
2.1

The JOIN Clause

The Join Clause

A JOIN clause allows you to access data from two or more tables in a query.
A join links to tables on a common key between the two tables. Usually the primary key on one table is
compared to the foreign key on another table using the equals (=) sign. This is an equijoin or an inner-join.
However, other comparison operators are also valid.
If column names from each table in the join have the same name, they must be qualified with the table
name or a table alias.

Below is a basic example of a SQL statement with an inner join clause using explicit syntax.

1 USE world;
2 SELECT city.name AS "City Name",
3 country.name AS "Country Name"
4 FROM country
6 JOIN city
5 ON city.CountryCode = country. Code;

You could write SQL statements more succinctly with an inner join clause using table aliases. Instead of writing out the
whole table name to qualify a column, you can use a table alias.

1 USE world;
2 SELECT ci.name AS "City Name",
3 co.name AS "Country Name"
4 FROM city ci
5 JOIN country co
6 ON ci.CountryCode = co.Code;

The results of the join query would yield the same results as shown below whether or not table names are completely
written out or are represented with table aliases. The table aliases of co for country and ci for city are defined in the
FROM clause and referenced in the SELECT and ON clause:

Results:

43

Let us break the statement line by line:

USE world;

The USE clause sets the database that we will be querying. You typically have more than one database on your
database server. You have to specify which database you are working in.
The semicolon “;” indicates the end of a statement. You can execute multiple statements in sequence by defining
each statement with a semicolon

SELECT ci.name AS “City Name”, co.name AS “Country Name”

The SELECT clause defines the columns and column order that you want to retrieve in your result set. In this
example, we have columns from two separate tables. These columns have the same name, so they MUST be
qualified with the full table name or table alias. Otherwise, the column names are ambiguous.
You separate each column name with a comma “,” including the corresponding table alias if one is provided
To create a friendlier column name in the output, we assign a column alias to each qualified column name. Instead
of ci.name showing in the column header of the report, we assign a friendlier column alias of “City Name” and for
co.name “Country Name.”

FROM city ci

The FROM clause specifies the table(s) from which results will be returned.
In a JOIN clause, the first table to be joined is specified after the FROM clause.

JOIN country co

Use a JOIN clause between the two tables.
Include the alias if desired.

ON ci.CountryCode = co.Code;

44

The ON clause specifies the common column from each table (usually a PK in one table and its corresponding
foreign key in the other). Each column name is separated with an operator (join condition usually the equals (=)
sign.

This content is provided to you freely by BYU-I Books.

Access it online or download it at https://books.byui.edu/learning_mysql/the_join_clause.

45

https://books.byui.edu/learning_mysql/the_join_clause
https://books.byui.edu/license/cc_by-nc-nd-int-4.0

46

