the greater the energy required to break it.

Figure 38.1
The potential energy of two separate hydrogen atoms (right) decreases as they approach each other, and the single electrons on each atom are shared to form a covalent bond. The bond length is the internuclear distance at which the lowest potential energy is achieved.

The energy required to break a specific covalent bond in one mole of gaseous molecules is called the bond energy or the bond dissociation energy. The bond energy for a diatomic molecule, $D_{X-\gamma}$, is defined as the standard enthalpy change for the endothermic reaction:
$X Y(g) \rightarrow X(g)+Y(g) \quad D_{X-Y}=\Delta H^{\circ}$

For example, the bond energy of the pure covalent $\mathrm{H}-\mathrm{H}$ bond, $\mathrm{D}_{\mathrm{H}-\mathrm{H}}$, is 436 kJ per mole of $\mathrm{H}-\mathrm{H}$ bonds broken:
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) \quad \mathrm{D}_{\mathrm{H}-\mathrm{H}}=\Delta H^{\circ}=436 \mathrm{~kJ}$

Molecules with three or more atoms have two or more bonds. The sum of all bond energies in such a molecule is equal to the standard enthalpy change for the endothermic reaction that breaks all the bonds in the molecule. For example, the sum of the four $\mathrm{C}-\mathrm{H}$ bond energies in $\mathrm{CH}_{4}, 1660 \mathrm{~kJ}$, is equal to the standard enthalpy change of the reaction:

The average $\mathrm{C}-\mathrm{H}$ bond energy, $\mathrm{D}_{\mathrm{C}-\mathrm{H}}$, is $1660 / 4=415 \mathrm{~kJ} / \mathrm{mol}$ because there are four moles of $\mathrm{C}-\mathrm{H}$ bonds broken per mole of the reaction. Although the four $\mathrm{C}-\mathrm{H}$ bonds are equivalent in the original molecule, they do not each require the same energy to break; once the first bond is broken (which requires $439 \mathrm{~kJ} / \mathrm{mol}$), the remaining bonds are easier to break. The $415 \mathrm{~kJ} / \mathrm{mol}$ value is the average, not the exact value required to break any one bond.

The strength of a bond between two atoms increases as the number of electron pairs in the bond increases. Generally, as the bond strength increases, the bond length decreases. Thus, we find that triple bonds are stronger and shorter than double bonds between the same two atoms; likewise, double bonds are stronger and shorter than single bonds between the same two atoms. Average bond energies for some common bonds appear in Table 38.1, and a comparison of bond lengths and bond strengths for some common bonds appears in Table 38.2. When one atom bonds to various atoms in a group, the bond strength typically decreases as we move down the group. For example, $\mathrm{C}-\mathrm{F}$ is $439 \mathrm{~kJ} / \mathrm{mol}, \mathrm{C}-\mathrm{Cl}$ is $330 \mathrm{~kJ} / \mathrm{mol}$, and $\mathrm{C}-\mathrm{Br}$ is $275 \mathrm{~kJ} / \mathrm{mol}$.

Table 38.1

Bond Energies ($\mathrm{kJ} / \mathrm{mol}$)

Bond	Bond Energy	Bond	Bond Energy	Bond	Bond Energy
$\mathrm{H}-\mathrm{H}$	436	$\mathrm{C}-\mathrm{S}$	260	$\mathrm{~F}-\mathrm{Cl}$	255
$\mathrm{H}-\mathrm{C}$	415	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{~F}-\mathrm{Br}$	235
$\mathrm{H}-\mathrm{N}$	390	$\mathrm{C}-\mathrm{Br}$	275	$\mathrm{Si}-\mathrm{Si}$	230
$\mathrm{H}-\mathrm{O}$	464	$\mathrm{C}-\mathrm{I}$	240	$\mathrm{Si}-\mathrm{P}$	215
$\mathrm{H}-\mathrm{F}$	569	$\mathrm{~N}-\mathrm{N}$	160	$\mathrm{Si}-\mathrm{S}$	225
$\mathrm{H}-\mathrm{Si}$	395	$\mathrm{~N}=\mathrm{N}$	418	$\mathrm{Si}-\mathrm{Cl}$	359
$\mathrm{H}-\mathrm{P}$	320	$\mathrm{~N} \equiv \mathrm{~N}$	946	$\mathrm{Si}-\mathrm{Br}$	290
$\mathrm{H}-\mathrm{S}$	340	$\mathrm{~N}-\mathrm{O}$	200	$\mathrm{Si}-\mathrm{I}$	215
$\mathrm{H}-\mathrm{Cl}$	432	$\mathrm{~N}-\mathrm{F}$	270	$\mathrm{P}-\mathrm{P}$	215
$\mathrm{H}-\mathrm{Br}$	370	$\mathrm{~N}-\mathrm{P}$	210	$\mathrm{P}-\mathrm{S}$	230
$\mathrm{H}-\mathrm{I}$	295	$\mathrm{~N}-\mathrm{Cl}$	200	$\mathrm{P}-\mathrm{Cl}$	330

Bond	Bond Energy	Bond	Bond Energy	Bond
$\mathrm{C}-\mathrm{C}$	345	$\mathrm{~N}-\mathrm{Br}$	245	$\mathrm{P}-\mathrm{Br}$
$\mathrm{C}=\mathrm{C}$	611	$\mathrm{O}-\mathrm{O}$	140	$\mathrm{P}-\mathrm{I}$
$\mathrm{C} \equiv \mathrm{C}$	837	$\mathrm{O}=\mathrm{O}$	498	$\mathrm{~S}-\mathrm{S}$
$\mathrm{C}-\mathrm{N}$	290	$\mathrm{O}-\mathrm{F}$	160	215
$\mathrm{C}=\mathrm{N}$	615	$\mathrm{O}-\mathrm{Si}$	370	$\mathrm{~S}-\mathrm{Cl}$
$\mathrm{C}=\mathrm{N}$	891	$\mathrm{O}-\mathrm{P}$	350	$\mathrm{~S}-\mathrm{Br}$
$\mathrm{C}-\mathrm{O}$	350	$\mathrm{O}-\mathrm{Cl}$	205	$\mathrm{Cl}-\mathrm{Cl}$
$\mathrm{C}=\mathrm{O}$	741	$\mathrm{O}-\mathrm{I}$	200	$\mathrm{Cl}-\mathrm{Br}$
$\mathrm{C} \equiv \mathrm{O}$	1080	$\mathrm{~F}-\mathrm{F}$	160	$\mathrm{Cl}-\mathrm{I}$
$\mathrm{C}-\mathrm{F}$	439	$\mathrm{~F}-\mathrm{Si}$	540	$\mathrm{Br}-\mathrm{Br}$
$\mathrm{C}-\mathrm{Si}$	360	$\mathrm{~F}-\mathrm{P}$	489	$\mathrm{Br}-\mathrm{I}$
$\mathrm{C}-\mathrm{P}$	265	$\mathrm{~F}-\mathrm{S}$	285	$\mathrm{I}-\mathrm{I}$

Table 38.2

Average Bond Lengths and Bond Energies for Some Common Bonds

Bond	Bond Length $(\AA ̊)$	Bond Energy (kJ/mol)
$\mathrm{C}-\mathrm{C}$	1.54	345
$\mathrm{C}=\mathrm{C}$	1.34	611
$\mathrm{C} \equiv \mathrm{C}$	1.20	837
$\mathrm{C}-\mathrm{N}$	1.43	290
$\mathrm{C}=\mathrm{N}$	1.38	615
$\mathrm{C} \equiv \mathrm{N}$	1.16	891
$\mathrm{C}-\mathrm{O}$	1.43	350
$\mathrm{C}=\mathrm{O}$	1.23	741
$\mathrm{C} \equiv \mathrm{O}$	1.13	1080

The bond energy is the difference between the energy minimum (which occurs at the bond distance) and the energy of the two separated atoms. This is the quantity of energy released when the bond is formed. Conversely, the same amount of energy is required to break the bond. For the H_{2} molecule shown in Figure 38.2, at the bond distance of 74 pm the system is $7.24 \times 10^{-19} \mathrm{~J}$ lower in energy than the two separated hydrogen atoms. This may seem like a small number. However, as we will learn in more detail later, bond energies are often discussed on a per-mole basis. For example, it requires $7.24 \times 10^{-19} \mathrm{~J}$ to break one $\mathrm{H}-\mathrm{H}$ bond, but it takes $4.36 \times 10^{5} \mathrm{~J}$ to break 1 mole of $\mathrm{H}-\mathrm{H}$ bonds. A comparison of some bond lengths and energies is shown in Figure 38.2 and Table 38.1. We can find many of these bonds in a variety of molecules, and this table provides average values. For example, breaking the first $\mathrm{C}-\mathrm{H}$ bond in CH_{4} requires $439.3 \mathrm{~kJ} / \mathrm{mol}$, while breaking the first $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{H}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (a common paint thinner) requires 375.5 $\mathrm{kJ} / \mathrm{mol}$.

Figure 38.2
(a) The interaction of two hydrogen atoms changes as a function of distance. (b) The energy of the system changes as the atoms interact. The lowest (most stable) energy occurs at a distance of 74 pm , which is the bond length observed for the H_{2} molecule.

As seen in Table 38.1 and Table 38.2, an average carbon-carbon single bond is $347 \mathrm{~kJ} / \mathrm{mol}$, while in a carbon-carbon double bond, the π bond increases the bond strength by $267 \mathrm{~kJ} / \mathrm{mol}$. Adding an additional π bond causes a further increase of $225 \mathrm{~kJ} / \mathrm{mol}$. We can see a similar pattern when we compare other σ and π bonds. Thus, each individual π bond is generally weaker than a corresponding σ bond between the same two atoms. In a σ bond, there is a greater degree of orbital overlap than in a π bond.

We can use bond energies to calculate approximate enthalpy changes for reactions where enthalpies of formation are not available. Calculations of this type will also tell us whether a reaction is exothermic or endothermic. An exothermic reaction (ΔH negative, heat produced) results when the bonds in the products are stronger than the bonds in the reactants. An endothermic reaction (ΔH positive, heat absorbed) results when the bonds in the products are weaker than those in the reactants.

The enthalpy change, ΔH, for a chemical reaction is approximately equal to the sum of the energy required to break all bonds in the reactants (energy "in", positive sign) plus the energy released when all bonds are formed in the products (energy "out," negative sign). This can be expressed mathematically in the following way:
$\Delta H=\Sigma \mathrm{D}_{\text {bonds broken }}-\Sigma \mathrm{D}_{\text {bonds formed }}$

In this expression, the symbol Σ means "the sum of" and D represents the bond energy in kilojoules per mole, which is always a positive number. The bond energy is obtained from a table (like Table 38.2) and will depend on whether the particular bond is a single, double, or triple bond. Thus, in calculating enthalpies in this manner, it is important that we
consider the bonding in all reactants and products. Because D values are typically averages for one type of bond in many different molecules, this calculation provides a rough estimate, not an exact value, for the enthalpy of reaction.

Consider the following reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
or

$$
\mathrm{H}-\mathrm{H}(\mathrm{~g})+\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \rightarrow 2 \mathrm{H}-\mathrm{Cl}(\mathrm{~g})
$$

To form two moles of HCl , one mole of $\mathrm{H}-\mathrm{H}$ bonds and one mole of $\mathrm{Cl}-\mathrm{Cl}$ bonds must be broken. The energy required to break these bonds is the sum of the bond energy of the $\mathrm{H}-\mathrm{H}$ bond ($436 \mathrm{~kJ} / \mathrm{mol}$) and the $\mathrm{Cl}-\mathrm{Cl}$ bond ($243 \mathrm{~kJ} / \mathrm{mol}$).
During the reaction, two moles of $\mathrm{H}-\mathrm{Cl}$ bonds are formed (bond energy $=432 \mathrm{~kJ} / \mathrm{mol}$), releasing $2 \times 432 \mathrm{~kJ}$; or 864 kJ . Because the bonds in the products are stronger than those in the reactants, the reaction releases more energy than it consumes:

$$
\begin{aligned}
\Delta H & =\Sigma \mathrm{D}_{\text {bonds broken }}-\Sigma \mathrm{D}_{\text {bonds formed }} \\
\Delta H & =\left[\mathrm{D}_{\mathrm{H}-\mathrm{H}}+\mathrm{D}_{\mathrm{Cl}-\mathrm{Cl}}\right]-2 \mathrm{D}_{\mathrm{H}-\mathrm{Cl}} \\
& =[436+243]-2(432)=-185 \mathrm{~kJ}
\end{aligned}
$$

This excess energy is released as heat, so the reaction is exothermic. OpenStax's Appendix G gives a value for the standard molar enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$,
$\Delta H_{\mathrm{f}}^{\circ}$,
of $-92.307 \mathrm{~kJ} / \mathrm{mol}$. Twice that value is -184.6 kJ , which agrees well with the answer obtained earlier for the formation of two moles of HCl .

Example 38.1

Using Bond Energies to Calculate Approximate Enthalpy Changes

Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, may be an excellent alternative fuel. The high-temperature reaction of steam and carbon produces a mixture of the gases carbon monoxide, CO , and hydrogen, H_{2}, from which methanol can be produced. Using the bond energies in Table 38.2, calculate the approximate enthalpy change, ΔH, for the reaction here:
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

Solution

First, we need to write the Lewis structures of the reactants and the products:

From this, we see that ΔH for this reaction involves the energy required to break a $\mathrm{C}-\mathrm{O}$ triple bond and two $\mathrm{H}-\mathrm{H}$ single bonds, as well as the energy produced by the formation of three $\mathrm{C}-\mathrm{H}$ single bonds, a $\mathrm{C}-\mathrm{O}$ single bond, and an $0-\mathrm{H}$ single bond. We can express this as follows:

$$
\begin{array}{lcc}
\Delta H & = & \Sigma \mathrm{D}_{\text {bonds broken }}-\Sigma \mathrm{D}_{\text {bonds formed }} \\
\Delta H= & =\left[\mathrm{D}_{\mathrm{C} \equiv \mathrm{O}}+2\left(\mathrm{D}_{\mathrm{H}-\mathrm{H}}\right)\right]-\left[3\left(\mathrm{D}_{\mathrm{C}-\mathrm{H}}\right)+\mathrm{D}_{\mathrm{C}-\mathrm{O}}+\mathrm{D}_{\mathrm{O}-\mathrm{H}}\right]
\end{array}
$$

Using the bond energy values in Table 38.2, we obtain:

$$
\begin{gathered}
\Delta H=[1080+2(436)]-[3(415)+350+464] \\
=-107 \mathrm{~kJ}
\end{gathered}
$$

We can compare this value to the value calculated based on
$\Delta H_{\mathrm{f}}^{\circ}$
data from Appendix G:

$$
\begin{gathered}
\Delta H=\left[\Delta H_{\mathrm{f}}^{\circ} \mathrm{CH}_{3} \mathrm{OH}(g)\right]-\left[\Delta H_{\mathrm{f}}^{\circ} \mathrm{CO}(g)+2 \times \Delta H_{\mathrm{f}}^{\circ} \mathrm{H}_{2}\right] \\
=[-201.0]-[-110.52+2 \times 0] \\
=-90.5 \mathrm{~kJ}
\end{gathered}
$$

Note that there is a fairly significant gap between the values calculated using the two different methods. This occurs because D values are the average of different bond strengths; therefore, they often give only rough agreement with other data.

Check Your Learning

Ethyl alcohol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, was one of the first organic chemicals deliberately synthesized by humans. It has many uses in industry, and it is the alcohol contained in alcoholic beverages. It can be obtained by the fermentation of sugar or synthesized by the hydration of ethylene in the following reaction:

Using the bond energies in Table 38.2, calculate an approximate enthalpy change, ΔH, for this reaction.

Answer

Ionic Bond Strength and Lattice Energy

An ionic compound is stable because of the electrostatic attraction between its positive and negative ions. The lattice energy of a compound is a measure of the strength of this attraction. The lattice energy ($\Delta H_{\text {lattice }}$) of an ionic compound is defined as the energy required to separate one mole of the solid into its component gaseous ions. For the ionic solid $M X$, the lattice energy is the enthalpy change of the process:
$\mathrm{MX}(s) \rightarrow \mathrm{M}^{n+}(\mathrm{g})+\mathrm{X}^{n-}(\mathrm{g}) \quad \Delta H_{\text {lattice }}$

Note that we are using the convention where the ionic solid is separated into ions, so our lattice energies will be endothermic (positive values). Some texts use the equivalent but opposite convention, defining lattice energy as the energy released when separate ions combine to form a lattice and giving negative (exothermic) values. Thus, if you are looking up lattice energies in another reference, be certain to check which definition is being used. In both cases, a larger magnitude for lattice energy indicates a more stable ionic compound. For sodium chloride, $\Delta H_{\text {lattice }}=769 \mathrm{~kJ}$. Thus, it requires 769 kJ to separate one mole of solid NaCl into gaseous Na^{+}and Cl^{-}ions. When one mole each of gaseous Na^{+}and Cl^{-}ions form solid $\mathrm{NaCl}, 769 \mathrm{~kJ}$ of heat is released.

The lattice energy $\Delta H_{\text {lattice }}$ of an ionic crystal can be expressed by the following equation (derived from Coulomb's law, governing the forces between electric charges):

$$
\Delta H_{\text {lattice }}=\frac{\mathrm{C}\left(\mathrm{Z}^{+}\right)\left(\mathrm{Z}^{-}\right)}{\mathrm{R}_{\mathrm{o}}}
$$

in which C is a constant that depends on the type of crystal structure; Z^{+}and Z^{-}are the charges on the ions; and R_{0} is the interionic distance (the sum of the radii of the positive and negative ions). Thus, the lattice energy of an ionic crystal increases rapidly as the charges of the ions increase and the sizes of the ions decrease. When all other parameters are kept constant, doubling the charge of both the cation and anion quadruples the lattice energy. For example, the lattice energy of $\mathrm{LiF}\left(Z^{+}\right.$and $\left.Z^{-}=1\right)$ is $1023 \mathrm{~kJ} / \mathrm{mol}$, whereas that of $\mathrm{MgO}\left(Z^{+}\right.$and $\left.\mathrm{Z}^{-}=2\right)$ is $3900 \mathrm{~kJ} / \mathrm{mol}\left(R_{0}\right.$ is nearly the same -about 200 pm for both compounds).

Different interatomic distances produce different lattice energies. For example, we can compare the lattice energy of $\mathrm{MgF}_{2}(2957 \mathrm{~kJ} / \mathrm{mol})$ to that of $\mathrm{Mgl}_{2}(2327 \mathrm{~kJ} / \mathrm{mol})$ to observe the effect on lattice energy of the smaller ionic size of F^{-} as compared to I^{-}.

Example 38.2

Lattice Energy Comparisons

The precious gem ruby is aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, containing traces of Cr^{3+}. The compound $\mathrm{Al}_{2} \mathrm{Se}_{3}$ is used in the fabrication of some semiconductor devices. Which has the larger lattice energy, $\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{Al}_{2} \mathrm{Se}_{3}$?

Solution

In these two ionic compounds, the charges Z^{+}and Z^{-}are the same, so the difference in lattice energy will depend upon R_{0}. The O^{2-} ion is smaller than the Se^{2-} ion. Thus, $\mathrm{Al}_{2} \mathrm{O}_{3}$ would have a shorter interionic distance than $\mathrm{Al}_{2} \mathrm{Se}_{3}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$ would have the larger lattice energy.
Check Your Learning
Zinc oxide, ZnO , is a very effective sunscreen. How would the lattice energy of ZnO compare to that of NaCl ?

Answer

ZnO would have the larger lattice energy because the Z values of both the cation and the anion in ZnO are greater, and the interionic distance of ZnO is smaller than that of NaCl .

The Born-Haber Cycle

It is not possible to measure lattice energies directly. However, the lattice energy can be calculated using the equation given in the previous section or by using a thermochemical cycle. The Born-Haber cycle is an application of Hess's law that breaks down the formation of an ionic solid into a series of individual steps:

- $\Delta H_{\mathrm{f}}^{\circ}$, the standard enthalpy of formation of the compound
- $I E$, the ionization energy of the metal
- $E A$, the electron affinity of the nonmetal
- ΔH_{S}°, the enthalpy of sublimation of the metal
- D, the bond dissociation energy of the nonmetal
- $\Delta H_{\text {lattice }}$, the lattice energy of the compound

Figure 38.3 diagrams the Born-Haber cycle for the formation of solid cesium fluoride.
Figure 38.3
The Born-Haber cycle shows the relative energies of each step involved in the formation of an ionic solid from the necessary elements in their reference states.

We begin with the elements in their most common states, $\mathrm{Cs}(s)$ and $\mathrm{F}_{2}(g)$. The

ΔH_{s}°

represents the conversion of solid cesium into a gas, and then the ionization energy converts the gaseous cesium atoms into cations. In the next step, we account for the energy required to break the $F-F$ bond to produce fluorine atoms. Converting one mole of fluorine atoms into fluoride ions is an exothermic process, so this step gives off energy (the electron affinity) and is shown as decreasing along the y-axis. We now have one mole of Cs cations and one mole of F anions. These ions combine to produce solid cesium fluoride. The enthalpy change in this step is the negative of the lattice energy, so it is also an exothermic quantity. The total energy involved in this conversion is equal to the experimentally determined enthalpy of formation,
$\Delta H_{\mathrm{f}}^{\circ}$,
of the compound from its elements. In this case, the overall change is exothermic.
Hess's law can also be used to show the relationship between the enthalpies of the individual steps and the enthalpy of formation. Table 38.3 shows this for cesium fluoride, CsF.

Table 38.3

Enthalpy of sublimation of Cs (s)	$\mathrm{Cs}(s) \rightarrow \mathrm{Cs}(g)$	$\Delta H=\Delta H_{S}^{\circ}=76.5 \mathrm{~kJ} / \mathrm{mol}$
One-half of the bond energy of F_{2}	$\frac{1}{2} \mathrm{~F}_{2}(g) \rightarrow \mathrm{F}(g)$	$\Delta H=\frac{1}{2} D=79.4 \mathrm{~kJ} / \mathrm{mol}$
lonization energy of $\mathrm{Cs}(g)$	$\mathrm{Cs}(g) \rightarrow \mathrm{Cs}^{+}(g)+\mathrm{e}^{-}$	$\Delta H=I E=375.7 \mathrm{~kJ} / \mathrm{mol}$
Electron affinity of F	$\mathrm{F}(g)+\mathrm{e}^{-} \longrightarrow \mathrm{F}^{-}(g)$	$\Delta H=E A=-328.2 \mathrm{~kJ} / \mathrm{mol}$

Negative of the lattice energy of

$$
\mathrm{Cs}^{+}(g)+\mathrm{F}^{-}(g) \rightarrow \mathrm{CsF}(s)
$$

$$
\Delta H=-\Delta H_{\text {lattice }}=?
$$

CsF(s)
Enthalpy of formation of $\operatorname{CsF}(s)$,

$$
\begin{array}{cc}
\Delta H=\Delta H_{f}^{\circ}=\Delta H_{s}^{\circ}+\frac{1}{2} D+I E+(E A)+\left(-\Delta H_{\text {lattice }}\right) \\
C s(s)+\frac{1}{2} \mathrm{~F}_{2}(g) \rightarrow \mathrm{CsF}(s)
\end{array} \quad \Delta H=-553.5 \mathrm{~kJ} / \mathrm{mol}
$$

Thus, the lattice energy can be calculated from other values. For cesium fluoride, using this data, the lattice energy is:
$\Delta H_{\text {lattice }}=76.5+79.4+375.7+(-328.2)-(-553.5)=756.9 \mathrm{~kJ} / \mathrm{mol}$

The Born-Haber cycle may also be used to calculate any one of the other quantities in the equation for lattice energy, provided that the remainder is known. For example, if the relevant enthalpy of sublimation
ΔH_{S}°,
ionization energy (IE), bond dissociation enthalpy (D), lattice energy $\Delta H_{\text {lattice, }}$ and standard enthalpy of formation
$\Delta H_{\mathrm{f}}^{\circ}$
are known, the Born-Haber cycle can be used to determine the electron affinity of an atom.
Lattice energies calculated for ionic compounds are typically much higher than bond dissociation energies measured for covalent bonds. Whereas lattice energies typically fall in the range of $600-4000 \mathrm{~kJ} / \mathrm{mol}$ (some even higher), covalent bond dissociation energies are typically between $150-400 \mathrm{~kJ} / \mathrm{mol}$ for single bonds. Keep in mind, however, that these are not directly comparable values. For ionic compounds, lattice energies are associated with many interactions, as cations and anions pack together in an extended lattice. For covalent bonds, the bond dissociation energy is associated with the interaction of just two atoms.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Open in Google Drive

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/9-4-strengths-of-ionic-and-covalent-bonds

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/enthalpy_part_2.

39

Entropy

Matter Energy Heat Entropy

Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the "disorder" of the system. For a given substance, entropy depends on phase with $S_{\text {solid }}<S_{\text {liquid }}<S_{\text {gas. }}$. For different substances in the same physical state at a given temperature, entropy is typically greater for heavier atoms or more complex molecules. Entropy increases when a system is heated and when solutions form. Using these guidelines, the sign of entropy changes for some chemical reactions and physical changes may be reliably predicted. The second law of thermodynamics states that a spontaneous process increases the entropy of the universe, $S_{\text {univ }}>0$. If $\Delta S_{\text {univ }}<0$, the process is nonspontaneous, and if $\Delta S_{\text {univ }}=0$, the system is at equilibrium. The third law of thermodynamics establishes the zero for entropy as that of a perfect, pure crystalline solid at 0 K. With only one possible microstate, the entropy is zero. We may compute the standard entropy change for a process by using standard entropy values for the reactants and products involved in the process.

39.1 Entropy

Learning Objectives

By the end of this section, you will be able to:

- Define entropy
- Explain the relationship between entropy and the number of microstates
- Predict the sign of the entropy change for chemical and physical processes

In 1824, at the age of 28, Nicolas Léonard Sadi Carnot (Figure 39.1) published the results of an extensive study regarding the efficiency of steam heat engines. A later review of Carnot's findings by Rudolf Clausius introduced a new thermodynamic property that relates the spontaneous heat flow accompanying a process to the temperature at which the process takes place. This new property was expressed as the ratio of the reversible heat (q_{rev}) and the kelvin temperature (T). In thermodynamics, a reversible process is one that takes place at such a slow rate that it is always at equilibrium and its direction can be changed (it can be "reversed") by an infinitesimally small change in some condition. Note that the idea of a reversible process is a formalism required to support the development of various thermodynamic concepts; no real processes are truly reversible, rather they are classified as irreversible.

Figure 39.1
(a) Nicholas Léonard Sadi Carnot's research into steam-powered machinery and (b) Rudolf Clausius's later study of those findings led to groundbreaking discoveries about spontaneous heat flow processes.

Similar to other thermodynamic properties, this new quantity is a state function, so its change depends only upon the initial and final states of a system. In 1865, Clausius named this property entropy (S) and defined its change for any process as the following:

$$
\Delta S=\frac{q_{\mathrm{rev}}}{T}
$$

The entropy change for a real, irreversible process is then equal to that for the theoretical reversible process that involves the same initial and final states.

Entropy and Microstates

Following the work of Carnot and Clausius, Ludwig Boltzmann developed a molecular-scale statistical model that related the entropy of a system to the number of microstates (W) possible for the system. A microstate is a specific configuration of all the locations and energies of the atoms or molecules that make up a system. The relation between a system's entropy and the number of possible microstates is

$$
S=k \ln W
$$

where k is the Boltzmann constant, 1.38
\times
$10^{-23} \mathrm{~J} / \mathrm{K}$.
As for other state functions, the change in entropy for a process is the difference between its final $\left(S_{\mathrm{f}}\right)$ and initial $\left(S_{\mathrm{i}}\right)$ values:

$$
\Delta S=S_{\mathrm{f}}-S_{\mathrm{i}}=k \ln W_{\mathrm{f}}-k \ln W_{\mathrm{i}}=k \ln \frac{W_{\mathrm{f}}}{W_{\mathrm{i}}}
$$

For processes involving an increase in the number of microstates, $W_{\mathrm{f}}>W_{\mathrm{i}}$, the entropy of the system increases and ΔS >0. Conversely, processes that reduce the number of microstates, $W_{\mathrm{f}}<W_{\mathrm{i}}$, yield a decrease in system entropy, $\Delta S<0$. This molecular-scale interpretation of entropy provides a link to the probability that a process will occur as illustrated in the next paragraphs.

Consider the general case of a system comprised of N particles distributed among n boxes. The number of microstates possible for such a system is n^{N}. For example, distributing four particles among two boxes will result in $2^{4}=16$ different microstates as illustrated in Figure 39.2. Microstates with equivalent particle arrangements (not considering individual particle identities) are grouped together and are called distributions. The probability that a system will exist with its components in a given distribution is proportional to the number of microstates within the distribution. Since entropy increases logarithmically with the number of microstates, the most probable distribution is therefore the one of greatest entropy.

Figure 39.2

The sixteen microstates associated with placing four particles in two boxes are shown. The microstates are collected into five distributions-(a), (b), (c), (d), and (e)-based on the numbers of particles in each box.
(a)

(b)

(c)

(d)

(e)

For this system, the most probable configuration is one of the six microstates associated with distribution (c) where the particles are evenly distributed between the boxes, that is, a configuration of two particles in each box. The probability of finding the system in this configuration is
$\frac{6}{16}$
or
$\frac{3}{8}$.

The least probable configuration of the system is one in which all four particles are in one box, corresponding to distributions (a) and (e), each with a probability of
$\frac{1}{16}$.

The probability of finding all particles in only one box (either the left box or right box) is then
$\left(\frac{1}{16}+\frac{1}{16}\right)=\frac{2}{16}$
or
$\frac{1}{8}$.

As you add more particles to the system, the number of possible microstates increases exponentially (2^{N}). A macroscopic (laboratory-sized) system would typically consist of moles of particles ($N \sim 10^{23}$), and the corresponding number of microstates would be staggeringly huge. Regardless of the number of particles in the system, however, the distributions in which roughly equal numbers of particles are found in each box are always the most probable configurations.

This matter dispersal model of entropy is often described qualitatively in terms of the disorder of the system. By this description, microstates in which all the particles are in a single box are the most ordered, thus possessing the least
entropy. Microstates in which the particles are more evenly distributed among the boxes are more disordered, possessing greater entropy.

The previous description of an ideal gas expanding into a vacuum (Figure 39.3) is a macroscopic example of this particle-in-a-box model. For this system, the most probable distribution is confirmed to be the one in which the matter is most uniformly dispersed or distributed between the two flasks. Initially, the gas molecules are confined to just one of the two flasks. Opening the valve between the flasks increases the volume available to the gas molecules and, correspondingly, the number of microstates possible for the system. Since $W_{\mathrm{f}}>W_{\mathrm{i}}$, the expansion process involves an increase in entropy $(\Delta S>0)$ and is spontaneous.

Figure 39.3
An isolated system consists of an ideal gas in one flask that is connected by a closed valve to a second flask containing a vacuum. Once the valve is opened, the gas spontaneously becomes evenly distributed between the flasks.

A similar approach may be used to describe the spontaneous flow of heat. Consider a system consisting of two objects, each containing two particles, and two units of thermal energy (represented as " $*$ ") in Figure 39.4. The hot object is comprised of particles \mathbf{A} and \mathbf{B} and initially contains both energy units. The cold object is comprised of particles \mathbf{C} and D, which initially has no energy units. Distribution (a) shows the three microstates possible for the initial state of the system, with both units of energy contained within the hot object. If one of the two energy units is transferred, the result is distribution (b) consisting of four microstates. If both energy units are transferred, the result is distribution (c) consisting of three microstates. Thus, we may describe this system by a total of ten microstates. The probability that the heat does not flow when the two objects are brought into contact, that is, that the system remains in distribution (a), is
$\frac{3}{10}$.

More likely is the flow of heat to yield one of the other two distribution, the combined probability being

$$
\frac{7}{10}
$$

The most likely result is the flow of heat to yield the uniform dispersal of energy represented by distribution (b), the probability of this configuration being
$\frac{4}{10}$.

This supports the common observation that placing hot and cold objects in contact results in spontaneous heat flow that ultimately equalizes the objects' temperatures. And, again, this spontaneous process is also characterized by an increase in system entropy.

Figure 39.4

This shows a microstate model describing the flow of heat from a hot object to a cold object. (a) Before the heat flow occurs, the object comprised of particles \boldsymbol{A} and \boldsymbol{B} contains both units of energy and as represented by a distribution of three microstates. (b) If the heat flow results in an even dispersal of energy (one energy unit transferred), a distribution of four microstates results. (c) If both energy units are transferred, the resulting distribution has three microstates.
(a)

(b)

(c)

Example 39.1

Determination of ΔS
Calculate the change in entropy for the process depicted below.

Solution
The initial number of microstates is one, the final six:
$\Delta S=k \ln \frac{W_{\mathrm{c}}}{W_{\mathrm{a}}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \times \ln \frac{6}{1}=2.47 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

The sign of this result is consistent with expectation; since there are more microstates possible for the final state than for the initial state, the change in entropy should be positive.

Check Your Learning

Consider the system shown in Figure 39.4. What is the change in entropy for the process where al/ the energy is transferred from the hot object ($\mathbf{A B}$) to the cold object (CD)?

Answer

$0 \mathrm{~J} / \mathrm{K}$

Predicting the Sign of ΔS

The relationships between entropy, microstates, and matter/energy dispersal described previously allow us to make generalizations regarding the relative entropies of substances and to predict the sign of entropy changes for chemical and physical processes. Consider the phase changes illustrated in Figure 39.5. In the solid phase, the atoms or molecules are restricted to nearly fixed positions with respect to each other and are capable of only modest oscillations about these positions. With essentially fixed locations for the system's component particles, the number of microstates is relatively small. In the liquid phase, the atoms or molecules are free to move over and around each other, though they remain in relatively close proximity to one another. This increased freedom of motion results in a greater variation in possible particle locations, so the number of microstates is correspondingly greater than for the solid. As a result, $S_{\text {liquid }}$ $>S_{\text {solid }}$ and the process of converting a substance from solid to liquid (melting) is characterized by an increase in entropy, $\Delta S>0$. By the same logic, the reciprocal process (freezing) exhibits a decrease in entropy, $\Delta S<0$.

Figure 39.5
The entropy of a substance increases ($\Delta S>0$) as it transforms from a relatively ordered solid, to a less-ordered liquid, and then to a still less-ordered gas. The entropy decreases ($\Delta S<0$) as the substance transforms from a gas to a liquid and then to a solid.

Now consider the gaseous phase, in which a given number of atoms or molecules occupy a much greater volume than in the liquid phase. Each atom or molecule can be found in many more locations, corresponding to a much greater number of microstates. Consequently, for any substance, $S_{\text {gas }}>S_{\text {liquid }}>S_{\text {solid }}$, and the processes of vaporization and sublimation likewise involve increases in entropy, $\Delta S>0$. Likewise, the reciprocal phase transitions, condensation and deposition, involve decreases in entropy, $\Delta S<0$.

According to kinetic-molecular theory, the temperature of a substance is proportional to the average kinetic energy of its particles. Raising the temperature of a substance will result in more extensive vibrations of the particles in solids and more rapid translations of the particles in liquids and gases. At higher temperatures, the distribution of kinetic energies among the atoms or molecules of the substance is also broader (more dispersed) than at lower temperatures. Thus, the entropy for any substance increases with temperature (Figure 39.6).

Figure 39.6

Entropy increases as the temperature of a substance is raised, which corresponds to the greater spread of kinetic energies. When a substance undergoes a phase transition, its entropy changes significantly.

Link to Learning

This interactive tutorial will help you to visualize the dependence of particle location and freedom of motion on physical state and temperature.

The entropy of a substance is influenced by the structure of the particles (atoms or molecules) that comprise the substance. With regard to atomic substances, heavier atoms possess greater entropy at a given temperature than lighter atoms, which is a consequence of the relation between a particle's mass and the spacing of quantized translational energy levels (a topic beyond the scope of this text). For molecules, greater numbers of atoms increase the number of ways in which the molecules can vibrate and thus the number of possible microstates and the entropy of the system.

Finally, variations in the types of particles affects the entropy of a system. Compared to a pure substance, in which all particles are identical, the entropy of a mixture of two or more different particle types is greater. This is because of the additional orientations and interactions that are possible in a system comprised of nonidentical components. For example, when a solid dissolves in a liquid, the particles of the solid experience both a greater freedom of motion and additional interactions with the solvent particles. This corresponds to a more uniform dispersal of matter and energy and a greater number of microstates. The process of dissolution therefore involves an increase in entropy, $\Delta S>0$.

Considering the various factors that affect entropy allows us to make informed predictions of the sign of ΔS for various chemical and physical processes as illustrated in Example 39.2.

Example 39.2

Predicting the Sign of ΔS

Predict the sign of the entropy change for the following processes. Indicate the reason for each of your predictions.
(a) One mole liquid water at room temperature
one mole liquid water at $50^{\circ} \mathrm{C}$
(b)
$\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
(c)
$\mathrm{C}_{6} \mathrm{H}_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
(d)
$\mathrm{NH}_{3}(s) \longrightarrow \mathrm{NH}_{3}(l)$

Solution

(a) positive, temperature increases
(b) negative, reduction in the number of ions (particles) in solution, decreased dispersal of matter
(c) negative, net decrease in the amount of gaseous species
(d) positive, phase transition from solid to liquid, net increase in dispersal of matter

Check Your Learning

Predict the sign of the entropy change for the following processes. Give a reason for your prediction.
(a)
$\mathrm{NaNO}_{3}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}{ }^{-}(a q)$
(b) the freezing of liquid water
(c)
$\mathrm{CO}_{2}(s) \rightarrow \mathrm{CO}_{2}(g)$
(d)
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

Answer

(a) Positive; The solid dissolves to give an increase of mobile ions in solution. (b) Negative; The liquid becomes a more ordered solid. (c) Positive; The relatively ordered solid becomes a gas. (d) Positive; There is a net increase in the amount of gaseous species.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

39.2 The Second and Third Laws of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

- State and explain the second and third laws of thermodynamics
- Calculate entropy changes for phase transitions and chemical reactions under standard conditions

The Second Law of Thermodynamics

In the quest to identify a property that may reliably predict the spontaneity of a process, a promising candidate has been identified: entropy. Processes that involve an increase in entropy of the system ($\Delta S>0$) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:

$$
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}
$$

To illustrate this relation, consider again the process of heat flow between two objects, one identified as the system and the other as the surroundings. There are three possibilities for such a process:

1. The objects are at different temperatures, and heat flows from the hotter to the cooler object. This is always observed to occur spontaneously. Designating the hotter object as the system and invoking the definition of entropy yields the following:

$$
\Delta S_{\mathrm{sys}}=\frac{-q_{\mathrm{rev}}}{T_{\mathrm{sys}}} \quad \text { and } \quad \Delta S_{\mathrm{surr}}=\frac{q_{\mathrm{rev}}}{T_{\mathrm{surr}}}
$$

The magnitudes of $-q_{\mathrm{rev}}$ and q_{rev} are equal, their opposite arithmetic signs denoting loss of heat by the system and gain of heat by the surroundings. Since $T_{\text {sys }}>T_{\text {surr }}$ in this scenario, the entropy decrease of the system will be less than the entropy increase of the surroundings, and so the entropy of the universe will increase:

$$
\begin{gathered}
\left|\Delta S_{\text {sys }}\right|<\left|\Delta S_{\text {surr }}\right| \\
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0
\end{gathered}
$$

2. The objects are at different temperatures, and heat flows from the cooler to the hotter object. This is never observed to occur spontaneously. Again designating the hotter object as the system and invoking the definition of entropy yields the following:

$$
\Delta S_{\mathrm{sys}}=\frac{q_{\mathrm{rev}}}{T_{\mathrm{sys}}} \quad \text { and } \quad \Delta S_{\mathrm{surr}}=\frac{-q_{\mathrm{rev}}}{T_{\mathrm{surr}}}
$$

The arithmetic signs of $q_{\text {rev }}$ denote the gain of heat by the system and the loss of heat by the surroundings. The magnitude of the entropy change for the surroundings will again be greater than that for the system, but in this case, the signs of the heat changes (that is, the direction of the heat flow) will yield a negative value for $\Delta S_{\text {univ. }}$. This process involves a decrease in the entropy of the universe.
3. The objects are at essentially the same temperature, $T_{\text {sys }} \approx T_{\text {surr }}$, and so the magnitudes of the entropy changes are essentially the same for both the system and the surroundings. In this case, the entropy change of the universe is zero, and the system is at equilibrium.

$$
\begin{gathered}
\left|\Delta S_{\text {sys }}\right| \approx\left|\Delta S_{\text {surr }}\right| \\
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=0
\end{gathered}
$$

These results lead to a profound statement regarding the relation between entropy and spontaneity known as the second law of thermodynamics: all spontaneous changes cause an increase in the entropy of the universe. A summary of these three relations is provided in Table 39.1.

Table 39.1

The Second Law of Thermodynamics

$\Delta S_{\text {univ }}>0$	spontaneous
$\Delta S_{\text {univ }}<0$	nonspontaneous (spontaneous in opposite direction)
$\Delta S_{\text {univ }}=0$	at equilibrium

For many realistic applications, the surroundings are vast in comparison to the system. In such cases, the heat gained or lost by the surroundings as a result of some process represents a very small, nearly infinitesimal, fraction of its total thermal energy. For example, combustion of a fuel in air involves transfer of heat from a system (the fuel and oxygen
molecules undergoing reaction) to surroundings that are infinitely more massive (the earth's atmosphere). As a result, $q_{\text {surr }}$ is a good approximation of q_{rev}, and the second law may be stated as the following:

$$
\Delta S_{\mathrm{univ}}=\Delta S_{\mathrm{sys}}+\Delta S_{\mathrm{surr}}=\Delta S_{\mathrm{sys}}+\frac{q_{\mathrm{surr}}}{T}
$$

We may use this equation to predict the spontaneity of a process as illustrated in Example 39.3.

Example 39.3

Will Ice Spontaneously Melt?

The entropy change for the process

$$
\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

is $22.1 \mathrm{~J} / \mathrm{K}$ and requires that the surroundings transfer 6.00 kJ of heat to the system. Is the process spontaneous at $-10.00^{\circ} \mathrm{C}$? Is it spontaneous at $+10.00^{\circ} \mathrm{C}$?

Solution

We can assess the spontaneity of the process by calculating the entropy change of the universe. If $\Delta S_{\text {univ }}$ is positive, then the process is spontaneous. At both temperatures, $\Delta S_{\text {sys }}=22.1 \mathrm{~J} / \mathrm{K}$ and $q_{\text {surr }}=-6.00 \mathrm{~kJ}$. At $-10.00^{\circ} \mathrm{C}(263.15 \mathrm{~K})$, the following is true:

$$
\begin{aligned}
\Delta S_{\text {univ }} \quad & =\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=\Delta S_{\text {sys }}+\frac{q_{\text {surr }}}{T} \\
= & 22.1 \mathrm{~J} / \mathrm{K}+\frac{-6.00 \times 10^{3} \mathrm{~J}}{263.15 \mathrm{~K}}=-0.7 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

$S_{\text {univ }}<0$, so melting is nonspontaneous (not spontaneous) at $-10.0^{\circ} \mathrm{C}$.
At $10.00^{\circ} \mathrm{C}(283.15 \mathrm{~K})$, the following is true:

$$
\begin{gathered}
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\frac{q_{\text {surr }}}{T} \\
=22.1 \mathrm{~J} / \mathrm{K}+\frac{-6.00 \times 10^{3} \mathrm{~J}}{283.15 \mathrm{~K}}=+0.9 \mathrm{~J} / \mathrm{K}
\end{gathered}
$$

$S_{\text {univ }}>0$, so melting is spontaneous at $10.00^{\circ} \mathrm{C}$.

Check Your Learning

Using this information, determine if liquid water will spontaneously freeze at the same temperatures. What can you say about the values of $S_{\text {univ }}$?

Answer

Entropy is a state function, so $\Delta S_{\text {freezing }}=-\Delta S_{\text {melting }}=-22.1 \mathrm{~J} / \mathrm{K}$ and $q_{\text {surr }}=+6.00 \mathrm{~kJ}$. At $-10.00^{\circ} \mathrm{C}$ spontaneous, $+0.7 \mathrm{~J} / \mathrm{K}$; at $+10.00^{\circ} \mathrm{C}$ nonspontaneous, $-0.9 \mathrm{~J} / \mathrm{K}$.

The Third Law of Thermodynamics

The previous section described the various contributions of matter and energy dispersal that contribute to the entropy of a system. With these contributions in mind, consider the entropy of a pure, perfectly crystalline solid possessing no kinetic energy (that is, at a temperature of absolute zero, 0 K). This system may be described by a single microstate, as
its purity, perfect crystallinity and complete lack of motion means there is but one possible location for each identical atom or molecule comprising the crystal ($W=1$). According to the Boltzmann equation, the entropy of this system is zero.

$$
S=k \ln W=k \ln (1)=0
$$

This limiting condition for a system's entropy represents the third law of thermodynamics: the entropy of a pure, perfect crystalline substance at 0 K is zero.

Careful calorimetric measurements can be made to determine the temperature dependence of a substance's entropy and to derive absolute entropy values under specific conditions. Standard entropies (S°) are for one mole of substance under standard conditions (a pressure of 1 bar and a temperature of 298.15 K ; see details regarding standard conditions in the thermochemistry chapter of this text). The standard entropy change (ΔS°) for a reaction may be computed using standard entropies as shown below:

$$
\Delta S^{\circ}=\sum \nu S^{\circ}(\text { products })-\sum \nu S^{\circ}(\text { reactants })
$$

where v represents stoichiometric coefficients in the balanced equation representing the process. For example, ΔS° for the following reaction at room temperature

$$
m \mathrm{~A}+n \mathrm{~B} \rightarrow x \mathrm{C}+y \mathrm{D}
$$

is computed as:

$$
=\left[x S^{\circ}(\mathrm{C})+y S^{\circ}(\mathrm{D})\right]-\left[m S^{\circ}(\mathrm{A})+n S^{\circ}(\mathrm{B})\right]
$$

A partial listing of standard entropies is provided in Table 39.2, and additional values are provided in OpenStax's Appendix G. The example exercises that follow demonstrate the use of S° values in calculating standard entropy changes for physical and chemical processes.

Table 39.2

Standard entropies for selected substances measured at 1 atm and 298.15 K. (Values are approximately equal to those measured at 1 bar, the currently accepted standard state pressure.)

Substance	$S^{\circ}\left(\mathbf{J} \mathbf{~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}} \mathbf{)}\right.$
carbon	
$\mathrm{C}(s$, graphite $)$	5.740
$\mathrm{C}(s$, diamond $)$	2.38
$\mathrm{CO}(g)$	197.7
$\mathrm{CO}_{2}(g)$	213.8
$\mathrm{CH}_{4}(g)$	186.3
$\mathrm{C}_{2} \mathrm{H}_{4}(g)$	219.5
$\mathrm{C}_{2} \mathrm{H}_{6}(g)$	229.5
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$	126.8

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\Omega)$	160.7
hydrogen	
$\mathrm{H}_{2}(g)$	130.57
$\mathrm{H}(g)$	114.6
$\mathrm{H}_{2} \mathrm{O}(g)$	188.71
$\mathrm{H}_{2} \mathrm{O}(\Lambda)$	69.91
$\mathrm{HCl}(g)$	186.8
$\mathrm{H}_{2} \mathrm{~S}(g)$	205.7
oxygen	
$\mathrm{O}_{2}(g)$	205.03

Example 39.4

Determination of ΔS°

Calculate the standard entropy change for the following process:

$$
\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Solution

Calculate the entropy change using standard entropies as shown above:

$$
\Delta S^{\circ}=(1 \mathrm{~mol})\left(70.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)-(1 \mathrm{~mol})\left(188.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)=-118.8 \mathrm{~J} / \mathrm{K}
$$

The value for ΔS° is negative, as expected for this phase transition (condensation), which the previous section discussed.

Check Your Learning

Calculate the standard entropy change for the following process:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

Answer

$$
-120.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Example 39.5

Determination of ΔS°

Calculate the standard entropy change for the combustion of methanol, $\mathrm{CH}_{3} \mathrm{OH}$:

$$
2 \mathrm{CH}_{3} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

Solution

Calculate the entropy change using standard entropies as shown above:

$$
\begin{gathered}
\Delta S^{\circ}=\sum \nu S^{\circ}(\text { products })-\sum \nu S^{\circ}(\text { reactants }) \\
{\left[2 \mathrm{~mol} \times S^{\circ}\left(\mathrm{CO}_{2}(g)\right)+4 \mathrm{~mol} \times S^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(l)\right)\right]-\left[2 \mathrm{~mol} \times S^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}(l)\right)+3 \mathrm{~mol} \times S^{\circ}\left(\mathrm{O}_{2}\right.\right.} \\
=\{[2(213.8)+4 \times 70.0]-[2(126.8)+3(205.03)]\}=-161.1 \mathrm{~J} / \mathrm{K}
\end{gathered}
$$

Check Your Learning

Calculate the standard entropy change for the following reaction:

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l)
$$

Answer

24.7 J/K

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Previous Citation(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/12-introduction

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at https://open.byu.edu/general_college_chemistry/entropy.

40

Gibb's Free Energy

Experience Matter Energy

Chemical and physical processes have a natural tendency to occur in one direction under certain conditions. A spontaneous process occurs without the need for a continual input of energy from some external source, while a nonspontaneous process requires such. Systems undergoing a spontaneous process may or may not experience a gain or loss of energy, but they will experience a change in the way matter and/or energy is distributed within the system. Gibbs free energy (G) is a state function defined with regard to system quantities only and may be used to predict the spontaneity of a process. A number of approaches to the computation of free energy changes are possible.

40.1 Spontaneity

Learning Objectives

By the end of this section, you will be able to:

- Distinguish between spontaneous and nonspontaneous processes
- Describe the dispersal of matter and energy that accompanies certain spontaneous processes

Processes have a natural tendency to occur in one direction under a given set of conditions. Water will naturally flow downhill, but uphill flow requires outside intervention such as the use of a pump. Iron exposed to the earth's atmosphere will corrode, but rust is not converted to iron without intentional chemical treatment. A spontaneous process is one that occurs naturally under certain conditions. A nonspontaneous process, on the other hand, will not take place unless it is "driven" by the continual input of energy from an external source. A process that is spontaneous in one direction under a particular set of conditions is nonspontaneous in the reverse direction. At room temperature and typical atmospheric pressure, for example, ice will spontaneously melt, but water will not spontaneously freeze.

The spontaneity of a process is not correlated to the speed of the process. A spontaneous change may be so rapid that it is essentially instantaneous or so slow that it cannot be observed over any practical period of time. To illustrate this concept, consider the decay of radioactive isotopes, a topic more thoroughly treated in the chapter on nuclear chemistry. Radioactive decay is by definition a spontaneous process in which the nuclei of unstable isotopes emit radiation as they are converted to more stable nuclei. All the decay processes occur spontaneously, but the rates at
which different isotopes decay vary widely. Technetium-99m is a popular radioisotope for medical imaging studies that undergoes relatively rapid decay and exhibits a half-life of about six hours. Uranium- 238 is the most abundant isotope of uranium, and its decay occurs much more slowly, exhibiting a half-life of more than four billion years (Figure 40.1).

Figure 40.1
Both U-238 and Tc-99m undergo spontaneous radioactive decay, but at drastically different rates. Over the course of one week, essentially all of a Tc-99m sample and none of a U-238 sample will have decayed.

As another example, consider the conversion of diamond into graphite (Figure 40.2).
$\mathrm{C}(s$, diamond $) \rightarrow \mathrm{C}(s$, graphite $)$

The phase diagram for carbon indicates that graphite is the stable form of this element under ambient atmospheric pressure, while diamond is the stable allotrope at very high pressures, such as those present during its geologic formation. Thermodynamic calculations of the sort described in the last section of this chapter indicate that the conversion of diamond to graphite at ambient pressure occurs spontaneously, yet diamonds are observed to exist, and persist, under these conditions. Though the process is spontaneous under typical ambient conditions, its rate is extremely slow; so, for all practical purposes diamonds are indeed "forever." Situations such as these emphasize the important distinction between the thermodynamic and the kinetic aspects of a process. In this particular case, diamonds are said to be thermodynamically unstable but kinetically stable under ambient conditions.

Figure 40.2
The conversion of carbon from the diamond allotrope to the graphite allotrope is spontaneous at ambient pressure, but its rate is immeasurably slow at low to moderate temperatures. This process is known as graphitization, and its rate can
be increased to easily measurable values at temperatures in the 1000-2000 K range. (credit "diamond" photo: modification of work by "Fancy Diamonds"/Flickr; credit "graphite" photo: modification of work by images-ofelements.com/carbon.php)

C (diamond)

C (graphite)

Dispersal of Matter and Energy

Extending the discussion of thermodynamic concepts toward the objective of predicting spontaneity, consider now an isolated system consisting of two flasks connected with a closed valve. Initially there is an ideal gas in one flask and the other flask is empty $(P=0)$. (Figure 40.3). When the valve is opened, the gas spontaneously expands to fill both flasks equally. Recalling the definition of pressure-volume work from the chapter on thermochemistry, note that no work has been done because the pressure in a vacuum is zero.

$$
w=-P \Delta V=0 \quad(P=0 \text { in a vacuum })
$$

Note as well that since the system is isolated, no heat has been exchanged with the surroundings ($q=0$). The first law of thermodynamics confirms that there has been no change in the system's internal energy as a result of this process.
$\Delta U=q+w=0+0=0$

The spontaneity of this process is therefore not a consequence of any change in energy that accompanies the process. Instead, the driving force appears to be related to the greater, more uniform dispersal of matter that results when the gas is allowed to expand. Initially, the system was comprised of one flask containing matter and another flask containing nothing. After the spontaneous expansion took place, the matter was distributed both more widely (occupying twice its original volume) and more uniformly (present in equal amounts in each flask).

Figure 40.3

An isolated system consists of an ideal gas in one flask that is connected by a closed valve to a second flask containing a vacuum. Once the valve is opened, the gas spontaneously becomes evenly distributed between the flasks.

Now consider two objects at different temperatures: object X at temperature T_{X} and object Y at temperature T_{Y}, with T_{X} $>T_{Y}$ (Figure 40.4). When these objects come into contact, heat spontaneously flows from the hotter object (X) to the colder one (Y). This corresponds to a loss of thermal energy by X and a gain of thermal energy by Y .
$q_{\mathrm{X}}<0 \quad$ and $\quad q_{\mathrm{Y}}=-q_{\mathrm{X}}>0$

From the perspective of this two-object system, there was no net gain or loss of thermal energy, rather the available thermal energy was redistributed among the two objects. This spontaneous process resulted in a more uniform dispersal of energy.

Figure 40.4

When two objects at different temperatures come in contact, heat spontaneously flows from the hotter to the colder object.

X and Y in contact

As illustrated by the two processes described, an important factor in determining the spontaneity of a process is the extent to which it changes the dispersal or distribution of matter and/or energy. In each case, a spontaneous process took place that resulted in a more uniform distribution of matter or energy.

Example 40.1

Redistribution of Matter during a Spontaneous Process

Describe how matter is redistributed when the following spontaneous processes take place:
(a) A solid sublimes.
(b) A gas condenses.
(c) A drop of food coloring added to a glass of water forms a solution with uniform color.

Solution

Figure 40.5
(credit a: modification of work by Jenny Downing; credit b: modification of work by "Fuzzy Gerdes"/Flickr; credit c: modification of work by Paul A. Flowers)

(a) Sublimation is the conversion of a solid (relatively high density) to a gas (much lesser density). This process yields a much greater dispersal of matter, since the molecules will occupy a much greater volume after the solid-to-gas transition.
(b) Condensation is the conversion of a gas (relatively low density) to a liquid (much greater density). This process yields a much lesser dispersal of matter, since the molecules will occupy a much lesser volume after the gas-to-liquid transition.
(c) The process in question is diffusion. This process yields a more uniform dispersal of matter, since the initial state of the system involves two regions of different dye concentrations (high in the drop of dye, zero in the water), and the final state of the system contains a single dye concentration throughout.

Check Your Learning

Describe how energy is redistributed when a spoon at room temperature is placed in a cup of hot coffee.

Answer

Heat will spontaneously flow from the hotter object (coffee) to the colder object (spoon), resulting in a more uniform distribution of thermal energy as the spoon warms and the coffee cools.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

40.2 Free Energy

Learning Objectives

By the end of this section, you will be able to:

- Define Gibbs free energy, and describe its relation to spontaneity
- Calculate free energy change for a process using free energies of formation for its reactants and products
- Calculate free energy change for a process using enthalpies of formation and the entropies for its reactants and products

One of the challenges of using the second law of thermodynamics to determine if a process is spontaneous is that it requires measurements of the entropy change for the system and the entropy change for the surroundings. An alternative approach involving a new thermodynamic property defined in terms of system properties only was introduced in the late nineteenth century by American mathematician Josiah Willard Gibbs. This new property is called the Gibbs free energy (G) (or simply the free energy), and it is defined in terms of a system's enthalpy and entropy as the following:

$$
G=H-T S
$$

Free energy is a state function, and at constant temperature and pressure, the free energy change (ΔG) may be expressed as the following:

$$
\Delta G=\Delta H-T \Delta S
$$

(For simplicity's sake, the subscript "sys" will be omitted henceforth.)
The relationship between this system property and the spontaneity of a process may be understood by recalling the previously derived second law expression:

$$
\Delta S_{\text {univ }}=\Delta S+\frac{q_{\text {surr }}}{T}
$$

The first law requires that $q_{\text {surr }}=-q_{\text {sys }}$, and at constant pressure $q_{\text {sys }}=\Delta H$, so this expression may be rewritten as:

$$
\Delta S_{\text {univ }}=\Delta S-\frac{\Delta H}{T}
$$

Multiplying both sides of this equation by $-T$, and rearranging yields the following:

$$
-T \Delta S_{\text {univ }}=\Delta H-T \Delta S
$$

Comparing this equation to the previous one for free energy change shows the following relation:

$$
\Delta G=-T \Delta S_{\text {univ }}
$$

The free energy change is therefore a reliable indicator of the spontaneity of a process, being directly related to the previously identified spontaneity indicator, $\Delta S_{\text {univ. }}$. Table 40.1 summarizes the relation between the spontaneity of a process and the arithmetic signs of these indicators.

Table 40.1
Relation between Process Spontaneity and Signs of Thermodynamic Properties

$\Delta S_{\text {univ }}>0$	$\Delta G<0$	spontaneous
$\Delta S_{\text {univ }}<0$	$\Delta G>0$	nonspontaneous
$\Delta S_{\text {univ }}=0$	$\Delta G=0$	at equilibrium

What's "Free" about ΔG ?

In addition to indicating spontaneity, the free energy change also provides information regarding the amount of useful work (w) that may be accomplished by a spontaneous process. Although a rigorous treatment of this subject is beyond the scope of an introductory chemistry text, a brief discussion is helpful for gaining a better perspective on this important thermodynamic property.

For this purpose, consider a spontaneous, exothermic process that involves a decrease in entropy. The free energy, as defined by

$$
\Delta G=\Delta H-T \Delta S
$$

may be interpreted as representing the difference between the energy produced by the process, ΔH, and the energy lost to the surroundings, $T \Delta S$. The difference between the energy produced and the energy lost is the energy available (or "free") to do useful work by the process, ΔG. If the process somehow could be made to take place under conditions of thermodynamic reversibility, the amount of work that could be done would be maximal:

$$
\Delta G=w_{\max }
$$

However, as noted previously in this chapter, such conditions are not realistic. In addition, the technologies used to extract work from a spontaneous process (e.g., automobile engine, steam turbine) are never 100% efficient, and so the work done by these processes is always less than the theoretical maximum. Similar reasoning may be applied to a nonspontaneous process, for which the free energy change represents the minimum amount of work that must be done on the system to carry out the process.

Calculating Free Energy Change

Free energy is a state function, so its value depends only on the conditions of the initial and final states of the system. A convenient and common approach to the calculation of free energy changes for physical and chemical reactions is by use of widely available compilations of standard state thermodynamic data. One method involves the use of standard enthalpies and entropies to compute standard free energy changes, ΔG°, according to the following relation:

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

Example 40.2

Using Standard Enthalpy and Entropy Changes to Calculate ΔG°

Use standard enthalpy and entropy data from OpenStax's Appendix G to calculate the standard free energy change for the vaporization of water at room temperature (298 K). What does the computed value for ΔG° say about the spontaneity of this process?

Solution

The process of interest is the following:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The standard change in free energy may be calculated using the following equation:

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

From OpenStax's Appendix G:

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$S^{\circ}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286.83	70.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.82	188.8

Using the appendix data to calculate the standard enthalpy and entropy changes yields:

$$
\begin{gathered}
\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)-\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right) \\
=[-241.82 \mathrm{~kJ} / \mathrm{mol}-(-286.83)] \mathrm{kJ} / \mathrm{mol}=45.01 \mathrm{~kJ} \\
\Delta S^{\circ}=1 \mathrm{~mol} \times S^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)-1 \mathrm{~mol} \times S^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right) \\
=(1 \mathrm{~mol}) 188.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}-(1 \mathrm{~mol}) 70.0 \mathrm{~J} / \mathrm{mol} \mathrm{~K}=118.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{gathered}
$$

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

Substitution into the standard free energy equation yields:

$$
\begin{gathered}
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
=45.01 \mathrm{~kJ}-(298 \mathrm{~K} \times 118.8 \mathrm{~J} / \mathrm{K}) \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}
\end{gathered}
$$

$$
45.01 \mathrm{~kJ}-35.4 \mathrm{~kJ}=9.6 \mathrm{~kJ}
$$

$\Delta G^{\circ}>0$,
so boiling is nonspontaneous (not spontaneous).

Check Your Learning

Use standard enthalpy and entropy data from OpenStax's Appendix G to calculate the standard free energy change for the reaction shown here $(298 \mathrm{~K})$. What does the computed value for ΔG° say about the spontaneity of this process?

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})
$$

Answer

$\Delta G^{\circ}=102.0 \mathrm{~kJ} / \mathrm{mol} ;$
the reaction is nonspontaneous (not spontaneous) at $25^{\circ} \mathrm{C}$.

The standard free energy change for a reaction may also be calculated from standard free energy of formation $\Delta \mathrm{G}^{\circ}{ }_{f}$ values of the reactants and products involved in the reaction. The standard free energy of formation is the free energy change that accompanies the formation of one mole of a substance from its elements in their standard states. Similar to the standard enthalpy of formation,
ΔG_{f}°
is by definition zero for elemental substances in their standard states. The approach used to calculate

ΔG°

for a reaction from
ΔG_{f}°
values is the same as that demonstrated previously for enthalpy and entropy changes. For the reaction

$$
m \mathrm{~A}+n \mathrm{~B} \rightarrow x \mathrm{C}+y \mathrm{D}
$$

the standard free energy change at room temperature may be calculated as

$$
\begin{aligned}
& \Delta G^{\circ}=\sum v \Delta G^{\circ}(\text { products })-\sum v \Delta G^{\circ}(\text { reactants }) \\
= & {\left[x \Delta G_{\mathrm{f}}^{\circ}(\mathrm{C})+y \Delta G_{\mathrm{f}}^{\circ}(\mathrm{D})\right]-\left[m \Delta G_{\mathrm{f}}^{\circ}(\mathrm{A})+n \Delta G_{\mathrm{f}}^{\circ}(\mathrm{B})\right] . }
\end{aligned}
$$

Example 40.3

Using Standard Free Energies of Formation to Calculate ΔG°

Consider the decomposition of yellow mercury(II) oxide.

$$
\mathrm{HgO}(s, \text { yellow }) \rightarrow \mathrm{Hg}(l)+\frac{1}{2} \mathrm{O}_{2}(g)
$$

Calculate the standard free energy change at room temperature,
ΔG°,
using (a) standard free energies of formation and (b) standard enthalpies of formation and standard entropies. Do the results indicate the reaction to be spontaneous or nonspontaneous under standard conditions?

Solution

The required data are available in OpenStax's $\underline{A p p e n d i x ~ G ~ a n d ~ a r e ~ s h o w n ~ h e r e . ~}$

Compound	$\Delta G_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$S^{\circ}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{HgO}(s$, yellow $)$	-58.43	-90.46	71.13
$\mathrm{Hg}(\Omega)$	0	75.9	
$\mathrm{O}_{2}(g)$	0	0	205.2

(a) Using free energies of formation:

$$
\begin{gathered}
\Delta G^{\circ}=\sum \nu G_{\mathrm{f}}^{\circ}(\text { products })-\sum \nu \Delta G_{\mathrm{f}}^{\circ} \text { (reactants) } \\
=\left[1 \Delta G_{\mathrm{f}}^{\circ} \mathrm{Hg}(l)+\frac{1}{2} \Delta G_{\mathrm{f}}^{\circ} \mathrm{O}_{2}(\mathrm{~g})\right]-1 \Delta G_{\mathrm{f}}^{\circ} \mathrm{HgO}(s, \text { yellow }) \\
=\left[1 \mathrm{~mol}(0 \mathrm{~kJ} / \mathrm{mol})+\frac{1}{2} \operatorname{mol}(0 \mathrm{~kJ} / \mathrm{mol})\right]-1 \mathrm{~mol}(-58.43 \mathrm{~kJ} / \mathrm{mol})=58.43 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

(b) Using enthalpies and entropies of formation:

$$
\begin{gathered}
\Delta H^{\circ}=\sum \nu \Delta H_{\mathrm{f}}^{\circ}(\text { products })-\sum \nu \Delta H_{\mathrm{f}}^{\circ}(\text { reactants }) \\
=\left[1 \Delta H_{\mathrm{f}}^{\circ} \mathrm{Hg}(\mathrm{l})+\frac{1}{2} \Delta H_{\mathrm{f}}^{\circ} \mathrm{O}_{2}(\mathrm{~g})\right]-1 \Delta H_{\mathrm{f}}^{\circ} \mathrm{HgO}(s, \text { yellow }) \\
=\left[1 \mathrm{~mol}(0 \mathrm{~kJ} / \mathrm{mol})+\frac{1}{2} \operatorname{mol}(0 \mathrm{~kJ} / \mathrm{mol})\right]-1 \mathrm{~mol}(-90.46 \mathrm{~kJ} / \mathrm{mol})=90.46 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

$$
\begin{gathered}
\Delta S^{\circ}=\sum v \Delta S^{\circ}(\text { products })-\sum v \Delta S^{\circ}(\text { reactants }) \\
=\left[1 \Delta S^{\circ} \operatorname{Hg}(l)+\frac{1}{2} \Delta S^{\circ} \mathrm{O}_{2}(\mathrm{~g})\right]-1 \Delta S^{\circ} \mathrm{HgO}(s, \text { yellow }) \\
=\left[1 \mathrm{~mol}(75.9 \mathrm{~J} / \mathrm{mol} \mathrm{~K})+\frac{1}{2} \operatorname{mol}(205.2 \mathrm{~J} / \mathrm{mol} \mathrm{~K})\right]-1 \mathrm{~mol}(71.13 \mathrm{~J} / \mathrm{mol} \mathrm{~K})=107.4 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=90.46 \mathrm{~kJ}-298.15 \mathrm{~K} \times 107.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}} \\
\Delta G^{\circ}=(90.46-32.01) \mathrm{kJ} / \mathrm{mol}=58.45 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Both ways to calculate the standard free energy change at $25^{\circ} \mathrm{C}$ give the same numerical value (to three significant figures), and both predict that the process is nonspontaneous (not spontaneous) at room temperature.

Check Your Learning

Calculate ΔG° using (a) free energies of formation and (b) enthalpies of formation and entropies (reference OpenStax's Appendix G). Do the results indicate the reaction to be spontaneous or nonspontaneous at $25^{\circ} \mathrm{C}$?

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

Answer

(a) $140.8 \mathrm{~kJ} / \mathrm{mol}$, nonspontaneous
(b) $141.5 \mathrm{~kJ} / \mathrm{mol}$, nonspontaneous

Free Energy Changes for Coupled Reactions

The use of free energies of formation to compute free energy changes for reactions as described above is possible because $\Delta \mathrm{G}$ is a state function, and the approach is analogous to the use of Hess' Law in computing enthalpy changes (see the chapter on thermochemistry). Consider the vaporization of water as an example:

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)
$$

An equation representing this process may be derived by adding the formation reactions for the two phases of water (necessarily reversing the reaction for the liquid phase). The free energy change for the sum reaction is the sum of free energy changes for the two added reactions:

$$
\begin{array}{lc}
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta G_{\mathrm{f}, \mathrm{gas}}^{\circ} \\
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})- & -\Delta G_{\mathrm{f}, \mathrm{liquid}}^{\circ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta G=\Delta G_{\mathrm{f}, \mathrm{gas}}^{\circ}-\Delta G_{\mathrm{f}, \text { liquid }}^{\circ}
\end{array}
$$

This approach may also be used in cases where a nonspontaneous reaction is enabled by coupling it to a spontaneous reaction. For example, the production of elemental zinc from zinc sulfide is thermodynamically unfavorable, as indicated by a positive value for ΔG° :

$$
\mathrm{ZnS}(s) \rightarrow \mathrm{Zn}(s)+\mathrm{S}(s) \quad \Delta G_{1}^{\circ}=201.3 \mathrm{~kJ}
$$

The industrial process for production of zinc from sulfidic ores involves coupling this decomposition reaction to the thermodynamically favorable oxidation of sulfur:

$$
\mathrm{S}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta G_{2}^{\circ}=-300.1 \mathrm{~kJ}
$$

The coupled reaction exhibits a negative free energy change and is spontaneous:

$$
\mathrm{ZnS}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Zn}(s)+\mathrm{SO}(\mathrm{~g}) \quad \Delta G^{\circ}=201.3 \mathrm{~kJ}+-300.1 \mathrm{~kJ}=-98.8 \mathrm{~kJ}
$$

This process is typically carried out at elevated temperatures, so this result obtained using standard free energy values is just an estimate. The gist of the calculation, however, holds true.

Example 40.4

Calculating Free Energy Change for a Coupled Reaction

Is a reaction coupling the decomposition of ZnS to the formation of $\mathrm{H}_{2} \mathrm{~S}$ expected to be spontaneous under standard conditions?

Solution

Following the approach outlined above and using free energy values from Appendix G :

Decomposition of zinc sulfide:

$$
\begin{array}{cr}
\mathrm{Zn}(s) \rightarrow \mathrm{Zn}(s)+\mathrm{S}(s) & \Delta G_{1}^{\circ}=201 \\
\mathrm{~S}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) & \Delta G_{2}^{\circ}=-33 \\
\mathrm{ZnS}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Zn}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) & \Delta G^{\circ}=201.3 \mathrm{~kJ}+-33
\end{array}
$$

Formation of hydrogen sulfide:
Coupled reaction:

The coupled reaction exhibits a positive free energy change and is thus nonspontaneous.

Check Your Learning

What is the standard free energy change for the reaction below? Is the reaction expected to be spontaneous under standard conditions?

$$
\mathrm{FeS}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

Answer

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Files

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., \& Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/books/chemistry-atoms-first-2e/pages/12-introduction

This content is provided to you freely by BYU Open Learning Network.
Access it online or download it at
https://open.byu.edu/general_college_chemistry/gibbs_free_energy.

Climate and Human Impacts

Energy Heat Climate

Thermochemical concepts can be used to calculate the efficiency of various forms of fuel, which can then be applied to environmental issues. More than 80% of the energy used by modern society (about $3 \times 10^{17} \mathrm{~kJ} / \mathrm{yr}$) is from the combustion of fossil fuels. Because of their availability, ease of transport, and facile conversion to convenient fuels, natural gas and petroleum are currently the preferred fuels. Supplies of coal, a complex solid material derived from plants that lived long ago, are much greater, but the difficulty in transporting and burning a solid makes it less attractive as a fuel. Coal releases the smallest amount of energy per gram of any fossil fuel, and natural gas the greatest amount. The combustion of fossil fuels releases large amounts of CO_{2} that upset the balance of the carbon cycle and result in a steady increase in atmospheric CO_{2} levels. Because CO_{2} is a greenhouse gas, which absorbs heat before it can be radiated from Earth into space, CO_{2} in the atmosphere can result in increased surface temperatures (the greenhouse effect). The temperature increases caused by increased CO_{2} levels because of human activities are, however, superimposed on much larger variations in Earth's temperature that have produced phenomena such as the ice ages and are still poorly understood.

41.1: Fuels as Sources of Energy

Learning Objectives

By the end of this section, you will be able to:

- Use thermochemical concepts to solve environmental issues.

Our contemporary society requires the constant expenditure of huge amounts of energy to heat our homes, provide telephone and cable service, transport us from one location to another, provide light when it is dark outside, and run the machinery that manufactures material goods. The United States alone consumes almost $10^{6} \mathrm{~kJ}$ per person per day, which is about 100 times the normal required energy content of the human diet. This figure is about 30% of the world's total energy usage, although only about 5% of the total population of the world lives in the United States. In contrast, the average energy consumption elsewhere in the world is about $10^{5} \mathrm{~kJ}$ per person per day, although actual values vary
widely depending on a country's level of industrialization. In this section, we describe various sources of energy and their impact on the environment.

Fuels

According to the law of conservation of energy, energy can never actually be "consumed"; it can only be changed from one form to another. What is consumed on a huge scale, however, are resources that can be readily converted to a form of energy that is useful for doing work. Energy that is not used to perform work is either stored as potential energy for future use or transferred to the surroundings as heat.

A major reason for the huge consumption of energy by our society is the low efficiency of most machines in transforming stored energy into work. Efficiency can be defined as the ratio of useful work accomplished to energy expended. Automobiles, for example, are only about 20% efficient in converting the energy stored in gasoline to mechanical work; the rest of the energy is released as heat, either emitted in the exhaust or produced by friction in bearings and tires. The production of electricity by coal- or oil-powered steam turbines (Figure 41.1) is can be more than 50\% efficient.

Figure 41.1: Electricity from Coal. A coal-powered electric power plant uses the combustion of coal to produce steam, which drives a turbine to produce electricity.

In general, it is more efficient to use primary sources of energy directly (such as natural gas or oil) than to transform them to a secondary source such as electricity prior to their use. For example, if a furnace is well maintained, heating a house with natural gas is about 70% efficient. In contrast, burning the natural gas in a remote power plant, converting it to electricity, transmitting it long distances through wires, and heating the house by electric baseboard heaters have an overall efficiency of less than 35%.

The total expenditure of energy in the world each year is about $3 \times 10^{17} \mathrm{~kJ} .80 \%$ of this energy is provided by the combustion of fossil fuels: oil, coal, and natural gas (the sources of the energy consumed in the United States in 2019 are shown in Figure 41.2). Natural gas and petroleum are the preferred fuels because many of the products derived from them are gases or liquids that are readily transported, stored, and burned. Natural gas and petroleum are derived from the remains of marine creatures that died hundreds of millions of years ago and were buried beneath layers of sediment. As the sediment turned to rock, the tremendous heat and pressure inside Earth transformed the organic components of the buried sea creatures to petroleum and natural gas.

U.S. primary energy consumption by energy source, 2019

total $=100.2$ quadrillion
British thermal units (Btu)
total $=11.4$ quadrillion Btu

Note: Sum of components may not equal 100\% because of independent rounding. Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1,
eia April 2020, preliminary data
Figure 41.2: Energy Consumption in the United States by Source, 2014. More than 75\% of the total energy expended is provided by the combustion of fossil fuels, such as oil, coal, and natural gas. (Public Domain; U.S. Energy Information Administration)

Coal

Coal is a complex solid material derived primarily from plants that died and were buried hundreds of millions of years ago and were subsequently subjected to high temperatures and pressures. Because plants contain large amounts of cellulose, derived from linked glucose units, the structure of coal is more complex than that of petroleum (Figure 41.3). In particular, coal contains a large number of oxygen atoms that link parts of the structure together, in addition to the basic framework of carbon-carbon bonds. It is impossible to draw a single structure for coal; however, because of the prevalence of rings of carbon atoms (due to the original high cellulose content), coal is more similar to an aromatic hydrocarbon than an aliphatic one.

(a) Cellulose

(b) Coal

Figure 41.3: The Structures of Cellulose and Coal. (a) Cellulose consists of long chains of cyclic glucose molecules linked by hydrogen bonds. (b) When cellulose is subjected to high pressures and temperatures for long periods of time, water is eliminated, and bonds are formed between the rings, eventually producing coal. This drawing shows some of the common structural features of coal; note the presence of many different kinds of ring structures.

	\% Carbon	Hydrogen:Carbon Mole Ratio	$\%$ Oxygen	$\%$ Sulfur	Heat Content	US Deposits

Table 41.1: Properties of Different Types of Coal

There are four distinct classes of coal (Table 41.1); their hydrogen and oxygen contents depend on the length of time the coal has been buried and the pressures and temperatures to which it has been subjected. Lignite, with a hydrogen:carbon ratio of about 1.0 and a high oxygen content, has the lowest $\Delta H_{\text {comb }}$. Anthracite, in contrast, with a hydrogen:carbon ratio of about 0.5 and the lowest oxygen content, has the highest $\Delta H_{\text {comb }}$ and is the highest grade of coal. The most abundant form in the United States is bituminous coal, which has a high sulfur content because of the presence of small particles of pyrite $\left(\mathrm{FeS}_{2}\right)$. The combustion of coal releases the sulfur in FeS_{2} as SO_{2}, which is a major contributor to acid rain. Table 41.2 compares the $\Delta H_{\text {comb }}$ per gram of oil, natural gas, and coal with those of selected organic compounds.

Fuel
dry wood
$\mathbf{\Delta} \mathbf{H}_{\mathbf{c o m b}}(\mathbf{k J / g})$
peat
bituminous coal
charcoal
kerosene
$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)
crude oil

Fuel	$\mathbf{\Delta} \mathbf{H}_{\mathbf{c o m b}} \mathbf{(k J / g} \mathbf{)}$
natural gas	-50
$\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene)	-50.0
CH_{4} (methane)	-55.5
gasoline	-84
hydrogen	-143

Table 41.2: Enthalpies of Combustion of Common Fuels and Selected Organic Compounds

Peat, a precursor to coal, is the partially decayed remains of plants that grow in swampy areas. It is removed from the ground in the form of soggy bricks of mud that will not burn until they have been dried. Even though peat is a smoky, poor-burning fuel that gives off relatively little heat, humans have burned it since ancient times (Figure 41.4). If a peat bog were buried under many layers of sediment for a few million years, the peat could eventually be compressed and heated enough to become lignite, the lowest grade of coal; given enough time and heat, lignite would eventually become anthracite, a much better fuel.

Figure 41.4: A Peat Bog. Peat is a smoky fuel that burns poorly and produces little heat, but it has been used as a fuel since ancient times.

Converting Coal to Gaseous and Liquid Fuels

Oil and natural gas resources are limited. Current estimates suggest that the known reserves of petroleum will be exhausted in about 60 years, and supplies of natural gas are estimated to run out in about 120 years. Coal, on the other hand, is relatively abundant, making up more than 90% of the world's fossil fuel reserves. As a solid, coal is much more difficult to mine and ship than petroleum (a liquid) or natural gas. Consequently, more than 75% of the coal produced each year is simply burned in power plants to produce electricity. A great deal of current research focuses on developing methods to convert coal to gaseous fuels (coal gasification) or liquid fuels (coal liquefaction). In the most
common approach to coal gasification, coal reacts with steam to produce a mixture of CO and H 2 known as synthesis gas, or syngas: Because coal is $70 \%-90 \%$ carbon by mass, it is approximated as C in the following equation:

$\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})} \quad \Delta H=131 \mathrm{~kJ}$

Converting coal to syngas removes any sulfur present and produces a clean-burning mixture of gases.
Syngas is also used as a reactant to produce methane and methanol. A promising approach is to convert coal directly to methane through a series of reactions:

$$
\begin{array}{ll}
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) & \Delta H_{1}=262 \mathrm{~kJ} \\
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta H_{2}=-41 \mathrm{~kJ} \\
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H_{3}=-206 \mathrm{~kJ}
\end{array}
$$

Overall : $2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{\text {comb }}=15 \mathrm{~kJ}$

Burning a small amount of coal or methane provides the energy consumed by these reactions. Unfortunately, methane produced by this process is currently significantly more expensive than natural gas. As supplies of natural gas become depleted, however, this coal-based process may well become competitive in cost.

Measuring crude oil. The standard industrial unit of measure for crude oil is the 42 gal barrel.
Similarly, the techniques available for converting coal to liquid fuels are not yet economically competitive with the production of liquid fuels from petroleum. Current approaches to coal liquefaction use a catalyst to break the complex network structure of coal into more manageable fragments. The products are then treated with hydrogen (from syngas or other sources) under high pressure to produce a liquid more like petroleum. Subsequent distillation, cracking, and reforming can be used to create products similar to those obtained from petroleum. The total yield of liquid fuels is about 5.5 bbl of crude liquid per ton of coal (1 bbl is 42 gal or 160 L). Although the economics of coal liquefaction are currently even less attractive than for coal gasification, liquid fuels based on coal are likely to become economically competitive as supplies of petroleum are consumed.

Example 41.1

If bituminous coal is converted to methane by the process in Equation 41.1, what is the ratio of the $\Delta H_{\text {comb }}$ of the methane produced to the enthalpy of the coal consumed to produce the methane? (Note that 1 mol of CH_{4} is produced for every 2 mol of carbon in coal.)

Given: chemical reaction and $\Delta H_{\text {comb }}$ (Table 41.2)
Asked for: ratio of $\Delta H_{\text {comb }}$ of methane produced to coal consumed

Strategy:

A Write a balanced chemical equation for the conversion of coal to methane. Referring to Table 41.2, calculate the $\Delta H_{\text {comb }}$ of methane and carbon.

B Calculate the ratio of the energy released by combustion of the methane to the energy released by combustion of the carbon.

Answer

A The balanced chemical equation for the conversion of coal to methane is as follows:
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

Thus 1 mol of methane is produced for every 2 mol of carbon consumed. The $\Delta H_{\text {comb }}$ of 1 mol of methane is
$1 \mathrm{molCH}_{4}\left(\frac{16.043 \mathrm{~g}}{1 \mathrm{molCH}_{4}}\right)\left(\frac{-55.5 \mathrm{~kJ}}{\mathrm{~g}}\right)=-890 \mathrm{~kJ}$
The $\Delta H_{\text {comb }}$ of 2 mol of carbon (as coal) is
$2 \mathrm{molC}\left(\frac{12.011 \mathrm{~g}}{1 \mathrm{molC}}\right)\left(\frac{-28.3 \mathrm{~kJ}}{\mathrm{~g}}\right)=-680 \mathrm{~kJ}$
B The ratio of the energy released from the combustion of methane to the energy released from the combustion of carbon is
$\frac{-890 \mathrm{~kJ}}{-680 \mathrm{~kJ}}=1.31$
The energy released from the combustion of the product (methane) is 131% of that of the reactant (coal).
The fuel value of coal is actually increased by the process!
How is this possible when the law of conservation of energy states that energy cannot be created? The reaction consumes 2 mol of water ($\Delta H_{\mathrm{f}}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}$) but produces only 1 mol of CO 2 (
$\Delta H_{\mathrm{f}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$). Part of the difference in potential energy between the two (approximately $180 \mathrm{~kJ} / \mathrm{mol}$) is stored in CH 4 and can be released during combustion.

Example 41.2

Using the data in Table 41.2, calculate the mass of hydrogen necessary to provide as much energy during combustion as 1 bbl of crude oil (density approximately $0.75 \mathrm{~g} / \mathrm{mL}$).

Answer

$36 \mathbf{k g}$

The Carbon Cycle and the Greenhouse Effect

Even if carbon-based fuels could be burned with 100% efficiency, producing only $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, doing so could still potentially damage the environment when carried out on the vast scale required by an industrial society. The amount of CO_{2} released is so large and is increasing so rapidly that it is apparently overwhelming the natural ability of the planet to remove CO_{2} from the atmosphere. In turn, the elevated levels of CO_{2} are thought to be affecting the temperature of the planet through a mechanism known as the greenhouse effect. As you will see, there is little doubt that atmospheric CO_{2} levels are increasing, and the major reason for this increase is the combustion of fossil fuels. There is substantially less agreement, however, on whether the increased CO_{2} levels are responsible for a significant increase in temperature.

The Global Carbon Cycle

Figure 41.5 illustrates the global carbon cycle, the distribution and flow of carbon on Earth. Normally, the fate of atmospheric CO_{2} is to either (1) dissolve in the oceans and eventually precipitate as carbonate rocks or (2) be taken up by plants. The rate of uptake of CO_{2} by the ocean is limited by its surface area and the rate at which gases dissolve, which are approximately constant. The rate of uptake of CO_{2} by plants, representing about 60 billion metric tons of carbon per year, partly depends on how much of Earth's surface is covered by vegetation. Unfortunately, the rapid deforestation for agriculture is reducing the overall amount of vegetation, and about 60 billion metric tons of carbon are released annually as CO_{2} from animal respiration and plant decay. The amount of carbon released as CO_{2} every year by fossil fuel combustion is estimated to be about 5.5 billion metric tons. The net result is a system that is slightly out of balance, experiencing a slow but steady increase in atmospheric CO_{2} levels (Figure 41.6). As a result, average CO_{2} levels have increased by about 30% since 1850.

Volumes and exchanges in billions of metric tons
Figure 41.5: The Global Carbon Cycle
Most of Earth's carbon is found in the crust, where it is stored as calcium and magnesium carbonate in sedimentary rocks. The oceans also contain a large reservoir of carbon, primarily as the bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$. Green plants consume about 60 billion metric tons of carbon per year as CO_{2} during photosynthesis, and about the same amount of carbon is released as CO_{2} annually from animal and plant respiration and decay. The combustion of fossil fuels releases about 5.5 billion metric tons of carbon per year as CO_{2}.

Figure 41.6: Changes in Atmospheric CO_{2} Levels. (a) Average worldwide CO_{2} levels have increased by about 30% since 1850. (b) Atmospheric CO_{2} concentrations measured at Mauna Loa in Hawaii show seasonal variations caused by the removal of CO_{2} from the atmosphere by green plants during the growing season along with a general increase in CO_{2} levels.

The Atmospheric Greenhouse Effect

The increasing levels of atmospheric CO_{2} are of concern because CO_{2} absorbs thermal energy radiated by the Earth, as do other gases such as water vapor, methane, and chlorofluorocarbons. Collectively, these substances are called greenhouse gases; they mimic the effect of a greenhouse by trapping thermal energy in the Earth's atmosphere, a phenomenon known as the greenhouse effect (Figure 41.7).

Figure 41.7: The Greenhouse Effect. Thermal energy can be trapped in Earth's atmosphere by gases such as CO_{2}, water vapor, methane, and chlorofluorocarbons before it can be radiated into space-like the effect of a greenhouse. It is not yet clear how large an increase in the temperature of Earth's surface can be attributed to this phenomenon.

Venus is an example of a planet that has a runaway greenhouse effect. The atmosphere of Venus is about 95 times denser than that of Earth and contains about $95 \% \mathrm{CO}_{2}$. Because Venus is closer to the sun, it also receives more solar radiation than Earth does. The result of increased solar radiation and high CO_{2} levels is an average surface temperature of about $450^{\circ} \mathrm{C}$, which is hot enough to melt lead.

Data such as those in Figure Figure 41.6 indicate that atmospheric levels of greenhouse gases have increased dramatically over the past 100 years, and it seems clear that the heavy use of fossil fuels by industry is largely responsible. It is not clear, however, how large an increase in temperature (global warming) may result from a continued increase in the levels of these gases. Estimates of the effects of doubling the preindustrial levels of CO_{2} range from a $0^{\circ} \mathrm{C}$ to a $4.5^{\circ} \mathrm{C}$ increase in the average temperature of Earth's surface, which is currently about $14.4^{\circ} \mathrm{C}$. Even small increases, however, could cause major perturbations in our planet's delicately balanced systems. For example, an increase of $5^{\circ} \mathrm{C}$ in Earth's average surface temperature could cause extensive melting of glaciers and the Antarctic ice cap. It has been suggested that the resulting rise in sea levels could flood highly populated coastal areas, such as New York City, Calcutta, Tokyo, Rio de Janeiro, and Sydney. An analysis conducted in 2009 by leading climate researchers from the US National Oceanic and Atmospheric Administration, Switzerland, and France shows that CO_{2} in the atmosphere will remain near peak levels far longer than other greenhouse gases, which dissipate more quickly. The study predicts a rise in sea levels of approximately 3 ft by the year 3000, excluding the rise from melting glaciers and polar ice caps. According to the analysis, southwestern North America, the Mediterranean, and southern Africa are projected to face droughts comparable to that of the Dust Bowl of the 1930s as a result of global climate changes.

The increase in CO_{2} levels is only one of many trends that can affect Earth's temperature. In fact, geologic evidence shows that the average temperature of Earth has fluctuated significantly over the past 400,000 years, with a series of glacial periods (during which the temperature was $10^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$ lower than it is now and large glaciers covered much of
the globe) interspersed with relatively short, warm interglacial periods (Figure 41.8). Although average temperatures appear to have increased by $0.5^{\circ} \mathrm{C}$ in the last century, the statistical significance of this increase is open to question, as is the existence of a cause-and-effect relationship between the temperature change and CO_{2} levels. Despite the lack of incontrovertible scientific evidence, however, many people believe that we should take steps now to limit CO_{2} emissions and explore alternative sources of energy, such as solar energy, geothermal energy from volcanic steam, and nuclear energy, to avoid even the possibility of creating major perturbations in Earth's environment. In 2010, international delegates met in Cancún, Mexico, and agreed on a broad array of measures that would advance climate protection. These included the development of low-carbon technologies, providing a framework to reduce deforestation, and aiding countries in assessing their own vulnerabilities. They avoided, however, contentious issues of assigning emissions reductions commitments.

Figure 41.8: Average Surface Temperature of Earth over the Past 400,000 Years. The dips correspond to glacial periods, and the peaks correspond to relatively short, warm interglacial periods. Because of these fluctuations, the statistical significance of the $0.5^{\circ} \mathrm{C}$ increase in average temperatures observed in the last century is open to question.

Example 41.3

A student at UCLA decided to fly home to New York for Christmas. The round trip was 4500 air miles, and part of the cost of her ticket went to buy the 100 gal of jet fuel necessary to transport her and her baggage.
Assuming that jet fuel is primarily n-dodecane $\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)$ with a density of $0.75 \mathrm{~g} / \mathrm{mL}$, how much energy was expended and how many tons of CO_{2} were emitted into the upper atmosphere to get her home and back?

Given: volume and density of reactant in combustion reaction
Asked for: energy expended and mass of CO_{2} emitted

Strategy:

A After writing a balanced chemical equation for the reaction, calculate $\Delta H_{\text {comb }}^{\circ}$
B Determine the number of moles of dodecane in 100 gal by using the density and molar mass of dodecane and the appropriate conversion factors.

C Obtain the amount of energy expended by multiplying $\Delta H_{\text {comb }}^{\circ}$ by the number of moles of dodecane. Calculate the amount of CO2 emitted in tons by using mole ratios from the balanced chemical equation and the appropriate conversion factors.

Answer

A We first need to write a balanced chemical equation for the reaction:
$2 \mathrm{C}_{12} \mathrm{H}_{26}(\mathrm{l})+37 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 24 \mathrm{CO}_{2}(\mathrm{~g})+26 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

We can calculate $\Delta H_{\text {comb }}^{\circ}$ using the $\Delta H_{\mathrm{f}}^{\circ}$ values corresponding to each substance in the specified phase (phases are not shown for simplicity):

$$
\begin{aligned}
\Delta H_{\text {comb }}^{\circ}= & \Sigma m \Delta H_{\mathrm{f}}^{\circ}(\text { products })-\Sigma n \Delta H_{\mathrm{f}}^{\circ}(\text { reactants }) \\
= & {\left[24 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}\right)+26 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[37 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)+2 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)\right] } \\
= & {\left[24\left(-393.5 \mathrm{~kJ} / \mathrm{mol} \mathrm{CO}_{2}\right)+26\left(-285.8 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right)\right] } \\
& -\left[37\left(0 \mathrm{~kJ} / \mathrm{mol} \mathrm{O}_{2}\right)+2\left(-350.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{12} \mathrm{H}_{26}\right)\right] \\
= & -16,173.0 \mathrm{~kJ}
\end{aligned}
$$

According to the balanced chemical equation for the reaction, this value is $\Delta H_{\text {comb }}^{\circ}$ for the combustion of 2 mol of n -dodecane. So we must divide by 2 to obtain $\Delta H_{\text {comb }}^{\circ}$ per mole of n dodecane:

$$
\Delta H_{\text {comb }}^{*}=-8,086.5 \mathrm{~kJ} / \mathrm{molC}_{12} \mathrm{H}_{26}
$$

B The number of moles of dodecane in 100 gal can be calculated as follows, using density, molar mass, and appropriate conversion factors:

$$
\begin{aligned}
& 100 \operatorname{gal}\left(\frac{3.785 \mathrm{~L}}{1 \mathrm{gal}}\right)\left(\frac{1000 \mathrm{~mL}}{\mathrm{~L}}\right)\left(\frac{0.75 \mathrm{~g}}{\mathrm{~mL}}\right)\left(\frac{1 \mathrm{~mol}}{170.34 \mathrm{~g}}\right) \\
& =1.7 \times 10^{3} \mathrm{molC}_{12} \mathrm{H}_{26}
\end{aligned}
$$

C The total energy released is

$$
\Delta H_{\mathrm{comb}}^{\circ}=(-8086.5 \mathrm{~kJ} / \mathrm{mol})\left(1.7 \times 10^{3} \mathrm{~mol}\right)=-1.4 \times 10^{7} \mathrm{~kJ}
$$

From the balanced chemical equation for the reaction, we see that each mole of dodecane forms 12 mol of CO_{2} upon combustion. Hence the amount of CO_{2} emitted is
$1.7 \times 10^{3} \mathrm{molC}_{12} \mathrm{H}_{26}\left(\frac{\frac{24}{2} \mathrm{molCO}_{2}}{1 \mathrm{molC}_{12} \mathrm{H}_{26}}\right)\left(\frac{44.0 \mathrm{~g}}{1 \mathrm{molCO}_{2}}\right)\left(\frac{1 \mathrm{lb}}{454 \mathrm{~g}}\right)\left(\frac{1 \mathrm{tn}}{20001 \mathrm{~b}}\right)$
$=0.99 \mathrm{tn}$

Example 20.1

Suppose the student in Example 41.3 couldn't afford the plane fare, so she decided to drive home instead. Assume that the round-trip distance by road was 5572 miles, her fuel consumption averaged 31 mpg , and her fuel was pure isooctane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right.$, density $\left.=0.6919 \mathrm{~g} / \mathrm{mL}\right)$. How much energy was expended and how many tons of CO_{2} were produced during her trip?

Answer

$2.2 \times 10^{7} \mathrm{~kJ} ; 1.6$ tons of CO_{2} (about twice as much as is released by flying)

Files

Open in Google Drive

Previous Citation(s)

LibreTexts. (2016, January 6). Fuels as Sources of Energy. LibreTexts Chemistry. https://chem.libretexts.org/Under_Construction/Purgatory/UCD_Chem_2B\%3A_Hayashi/Unit_I\%3A_Fundamental:

This content is provided to you freely by BYU Open Learning Network.

Access it online or download it at
https://open.byu.edu/general_college_chemistry/climate_and_human_impacts.

