
Macros 2

This chapter will work more closely with Visual Basic (sometimes called Visual Basic for Applications or VB). First, we'll
record another macro similar to the previous chapter that creates a basic table utilizing various formatting features.

Practice Spreadsheet

Use the workbook you created in the Macros 1 chapter.

1. Press the Record Macro button from the Developer toolbar.
a. For the purpose of this demonstration, the macro settings can remain as their default.

2. Type the letters A–F into separate cells down the left side of the table's column.
3. Type the numbers 1–5 into separate cells across the table's top row.
4. Format the table's cells with borders.
5. Group columns I and J.

a. Select the I and J columns.
b. Go to the Data toolbar and press the Group button.

�. Type a title for the table in the top left cell.
a. For the purpose of this demonstration, the title can simply be "Table title."
b. The title needs to be in the row above the table's row of numbers.

7. Format the table title's row with Heading 1.
�. Format the number and letter labels in bold. (See Figure 29.1)
9. Press the Stop Recording button from the Developer toolbar.

Figure 29.1

Additionally, we will record a macro to remove the table.

463

https://books.byui.edu/bus_115_business_app/macro_1

1. Press the Record Macro button from the Developer toolbar.
2. Ungroup columns I and J.

a. Select columns I and J.
b. Go to the Data toolbar and press the Ungroup button.

3. Select all of the table’s cells and press the Delete key.
Note: You will probably notice some of the formatting remains. The delete key removes cell values, but it does not
delete formatting. Continue with the next steps to clear formats. (See Figure 29.2)

Figure 29.2

4. Go to the Home toolbar.
5. Press the Clear button and select Clear Formats. (See Figure 29.3)
�. Press the Stop Recording button from the Developer toolbar.

Figure 29.3

464

Visual Basic
Next, we'll look at the code composing the macros. Press the Visual Basic button from the Developer toolbar to open
the code in Visual Basic. Here, we can review, edit, and create the code used in Excel macros. (See Figure 29.4)

Figure 29.4

Organizing Code
Organizing code by inserting notes is an important practice for you and others to make sense of the code. Notes are
written beginning with a single apostrophe (') which the program recognizes as separate from the macro code. If text
is written without an apostrophe, the text will be colored red to indicate an error because it is not actual code.
(See Figure 29.5)

465

Figure 29.5

Editing Code
Recording macros can be helpful for completing repetitive tasks. However, the recorded macro will likely contain a lot of
extra code as a result of selecting cells prior to performing a specific action. In Figure 29.6 below, we can see each
action begins with identifying rows, columns, or a range of cells and performing the action on the selected cell(s) (for
example, Range("E3:L12").Select). As in Figure 29.7, the code can be simplified by removing the selection and
performing the next action on the designated cell(s) directly (for example, Range("E3:L12").ClearContents).

We can take it a step further by simplifying the clear contents and clear formats lines. Instead of performing the actions
to clear content and format separately, the ClearContents action can be changed to Clear, and the code will clear
everything and the clear formats line can be deleted.

466

Figure 29.6

Figure 29.7

Debugging Code
There will be situations wherein misspellings, changes, or other continuity problems between the macro code and the
spreadsheet cause a macro to fail. In the event of an error, Visual Basic will produce an error message and prompt the
user to End or Debug the macro. (See Figure 29.8)

467

Figure 29.8

Pressing Debug will direct the user to the line of code that failed. The error will be highlighted yellow with an arrow
indicating the line of code. In the following example, the macro attempted to select a range labeled as "abc." However,
the range didn't exist. It may have been a typing error, or the user forgot to update the desired cell(s) with the indicated
label. The code or the spreadsheet can be modified to correct the error. (See Figure 29.9)

Figure 29.9

Supplemental Resource

468

https://books.byui.edu/license/copyright

This content is provided to you freely by BYU-I Books.

Access it online or download it at https://books.byui.edu/bus_115_business_app/macro_2.

469

https://books.byui.edu/bus_115_business_app/macro_2

470

