Common Statistical Formulas and Equations

R-Squared

$ R^{2}=\frac{N\sum xy-\sum x \sum y}{\sqrt{\left[N\sum x^{2}-\left(\sum x\right)^{2}\right]\left[N\sum y^{2}-\left(\sum y\right)^{2}\right]}} $

F Test

$ F=\frac{Variance\ of\ set\ 1}{Variance \ of \ set \ 2} = \frac{\sigma _{1}^{2}}{\sigma _{2}^{2}} $

See Variance.

Chi-Square

$ \chi ^2 = \sum{\frac{(O-E)^2}{E}} $

Population Mean

$ \mu = \frac{\sum{X_i}}{N} $

Mean

$ \overline{x} = \frac{\sum{x}}{n} $

Variance

$ \sigma ^2 = \frac{\sum{(x-\overline{x})^2}}{n} $

Standard Deviation

$ S=\sigma=\sqrt{\frac{\sum{(x-\overline{x})^2}}{n}} $

Linear Regression

$ y=a+bx $

Where a (or the intercept) is:

$ a =\frac{\sum y \sum x^{2} – \sum x \sum xy} {(\sum x^{2}) – (\sum x)^{2}} $

And b (or the slope) is:

$ b=\frac{n\sum xy-\left(\sum x\right)\left(\sum y\right)}{n\sum x^{2}-\left(\sum x\right)^{2}} $