
An Intro to APIs, Web Scraping, and Learning Analytics

Royce Kimmons

https://edtechbooks.org/user/1

Table of Contents

1Projects

3Project 1. Scrape Internet Data

5Project 2. Create a Helpful JavaScript Function

7Project 3. Develop a Micro eLearning Module

9Challenges

11Challenge 1. Hack a Website (well, sort of...)

13Challenge 2. Get All Email Addresses from a Staff Directory

15Challenge 4. Analyze Pronoun Usage in Tolstoy's Novels

19Challenge 5. Use LMS System Classes in Your Custom Content

21Challenge 6. Determine the Flesch-Kincaid Grade Level of Content on Any Website

25Challenge 7. Get the Navigation Outline of a Google Doc as a Table

27Challenge 8. Create a Bootstrap Web Page

29Challenge 9. Format a Poem Using Bootstrap

31Challenge 10. Format Images into a Grid Using Bootstrap

33Challenge 11. Format a Document Using Bootstrap

35Challenge 12. Remove Unnecessary HTML

37Challenge 13. Create Some JavaScript Listener Buttons

39Challenge 14. Dynamically Fetch Content via a REST API and Include it in Your Module

41Challenge 15. Use an AI (via a REST API) to Generate a Summary of Your Module's Content

43Challenge 16. Retrieve Dynamic Web Data in Google Sheets or Microsoft Excel

45Final Project

47Essential Tools

49Integrated Development Environments (IDEs)

51Web Browser Inspectors

57Generative Artificial Intelligences (AIs)

59HTML

61Document Object Model (DOM)

https://edtechbooks.org/elearning_hacker/projects
https://edtechbooks.org/elearning_hacker/scrape_internet_data
https://edtechbooks.org/elearning_hacker/create_a_helpful_javascript_function
https://edtechbooks.org/elearning_hacker/elearning_module
https://edtechbooks.org/elearning_hacker/challenges
https://edtechbooks.org/elearning_hacker/hack_a_website
https://edtechbooks.org/elearning_hacker/get_all_email_addresses_from_a_staff_directory
https://edtechbooks.org/elearning_hacker/analyze_pronoun_usage_in_tolstoys_war_and_peace
https://edtechbooks.org/elearning_hacker/use_lms_classes_in_your_custom_content
https://edtechbooks.org/elearning_hacker/create_a_fleschkincaid_grade_level_checker
https://edtechbooks.org/elearning_hacker/get_the_navigation_outline_of_a_google_doc_as_a_table
https://edtechbooks.org/elearning_hacker/create_a_bootstrap_web_page
https://edtechbooks.org/elearning_hacker/format_a_poem_using_bootstrap
https://edtechbooks.org/elearning_hacker/format_images_into_a_grid_using_bootstrap
https://edtechbooks.org/elearning_hacker/format_a_document_using_bootstrap
https://edtechbooks.org/elearning_hacker/remove_unnecessary_html
https://edtechbooks.org/elearning_hacker/create_some_javascript_listener_buttons
https://edtechbooks.org/elearning_hacker/dynamically_fetch_content_via_a_rest_api_and_include_it_in_your_module
https://edtechbooks.org/elearning_hacker/use_an_ai_via_a_rest_api_to_generate_a_summary_of_your_modules_content
https://edtechbooks.org/elearning_hacker/retrieve_dynamic_web_data_in_google_sheets_or_microsoft_excel
https://edtechbooks.org/elearning_hacker/final_project
https://edtechbooks.org/elearning_hacker/essential_tools
https://edtechbooks.org/elearning_hacker/integrated_development_environments
https://edtechbooks.org/elearning_hacker/web_browser_inspectors
https://edtechbooks.org/elearning_hacker/generative_artificial_intelligences
https://edtechbooks.org/elearning_hacker/html
https://edtechbooks.org/elearning_hacker/document_object_model

65Common HTML Elements

73Common HTML Attributes

79Cleaning HTML

85Helpful HTML Snippets

87CSS

89Bootstrap

101Common CSS Properties

107JavaScript

109JavaScript Listeners

111JavaScript Basics

115JSON

119jQuery

123REST APIs

125xAPI

131LilxAPI

137LilxAPI in Storyline 3

141Canvas

143Canvas Icons and Buttons

147Web Scraping

149Legalities and Ethics

151Extracting HTML Elements from a Web Page using JavaScript

157Extracting Structured Content with an API and JavaScript

161Glossary

https://edtechbooks.org/elearning_hacker/common_html_elements
https://edtechbooks.org/elearning_hacker/common_html_attributes
https://edtechbooks.org/elearning_hacker/cleaning_html
https://edtechbooks.org/elearning_hacker/helpful_html_snippets
https://edtechbooks.org/elearning_hacker/css
https://edtechbooks.org/elearning_hacker/bootstrap
https://edtechbooks.org/elearning_hacker/common_css_properties
https://edtechbooks.org/elearning_hacker/javascript
https://edtechbooks.org/elearning_hacker/javascript_listeners
https://edtechbooks.org/elearning_hacker/javascript_basics
https://edtechbooks.org/elearning_hacker/json
https://edtechbooks.org/elearning_hacker/jquery
https://edtechbooks.org/elearning_hacker/rest_apis
https://edtechbooks.org/elearning_hacker/xapi
https://edtechbooks.org/elearning_hacker/lilxapi
https://edtechbooks.org/elearning_hacker/lilxapi_in_storyline_3
https://edtechbooks.org/elearning_hacker/canvas
https://edtechbooks.org/elearning_hacker/canvas_icons
https://edtechbooks.org/elearning_hacker/web_scraping
https://edtechbooks.org/elearning_hacker/legalities_and_ethics
https://edtechbooks.org/elearning_hacker/extracting_information_from_a_web_page
https://edtechbooks.org/elearning_hacker/extracting_structured_content_with_an_api_and_javascript
https://edtechbooks.org/elearning_hacker/glossary

EdTech Books

CC BY: This work is released under a CC BY license, which means that you are free to do with it as you please as
long as you properly attribute it.

The publisher EdTech Books does not have a physical location, but its primary support staff operate out of Provo,
UT, USA.

The publisher EdTech Books makes no copyright claim to any information in this publication and makes no claim as
to the veracity of content. All content remains exclusively the intellectual property of its authors. Inquiries regarding
use of content should be directed to the authors themselves.

URL: https://edtechbooks.org/elearning_hacker

Kimmons, R. (2023). Becoming an eLearning Hacker. EdTech Books. https://edtechbooks.org/elearning_hacker

https://edtechbooks.org/user/1
https://edtechbooks.org/elearning_hacker
https://edtechbooks.org/license/cc_by

Royce Kimmons

Brigham Young University

Royce Kimmons is an Associate Professor of Instructional Psychology and
Technology at Brigham Young University where he seeks to end the effects of
socioeconomic divides on educational opportunities through open education and
transformative technology use. He is the founder of EdTechBooks.org,
open.byu.edu, and many other sites focused on providing free, high-quality learning
resources to all. More information about his work may be found at
http://roycekimmons.com, and you may also dialogue with him on Twitter
@roycekimmons.

EndorseLike this? Endorse it and let others know.

https://edtechbooks.org/user/1
https://edtechbooks.org/user/1
https://edtechbooks.org/user/1
https://edtechbooks.org/
https://open.byu.edu/
http://roycekimmons.com/
https://twitter.com/roycekimmons
https://edtechbooks.org/elearning_hacker?tab=endorsements
https://edtechbooks.org/elearning_hacker?tab=endorsements

This book was designed to be used in conjunction with formal learning activities focused on eLearning development. In
this project-based approach, learners are expected to complete the following projects as tasks that give meaningful
context to the instructional content of the book.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/projects.

Scrape Internet Data

Create a Helpful JavaScript Function

Develop a Micro eLearning Module

1

https://edtechbooks.org/elearning_hacker/projects
https://edtechbooks.org/elearning_hacker/scrape_internet_data
https://edtechbooks.org/elearning_hacker/create_a_helpful_javascript_function
https://edtechbooks.org/elearning_hacker/elearning_module
https://edtechbooks.org/license/cc_by

2

Project 1

Data Internet Web Scraping

Identify a research question you'd like to answer by collecting a large amount of data from the Internet. Then, generate a
Google Sheet or Microsoft Excel spreadsheet of a set of Internet data from one or more sites or from an API. Once you
have collected the data, use the spreadsheet to recode and manipulate the data to answer your research question.

To successfully complete this project, you must do the following:

Adhere to relevant legal and ethical requirements for this project, including adhering to terms of use requirements,
copyright laws, and anti-hacking laws.
Use JavaScript and a web browser inspector or IDE to collect the data.
Include at least 1,000 lines of initial data.
Parse and structure the data appropriately to answer your question.
Provide additional analysis in the spreadsheet and an answer to your question.
Disclose how (if at all) you used AI.

You may ask any question you like, as long as it is answerable using internet data. Some examples might include the
following:

What trends exist for research articles published on the topic of open education?
What external domains does a website link to?
What percentage of images on a school's website have an appropriate alt attribute?
How does the sentence complexity in a Jane Austen novel compare to modern novels?
What is the frequency of feminine and masculine pronoun use in classical literature?

3

https://edtechbooks.org/keyword/497
https://edtechbooks.org/keyword/498
https://edtechbooks.org/keyword/1970

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/scrape_internet_data.

4

https://edtechbooks.org/elearning_hacker/scrape_internet_data
https://edtechbooks.org/license/cc_by

Project 2

JavaScript

eLearning professionals find themselves working in a variety of online systems, but JavaScript tends to be a common
language across most tools that use HTML/CSS that can be used for streamlining workflows and creating shortcuts.

Create a JavaScript function that can be useful for other professionals or researchers. It should abide by legal and
ethical requirements and should have one of the following contexts:

A Standard Website
Canvas
EdTech Books

Then, test your function on at least 10 different pages in your context to ensure that it behaves the way you anticipate.
Debug and improve your function as needed.

The possibilities here are endless, but some useful categories of functions might include the following:

Find something on the page (e.g., images, headings)
Analyze something on the page (e.g., word count, readability, accessibility features)
Change something on the page (e.g., resize images, strip unwanted content, capitalize terms, replace double
spaces).

In any case, be sure that you are providing an appropriate output for your function. For instance, if you are finding
content, then you would want the output to show as a table or a list, while if you are changing content, you might just
want to notify your user that the change occurred.

5

https://edtechbooks.org/keyword/1961

You can also combine find, analyze, and change functions, such as by analyzing the word count of a page in Canvas and
then appending the results to the page so that readers can see it.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/create_a_helpful_javascript_function.

6

https://edtechbooks.org/elearning_hacker/create_a_helpful_javascript_function
https://edtechbooks.org/license/cc_by

Project 3

eLearning HTML CSS

eLearning scenarios are commonly organized into short modules to allow for micro-learning and easier remixing. Any
given module tends to focus on a small handful of learning objectives that may be accomplished in a relatively short
amount of time, such as a single sitting, class session, or week.

In JSFiddle or another IDE, create a short eLearning module that teaches a single concept or objective with an
anticipated completion time of 10 minutes. The module may use existing third-party libraries, such as Bootstrap, and
existing content as long as you are allowed to use the content. The module should include the following:

At least one learning objective or goal
At least four headings, and at least two levels of headings (e.g., H1 and H2)
At least five paragraphs of text
At least three images, diagrams, figures, or lists
At least one table
At least one callout box, blockquote, or other visually offset piece of content
At least one embedded media object, such as a YouTube video

The module should rely upon CSS (or library-based) formatting whenever possible and should avoid common poor
practices as described here.

7

https://edtechbooks.org/keyword/417
https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/elearning_hacker/bootstrap
https://edtechbooks.org/elearning_hacker/common_html_elements#H2_4hnc9
https://edtechbooks.org/elearning_hacker/common_html_elements#H2_4hnc9

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/elearning_module.

8

https://edtechbooks.org/elearning_hacker/elearning_module
https://edtechbooks.org/license/cc_by

Challenges are short activities to help you apply what you are learning. They are intended to be done in conjunction with
a course and to be shared with an instructor and peers. For many challenges, there may be multiple solutions, so the
provided solutions are simply examples of how the challenge could be completed.

Hack a Website (well, sort of...)

Get All Email Addresses from a Staff Directory

Analyze Pronoun Usage in Tolstoy's Novels

Use LMS System Classes in Your Custom Content

Determine the Flesch-Kincaid Grade Level of Content on Any Website

Get the Navigation Outline of a Google Doc as a Table

Create a Bootstrap Web Page

Format a Poem Using Bootstrap

Format Images into a Grid Using Bootstrap

Format a Document Using Bootstrap

Remove Unnecessary HTML

Create Some JavaScript Listener Buttons

Dynamically Fetch Content via a REST API and Include it in Your Module

Use an AI (via a REST API) to Generate a Summary of Your Module's Content

Retrieve Dynamic Web Data in Google Sheets or Microsoft Excel

9

https://edtechbooks.org/elearning_hacker/hack_a_website
https://edtechbooks.org/elearning_hacker/get_all_email_addresses_from_a_staff_directory
https://edtechbooks.org/elearning_hacker/analyze_pronoun_usage_in_tolstoys_war_and_peace
https://edtechbooks.org/elearning_hacker/use_lms_classes_in_your_custom_content
https://edtechbooks.org/elearning_hacker/create_a_fleschkincaid_grade_level_checker
https://edtechbooks.org/elearning_hacker/get_the_navigation_outline_of_a_google_doc_as_a_table
https://edtechbooks.org/elearning_hacker/create_a_bootstrap_web_page
https://edtechbooks.org/elearning_hacker/format_a_poem_using_bootstrap
https://edtechbooks.org/elearning_hacker/format_images_into_a_grid_using_bootstrap
https://edtechbooks.org/elearning_hacker/format_a_document_using_bootstrap
https://edtechbooks.org/elearning_hacker/remove_unnecessary_html
https://edtechbooks.org/elearning_hacker/create_some_javascript_listener_buttons
https://edtechbooks.org/elearning_hacker/dynamically_fetch_content_via_a_rest_api_and_include_it_in_your_module
https://edtechbooks.org/elearning_hacker/use_an_ai_via_a_rest_api_to_generate_a_summary_of_your_modules_content
https://edtechbooks.org/elearning_hacker/retrieve_dynamic_web_data_in_google_sheets_or_microsoft_excel

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/challenges.

10

https://edtechbooks.org/elearning_hacker/challenges
https://edtechbooks.org/license/cc_by

Challenge 1

Changing Website Content and Formatting with the Inspector

HTML CSS

Figure 1

Example of a Screenshot of a Website Manipulated with the Inspector

11

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1960

Nowadays, people seem to think that a screenshot of a website is reliable evidence. Is this true? We need some
examples of how websites can be manipulated in such a way that screenshots will provide misleading information.

Using the Chrome Inspector, access 5 different websites and change their content or formatting in unexpected
ways. Take screenshots of your changes, post them to a class discussion board, and briefly explain what you did. Try to
be creative and do things that others have not thought of.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/hack_a_website.

12

https://edtechbooks.org/elearning_hacker/hack_a_website
https://edtechbooks.org/license/cc_by

Challenge 2

JavaScript jQuery

Your employer wants you to send an email to all faculty in the McKay School of Education, but you do not have a
complete email list. You need everyone's email in the organization in a way that you can send them an email blast in
Microsoft Outlook.

Get all emails from a website as a comma-separated list.

Solution

There are many ways of doing this, but in looking at the webpage in the Inspector, notice that the cells with the
email addresses all have the class "col-md-4". You also run $() in the Inspector Console and notice that jQuery
is available. So, you might try running the following jQuery command in the Inspector Console to see if this at
least gets the right data:

$('.col-md-4')

Though the results look accurate, there's also a lot of unnecessary spacing and returns in the data (e.g., "/n"). So,
you can ask an AI the following prompt:

find the text of all '.col-md-4' elements and return them as an array with the contents
trimmed of white space and returns

ChatGPT returns the following:

const colMd4Elements = document.querySelectorAll('.col-md-4');
const trimmedTextArray = [];
colMd4Elements.forEach(element => {
 const text = element.textContent.trim();

13

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1971
https://education.byu.edu/directory
https://education.byu.edu/directory

 trimmedTextArray.push(text);
});
console.log(trimmedTextArray);

Run this in the Inspector Console, and you will get the following results:

This can then be copied into Outlook or elsewhere.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/get_all_email_addresses_from_a_staff_directory.

14

https://edtechbooks.org/elearning_hacker/get_all_email_addresses_from_a_staff_directory
https://edtechbooks.org/license/cc_by

Challenge 4

JavaScript

Advocates for women's rights and representation in arts and literature regularly point out that women are often treated
as subordinate to men or as taking supportive roles to men in books, movies, etc. Can we find evidence for this in
classical literature? What about cases where women are the title characters of novels?

Compare pronoun frequency and usage in two of Tolstoy's most well-known works, War and Peace and Anna Karenina,
to see if masculine and feminine characters have similar treatment in each work. The full text of each work is available
as HTML through Project Gutenberg.

Solution

Most natural language processing tasks like this will require complex libraries, but we'll just ask an AI to provide
some simple word frequency counts of the pronouns 'he', 'him', 'his', 'she', 'her', and 'hers'.

Here's an example of a prompt we could use:

using javascript in the inspector console, do a word frequency count on the contents of a web
page for the terms "he", "him", "his", "her", "hers", and "she" and provide results as a table

ChatGPT produced the following:

// Define the target words
 const targetWords = ['he', 'him', 'his', 'she', 'her', 'hers'];

 // Function to count the occurrences of target words in text
 function countWords(text) {
 const wordCounts = {};
 const words = text.toLowerCase().split(/\s+/); // Tokenize text by spaces

15

https://edtechbooks.org/keyword/1961
https://www.gutenberg.org/ebooks/author/136

 for (const word of words) {
 if (targetWords.includes(word)) {
 wordCounts[word] = (wordCounts[word] || 0) + 1;
 }
 }

 return wordCounts;
 }

console.table(countWords(document.body.textContent))

For War and Peace, the results are as follows:

And here are the results for Anna Karenina:

If we take these results and summarize them in a spreadsheet, we get the following:

War and Peace Anna Karenina

Frequency % Frequency %

Masculine as Subject 9,298 74.25% 7,305 63.72%

Feminine as Subject 3,225 25.75% 4,159 36.28%

Masculine as Object 10,663 72.83% 6,858 63.21%

Feminine as Object 3,977 27.17% 3,992 36.79%

From this, we see that males seem to drive the narrative of each book, with a rate of 3-to-1 for War and Peace
and 2-to-1 for Anna Karenina, despite the fact that the latter has a woman as the titular character.

Does this pattern continue in other classical works written by women, like for instance, Jane Austen or Emily
Bronte?

16

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/analyze_pronoun_usage_in_tolstoys_war_and_peace.

17

https://edtechbooks.org/elearning_hacker/analyze_pronoun_usage_in_tolstoys_war_and_peace
https://edtechbooks.org/license/cc_by

18

Challenge 5

CSS LMS

Like any website, Learning Management Systems (LMS) use CSS to format content, such as buttons, images, progress
bars, etc. Because this CSS is already on the page, you can use it in your own content in LMS modules by using the
correct classes.

For instance, if you inspect a button in Canvas, you will notice that it uses the "btn" class. If you use this same class in
your own content, you can mimic the formatting.

Another example is icons. If you look at the HTML for a notification icon, you might see something like the following:

<i class="icon-announcement"></i>

This can then be used in your own content to use the same icon. Simply paste it into your inspector or into the HTML
editor.

Create some of your own content in a LMS and use the LMS's built-in CSS classes to format your content in ways not
provided by the WYSIWYG editor. Include at least 5 class-based formatting elements from the LMS.

19

https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/1963

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/use_lms_classes_in_your_custom_content.

20

https://edtechbooks.org/elearning_hacker/use_lms_classes_in_your_custom_content
https://edtechbooks.org/license/cc_by

Challenge 6

JavaScript

The reading level of learning materials can impose unnecessary cognitive load and access barriers to learners. As a
learning designer, you should ensure that any content you create or include in learning experiences is suitable for the
reading level of your learners.

Create an Inspector Snippet that you can run on any webpage to test the Flesch-Kincaid Grade Level of the webpage.

Solution

Here's an example of a prompt we could use:

using js in the inspector, calculate a web page's flesch-kincaid grade level score

In ChatGPT, this returned the following, which could be saved as a Snippet and run on any page:

// Function to calculate the Flesch-Kincaid Grade Level score
function calculateFleschKincaid(text) {
 // Split the text into sentences
 const sentences = text.match(/[^.!?]+[.!?]+/g) || [];

 let totalWords = 0;
 let totalSyllables = 0;

 // Calculate the total number of words and syllables
 sentences.forEach((sentence) => {

21

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/elearning_hacker/web_browser_inspectors#H2_zvt2q

 const words = sentence.split(/\s+/);
 totalWords += words.length;

 words.forEach((word) => {
 totalSyllables += countSyllables(word);
 });
 });

 // Calculate the Flesch-Kincaid Grade Level score
 const averageWordsPerSentence = totalWords / sentences.length;
 const averageSyllablesPerWord = totalSyllables / totalWords;

 const score =
 0.39 * averageWordsPerSentence +
 11.8 * averageSyllablesPerWord -
 15.59;

 return score.toFixed(2);
}

// Function to count syllables in a word
function countSyllables(word) {
 word = word.toLowerCase().replace(/[^a-z]/g, '');
 if (word.length <= 3) return 1;
 word = word.replace(/(?:[^laeiouy]es|ed|[^laeiouy]e)$/g, '');
 word = word.replace(/^y/, '');
 return (word.match(/[aeiouy]{1,2}/g) || []).length;
}

// Get the text content of the web page
const textContent = document.body.textContent || '';

// Calculate the Flesch-Kincaid Grade Level score and log it to the console
const score = calculateFleschKincaid(textContent);
console.log(`Flesch-Kincaid Grade Level Score: ${score}`);

22

https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/create_a_fleschkincaid_grade_level_checker.

23

https://edtechbooks.org/elearning_hacker/create_a_fleschkincaid_grade_level_checker

24

Challenge 7

Google Docs creates a navigation outline on the left sidetray that is useful for navigating a document. Your employer
wants to see a copy of this outline in a Google Sheet so that they can more easily get a sense for the size and structure
of the document.

Using JavaScript in the Inspector Console, get the titles of a document's navigation outline items as a table that can be
copy/pasted to a spreadsheet.

Solution

Here's an example function that could work:

// Find all elements with the class "navigation-item"
const navigationItems = document.querySelectorAll('.navigation-item');

// Create an array to store the text content of the navigation items
const navigationText = [];

// Iterate through the elements and add their text content to the array
navigationItems.forEach((item) => {
 navigationText.push({
 'Navigation Item': item.textContent.trim()
 });
});

// Display the results in a table in the console
console.table(navigationText);

25

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/get_the_navigation_outline_of_a_google_doc_as_a_table.

26

https://edtechbooks.org/elearning_hacker/get_the_navigation_outline_of_a_google_doc_as_a_table
https://edtechbooks.org/license/cc_by

Challenge 8

HTML CSS Bootstrap

Often when working in an online system, you do not have access to edit the CSS itself, but you do have existing libraries
within the system that you can draw upon to format your content. Bootstrap is one common library that exists on many
web pages.

In JSFiddle or another IDE, create a webpage that uses the Bootstrap library. Place some dummy content in your web
page, and modify the HTML to show the following Bootstrap-formatted elements (without adding any CSS):

A green success button
A paragraph with a black background and white text
A red alert message
A yellow progress bar at 50% completion
A rounded blockquote element with a shadow

Also be sure that you are using appropriate padding and margins throughout.

Solution

27

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/2041
https://edtechbooks.org/elearning_hacker/bootstrap

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/create_a_bootstrap_web_page.

28

https://edtechbooks.org/elearning_hacker/create_a_bootstrap_web_page
https://edtechbooks.org/license/cc_by

Challenge 9

Bootstrap

Formatting textual and other content in HTML can seem tricky, but applying a few simple tags (e.g., p, br) and classes
can make a huge difference!

Format the following HTML into a nice-looking poem that properly separates stanzas. Also be sure to do the following:

Make the title a heading.
Italicize the subtitle and make it larger.
Make the stanzas properly spaced (with spacing between every fourth line, but no spacing within the stanza).
Apply reasonable margins and spacing to the body and to all elements on the page.
Make the image a reasonable size.
Do anything else you think would look good.

Solution

29

https://edtechbooks.org/keyword/2041

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/format_a_poem_using_bootstrap.

30

https://edtechbooks.org/elearning_hacker/format_a_poem_using_bootstrap
https://edtechbooks.org/license/cc_by

Challenge 10

Bootstrap

Organizing content horizontally on a webpage can be challenging, but Bootstrap gives us tools to do this more
efficiently and in a way that is responsive to different screen sizes.

Reformat the provided webpage into a structure that is more user-friendly. Do the following:

Wrap all images into a single div element with class row.
Make the first row of images show only three images and fill the whole screen.
Make the next two rows show four images and fill the whole screen.
Make any remaining rows of images show up six to a row.
Add some padding.
Make the first row of images change so that each image fills the screen when the screen width is smaller than sm.
Do something else cool, too.

Solution

31

https://edtechbooks.org/keyword/2041

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/format_images_into_a_grid_using_bootstrap.

32

https://edtechbooks.org/elearning_hacker/format_images_into_a_grid_using_bootstrap
https://edtechbooks.org/license/cc_by

Challenge 11

Bootstrap

In eLearning development, you often have to reformat documents created in word processing or other applications for
the web.

Reformat this book chapter by doing the following:

Adjust the notifications at the top of the page to only show on specific screen width breakpoints (hint: look up the
d-block and d-none classes in Bootstrap)
Make the first image fill the screen on all screen sizes.
Make the second image flexible so that it fills the screen on small screen sizes but floats on medium and larger
ones.
Wrap the "Additional Readings" section in a callout box of some kind.
Make the "Additional Readings" section float to the right on larger screen sizes.
Make the table rows striped.
Create a custom class called "reference" that applies a hanging indent to the reference item (hint: you'll need to use
CSS for this).
Make the YouTube video fill the screen and adapt to screen size (hint: look up the ratio class in Bootstrap).
Adjust padding and margins to make it look better.
Do anything else that you think would make it nicer.

Solution

33

https://edtechbooks.org/keyword/2041

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/format_a_document_using_bootstrap.

34

https://edtechbooks.org/elearning_hacker/format_a_document_using_bootstrap
https://edtechbooks.org/license/cc_by

Challenge 12

HTML

You will often find yourself working with imported HTML that contains a lot of unnecessary information. This is a
problem because it makes it harder to correct formatting mistakes and increases download sizes.

In the following web page, remove all unnecessary HTML information (e.g., elements, attributes) to make the HTML use
as few characters as possible without significantly changing its visual formatting. Check the console read out to see the
number of characters on each run.

I reduced it from 5,098 characters to 624 characters, which is a reduction of 88%. How about you?

Solution

35

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/remove_unnecessary_html.

36

https://edtechbooks.org/elearning_hacker/remove_unnecessary_html

Challenge 13

JavaScript Bootstrap

JavaScript Listeners can be very useful in eLearning development for allowing users to interact with a tool or its
content. Listeners might trigger visible changes to the page or behaviors that the user notices, or they might also be
used to store data about user behavior for analysis (as with click-level analytics).

Create a Bootstrap HTML page with at least 4 buttons. Give each button a unique ID, and make each button do
something different when it is clicked. For example, each button might show a different alert message. Or you can also
have an AI help you write what you would like to occur by providing it a prompt ike "in JS, add a new class to an HTML
element."

Do something creative and fun! Check out the solution Result tab for an example of a Harry Potter sorting hat.

Solution

37

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/2041
https://edtechbooks.org/elearning_hacker/javascript_listeners
https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/create_some_javascript_listener_buttons.

38

https://edtechbooks.org/elearning_hacker/create_some_javascript_listener_buttons

Challenge 14

JavaScript JSON REST API

Often you may want to include content from external sources that might be updated or adjusted over time, or you might want to include
a widget or another dynamic element in your content that you would like to stay up-to-date or that you would like to rebrand for your
purposes. Rather than copying and pasting such elements into your system as static entities, you can dynamically fetch them when the
page is loaded with a REST API call. You can also add listeners to only load contents at certain times, such as only loading a glossary
term if a learner asks for it.

In your module, dynamically fetch content from EdTech Books or another service using a REST API call and add the content to your
module. A simple and useful case would be fetching the definition to a term when a learner clicks on it.

Generic Dictionary Example from RapidAPI

EdTech Books Example

Be sure to update the JavaScript to use your own API key. Otherwise, it will not work.

39

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1990
https://edtechbooks.org/keyword/2097
https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/dynamically_fetch_content_via_a_rest_api_and_include_it_in_your_modu

40

https://edtechbooks.org/elearning_hacker/dynamically_fetch_content_via_a_rest_api_and_include_it_in_your_module

Challenge 15

AI JavaScript JSON REST API

There are all kinds of great AI tools out there that you can use in your work, and you can tap into many of them by using a REST API. In an
eLearning module, it's often useful to provide a summary of your content, and this is something that many AIs are trained to do.

Using a Large Language Model on Hugging Face (or another service), use a REST API call to summarize your module content. Then,
provide the summary in a box at the top of your page as a sort of abstract. The BART Large CNN model is a good one to start with. Note
that you will need to create an account with Hugging Face and get an access token before it will accept your data.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/use_an_ai_via_a_rest_api_to_generate_a_summary_of_your_modules_conte

41

https://edtechbooks.org/keyword/832
https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1990
https://edtechbooks.org/keyword/2097
https://huggingface.co/
https://huggingface.co/facebook/bart-large-cnn
https://edtechbooks.org/elearning_hacker/use_an_ai_via_a_rest_api_to_generate_a_summary_of_your_modules_content
https://edtechbooks.org/license/cc_by

42

Challenge 16

Spreadsheet software like Google Sheets and Microsoft Excel are great for organizing and visualizing data, but sometimes
getting data into the worksheet can be burdensome or the data may quickly become out-of-date. Being able to import dynamic
content into these spreadsheets simplifies visualization tasks and allows you to more easily retrieve up-to-date data.

Build some visualizations in Google Sheets or Microsoft Excel, but use data that is available on the web in such a way that the
visualization will update if the web data updates.

https://edtechbooks.org/impact
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://www.byu.edu/facts-figures

Google Sheets
The simplest way to do this with Google Sheets is to use one of the following functions, depending upon the format of your
source data:

ImportHTML
ImportData
ImportXML

43

https://edtechbooks.org/impact
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://www.byu.edu/facts-figures

Microsoft Excel
Excel can be scripted using TypeScript to import from web sources, such as JSON or CSV files. See LilxAPI for an example.

Example Google Sheet

Open in Google Spreadsheets

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/retrieve_dynamic_web_data_in_google_sheets_or_microsoft_exce

44

https://edtechbooks.org/elearning_hacker/lilxapi#H2_snm63
https://docs.google.com/spreadsheets/d/1DB-5YDFbOw1OmuMNkE2sKGa6DLEYyh4d4u6L8v0l0Jw/edit
https://edtechbooks.org/elearning_hacker/retrieve_dynamic_web_data_in_google_sheets_or_microsoft_excel
https://edtechbooks.org/license/cc_by

Use and acquire additional skills in one or more of the following tools:

HTML
CSS
JavaScript
JSON
APIs
AI
xAPI

Time expectation of 30 hours includes the following:

The product itself
Any tutorials, videos
Any reflections, posts

Some example projects might include the following:

45

Online course
eBook (e.g., Light + Learning, Jesus the Christ, Articles of Faith)
Learning tool or aid (e.g., scripture.edtechbooks.org)
Repository
Library (e.g., eLearning icon library)
Dataset (e.g., TechTrends)
Visualization tool (e.g., analytics dashboard)
Branding tool (e.g., IPT subaccount)
Browser extension (e.g., learning dev tools Chrome extension)

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/final_project.

46

http://scripture.edtechbooks.org/
https://edtechbooks.org/site?tab=resources
https://edtechbooks.org/elearning_hacker/final_project
https://edtechbooks.org/license/cc_by

Web Development

To complete the projects and activities in this book, you will benefit from the following free tools that will be referenced
throughout.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/essential_tools.

Integrated Development Environments (IDEs)

Web Browser Inspectors

Generative Artificial Intelligences (AIs)

47

https://edtechbooks.org/keyword/1959
https://edtechbooks.org/elearning_hacker/essential_tools
https://edtechbooks.org/elearning_hacker/integrated_development_environments
https://edtechbooks.org/elearning_hacker/web_browser_inspectors
https://edtechbooks.org/elearning_hacker/generative_artificial_intelligences
https://edtechbooks.org/license/cc_by

48

HTML Web Development CSS JavaScript

An Integrated Development Environment (IDE) is a tool for creating and testing code. There are many free IDEs that are
common, and you will need to use one to complete the projects. Some popular examples include the following:

VisualStudio
JSFiddle
CodePen

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/integrated_development_environments.

49

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/1961
https://visualstudio.microsoft.com/
https://jsfiddle.net/
https://codepen.io/
https://edtechbooks.org/elearning_hacker/integrated_development_environments
https://edtechbooks.org/license/cc_by

50

HTML Web Development CSS JavaScript

Most modern web browsers have an inspector feature that allows you to see what's going on under-the-hood and to do
some advanced things to web pages you have loaded, such as seeing their HTML source and running Javascript
commands on loaded content. Inspectors are extremely helpful in eLearning work as they allow you to troubleshoot,
test, design, and develop content and tools more easily.

Each browser is different, but this book will focus primarily on Chrome and the Chrome Inspector.

To access the Inspector, open a web page in your browser, right-click anywhere on the page, and choose Inspect.

Figure 1

Typical Inspector View

This will open a panel on either the side or bottom of the browser window. In this panel, you'll find many tabs and
options. A few that are of most importance for us at this point include the following: HTML Source, Styles, Device View,
and Console.

51

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/1961

You can view the full HTML of the active page under the Elements tab. Expand or contract elements to see nested
elements inside. You can also directly edit the HTML and see changes applied in the active page. You can also right-
click on any element on the page and click Inspect, and it will jump to that element in the HTML Source View.

Figure 2

The HTML Source View and Editor

To change content or a value, double-click on it, and then type your new content or value. For instance, try double-
clicking a <p> element and changing the text inside it.

The HTML Source Viewer and Editor is useful for seeing the structure of a page, finding problems, and extracting
content.

The Styles panel is also found in the Elements tab but allows you to see and edit the active CSS styles of the element
selected in the HTML Source Editor. To edit the HTML element's (and any similar elements') CSS, select the element in
the HTML Source Editor and double-click in the element.style{ } area of the Styles panel. Then you can type any
CSS you'd like.

Figure 3

The Styles Panel

52

For instance, try selecting the <body> HTML element and in the element.style { } area, type color:
pink; and hit enter. This should change the font color of all of your text on your page to pink (unless you have other
styles applied to specific text elements).

In this panel, you can also see all of the CSS styles that are applied to each element. This is helpful for finding the
source of formatting options and adjusting them across an entire site.

Since you are likely creating content for a variety of device types, it's helpful to be able to see how your content will be
rendered on different screen sizes and device types. By clicking the Toggle device toolbar button, you will then
be able to adjust the size of your viewing area to match your target user's device.

Try viewing the page with three or four different device settings and see how it effectively adapts (or fails to adapt) to
the different views.

The Device View is essential for testing your product's accessibility and adaptability.

The console allows you to run Javascript commands and to see errors and messages that are typically hidden from
page viewers.

Figure 4

The Console

53

To run a command, click next to the carat and type your command. For instance, try typing alert("Hello
there!"); and hit enter. You should see a pop-up that says "Hello there!"

Also notice that the Console tracks your commands, so you can rerun or edit a previous command by simply pressing
the up arrow key.

The Console is useful for developing Javascript functions for your applications, for testing website features, or for
extracting content from a page.

Challenge: Find the Hidden Email Addresses

There are seven (7) hidden email addresses on this page. Can you find them using the inspector?

As a bonus, can you make them all visible? (Hint: The "d-none" class is what is making them invisible.)

Once you've found them, run the following JavaScript in the Inspector Console to see some magic happen:

$('.d-none').removeClass('d-none').css('font-size','30px').css('color','blue');

In the Inspector, you can also store Snippets of JavaScript in the Source > Snippets panel. This is especially
useful if you plan to run the same code over and over again on different webpages and allows you to build a library of
solutions that you an easily access in the future.

54

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/web_browser_inspectors.

55

https://edtechbooks.org/elearning_hacker/web_browser_inspectors
https://edtechbooks.org/license/cc_by

56

Artificial Intelligence HTML Web Development CSS JavaScript jQuery

Generative Artificial Intelligence (AI) has many uses for eLearning developers, but the main way I will be encouraging
you to use it in this book and with these projects is to help you remember and generate HTML, CSS, JavaScript, and
jQuery syntax.

These tools change and improve rapidly, and for the purposes of this book, you may use any AI that you have available
to you. Some of the more popular ones at present include the following:

ChatGPT
GitHub Copilot
CodeWhisperer

The quality of output you receive from an AI is directly influenced by the quality of prompt you provide. For our
purposes, you generally should include four things in any prompt: the language or syntax, the target document or
product, the desired action or format, and any parameters to operate within.

Here are a few examples of useful AI prompts to try:

In JavaScript, select all links from a web page, and return their URLs as a comma-separated list.

Create a boilerplate HTML document for an eLearning module that includes an external CSS, an external
Javascript file, the jQuery library, and Bootstrap.

Create a CSS definition for blockquotes that indents the text, makes it italicized, and changes the color to
a dark grey.

Create a jQuery function that detects when a link on the page is clicked and sends the event to an API for
collection.

In Bootstrap, make an accordion that expands and contracts when clicked. Then, send the state of the
accordion as an event to the API.

Additionally, many AIs remember your previous prompts and can build upon them. So, if you used the third prompt
above and then decided you wanted the color to be blue, you could just provide a prompt like "make the text blue

57

https://edtechbooks.org/keyword/823
https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1971
https://chat.openai.com/
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer/

instead" to receive an updated version of the answer. If the output doesn't work the way you anticipate, you can also let
the AI know about your unexpected behavior or any errors that you receive so that it can try to provide a better solution.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/generative_artificial_intelligences.

58

https://edtechbooks.org/elearning_hacker/generative_artificial_intelligences
https://edtechbooks.org/license/cc_by

HTML Web Development

HTML stands for Hypertext Markup Language, and it's made up of bracketed tags (or elements) that tell a web browser
how to format and treat content.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/html.

Document Object Model (DOM)

Common HTML Elements

Common HTML Attributes

Cleaning HTML

Helpful HTML Snippets

59

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/elearning_hacker/html
https://edtechbooks.org/elearning_hacker/document_object_model
https://edtechbooks.org/elearning_hacker/common_html_elements
https://edtechbooks.org/elearning_hacker/common_html_attributes
https://edtechbooks.org/elearning_hacker/cleaning_html
https://edtechbooks.org/elearning_hacker/helpful_html_snippets
https://edtechbooks.org/license/cc_by

60

HTML JavaScript

Webpages are structured as Document Object Models (DOMs), which just means that the content of any webpage is
organized as nested HTML elements, as in Figure 1.

Figure 1

An Example of a Webpage Document Object Model (DOM)

href

text

href

text

document

<html>

<head>

element

attribute

text node

<body>

<title> text

<h1> text

<a>

<p>

<...>

href

text

<a>

<a>

class

Each element can have attributes that provide information about it and can encapsulate other elements or a text node,
which has a string.

61

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1961

Figure 2

Structure of an HTML Element

</p>

<p

>

This is the text of my paragraph.

id paragraph1

class my-paragraphs

style background: blue;

The DOM ensures that content on a web page is not just randomly represented but is displayed and accessed in a
structured manner.

When working within a web-based editor as a content editor, such as a WYSIWYG editor in a LMS or CMS, you are
typically only editing a very small part of the DOM, as in Figure 3.

Figure 3

The eLearning Content Editor's Editable Part of a DOM within a LMS or CMS

62

document

<html>

<head>

<body>

<title>

<meta>

<style>

<nav>

<div>

<footer>

Your editable content

<h1>

The caveat to this is that if you are able to run JavaScript on the page, then you can manipulate any part of the DOM as
you would like. This is why many platforms restrict who can create JavaScript that runs on the page, because if you can
include some JavaScript in your editable area, then you can adjust content on the page outside of your editable area,
such as the navigation, headings, styles, etc.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/document_object_model.

63

https://edtechbooks.org/elearning_hacker/document_object_model
https://edtechbooks.org/license/cc_by

64

HTML Web Development

There are currently about 150 HTML element types used on the web, but to be successful in eLearning work, there are
only 20 or so that you really need to know. Here are the most important ones with brief descriptions.

Tag Name Description Key Attributes

Document-Level Tags

<head> Header
(Machine)

This header is invisible to users, includes metadata, loads
necessary formatting for the page, and does other things
behind the scenes.

<title> Title This is used in the header to set the title of the page to be
shown in the browser tab.

<link> Linked Files This is used in the header to identify linked stylesheets that
are shared between multiple pages.

src="[link to the file]"

<script> JavaScript This is used in the header or in the body to include JavaScript
code or to include an external Javascript file.

src="[link to the file]"

<body> Body This is the main content area of a page.

Content-Level Tags

<article> Article Within the body, this is the main organizer for content. For
instance, if you have a list of blog posts, each post would be a
separate article.

<h1>
<h2>
<h3>
<h4>
<h5>
<h6>

Headings Headings are used to designate titles and subtitles in a page,
with H1 being the highest level (e.g., the title of the page) and
H6 being the lowest (e.g., a section title nested deeply below
other sections).

65

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959

Tag Name Description Key Attributes

<a> Link A hyperlink to another page or section within a page. href="[link to the
target]"

<nav> Navigation A navigation menu or area.

<p> Paragraph A paragraph of content.

 Break Return A hard break in content. This should typically only be used if
you need to separate content within a paragraph, such as with
a poem. Notice also that the tag is self-closing, so no content
should be inside it.

<table> Table A content table (see Tables below).

<form> Form A form for accepting input from users. method="POST/GET"
action="[URL]"

<input> Input Accepts user-submitted content for a form (e.g., a textfield). value="[value]"

<button> Button An interactive element (typically used with JavaScript) to
change the page in some way.

<blockquote> Blockquote An indented paragraph of content.

 Emphasis or
Italic

Italicizes content, making it slanted.

 Strong or
Bold

Bolds content, making it darker.

 Image Embeds an image file. src="[link to the file]"
alt="[description]"

<audio> Audio Embeds an audio file. src="[link to the file]"
alt="[description]"

<video> Video Embeds a video file. src="[link to the file]"
alt="[description]"

List A list of content, either Unordered (using bullets) or Ordered
(using numbers).

<sup>
<sub>

Superscript
Subscript

These are used for exponents and scientific notation, such as
E=mc (superscript) and H O (subscript).

Tables are great for organizing and visualizing content (especially data), but they use a number of specific tags in
specific orders, and there are some basic rules you must follow to make sure that tables are accessible and rendered
properly. In addition, tables should not be used simply to visually layout content (e.g., to place two images side by
side). Instead, you should use CSS properties for strictly visual manipulation.

2
2

66

The tags you should know for tables include the following:

Tag Name Description

<table> Table This is the enclosing tag for the entire table.

<thead> Header This encloses all of the header content for the table, such as labels for columns.

<tbody> Body This encloses the body content of the table.

<tr> Row This encloses a row of cells.

<th> Cell Heading This is a heading cell.

<td> Cell Content This is a content cell.

Tables are laid out top to bottom, and then rows are laid out left to right. All tables should follow this basic structure:

<table>
 <caption>Here's the optional caption.</caption>
 <thead>
 <tr>
 <th></th>
 <th>Column A</th>
 <th>Column B</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Row 1</th>
 <td>Content 1A</td>
 <td>Content 1B</td>
 </tr>
 <tr>
 <th>Row 2</th>
 <td>Content 2A</td>
 <td>Content 2B</td>
 </tr>
 </tbody>
</table>

This would render as follows:

Column A Column B

Row 1 Content 1A Content 1B

Row 2 Content 2A Content 2B

Here's the optional caption.

Visually, tables are laid out as follows:

Figure 1

67

Visual layout of a table from top-to-bottom and left-to-right

Figure 2

Visual layout of a table with tags

Here are a few things to notice:

1. The caption is included first but is actually rendered last. The position and style of the caption (first or last)
depends on your CSS settings.

2. The first <th> element is intentionally left empty or blank but must be included so that the columns line up
properly.

3. Instead of manually bolding or italicizing headers, we use the semantic <th> identifier instead of <td> . This
communicates to indexers and screen readers that the heading applies to a column or row.

68

Lists all follow the same structure of defining the list with or tags and then including tags for
each list item within them. Here's an example:

 Apple
 Banana
 Orange

This would render as follows:

Apple
Banana
Orange

Changing the encapsulating to would make it numbered instead of bulleted, as follows:

1. Apple
2. Banana
3. Orange

To indent (or nest) lists, you simply include new lists within list items, as follows:

 Fruits

 Apple
 Banana

 Vegetables

 Carrot
 Broccoli

This would render as follows:

1. Fruits
1. Apple
2. Banana

2. Vegetables
1. Carrot
2. Broccoli

Following this pattern, you can make infinitely nested lists as necessary. However, you should avoid including other tags
within lists, such as <p> , , etc. as they can quickly confuse lists and influence their structure and rendering.

69

Just as there are common HTML elements that everyone should know and use, there are also some that are typically
misused. Here are some of the most important to be aware of with explanations.

Tag Name Description

<iframe> IFrame This embeds one page within another and is often used to embed external resources. It can
be used properly, but it is often a security risk and poses problems for browsers because you
cannot control the content within the frame.

<table>*

* for
layouts

Table Tables are great for data, but sometimes people use them for laying out content (e.g.,
creating rows and columns of images). This can pose serious accessibility problems and
should be avoided.

 Span Spans have no semantic meaning but basically allow you to apply formatting to a chunk of
content. They can be useful for visually adjusting content, but screen readers and other
machine applications have difficulty making sense of them. They are also often used
frequently for no reason, which makes the HTML messy and bloated.

<div> Division
Layer

Similar to spans, divs have no semantic meaning, and though they can (and should) be used
effectively in web development, most of the time eLearning and content developers don't
need to use them.

<i> Italic The tag is preferred to the <i> tag because it is more semantic. They appear the same
to the reader.

 Bold The tag is preferred to the because it is more semantic.They appear the same
to the reader.

style="" Style
Attribute

Editing the style attribute of an HTML element to change its formatting is not always bad, but
if you are changing style attributes across multiple elements in the same way (e.g., making
the text larger in multiple paragraph elements), then you should instead rely upon CSS.

70

https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/common_html_elements.

71

https://edtechbooks.org/elearning_hacker/common_html_elements

72

HTML Web Development

Attributes are invisible key-value pairs that are included inside HTML elements (or tags) to assign information to the
element, such as:

<p attribute-key="attribute-value">Example paragraph</p>

These general attributes are constantly used and are extremely useful.

id
Assign a unique identification string to an element. This is useful for referencing the element with CSS or JavaScript.

<p id="paragraph1">Example paragraph</p>

Once this paragraph is assigned the id "paragraph1" we can then write CSS either in our header or an external file to
format it, as follows:

p#paragraph1 { color: blue; }

When referencing an element with an id in CSS, use the name of the element type (in this case, p) followed by the
hashtag (#) symbol and the element's id. The result will be as follows:

Example paragraph

class
Assign one or more class names to an element. This is useful for referencing the element as part of a group with CSS or
JavaScript.

<p class="speaker1">Hello</p>
<p class="speaker2">Hi</p>

73

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959

<p class="speaker1">How are you?</p>
<p class="speaker2">Fine. You?</p>

We can then assign CSS values as follows:

p.speaker1 { color: green; }
p.speaker2 { color: coral; }

When referencing an element with a class in CSS, use the name of the element type (in this case, p) followed by a
period (.) and the element's class name. The result will be as follows:

Hello

Hi

How are you?

Fine. You?

src
Assign the source for an element. This is typically used when you are including an external file or other resource in your
site, such as an image, video, audio, CSS, or JavaScript file. For instance, to embed an image in your HTML, use an
img element with a src attribute as follows:

74

href
Assign a link (or horizontal reference) to an element. This is typically used to create a hyperlink to a file or another page.

name
Assign a unique name string to an element. This is similar to id, but it is typically used for form elements that will be
used to submit information to the server and should be avoided for assigning formatting.

value
Assign a value to an element. This is typically used with input fields like form elements, checkboxes, or radio buttons.

alt
Provide a description of a visual or audio resource so that screen readers, web crawlers, and those with disabilities can
understand the content.

dir
Choose the direction of the text. For example, English would be left-to-right, while Arabic would be right-to-left.

Options include ltr for left-to-right and rtl for right-to-left.

75

aria
Accessible Rich Internet Applications (ARIA) values are used in more sophisticated applications where content is
dynamically changed. We will not address them here, but if you are dynamically changing content on a page after it is
loaded, please realize that you will need to include additional markup to ensure that your materials are accessible.

Tables have a variety of attributes that can be set, such as cellpadding, cellspacing, width, height, etc., but these
formatting attributes should generally be set with CSS instead.

Some common structural attributes that may be used include the following:

colspan and rowspan
Make a cell (td or th) span across multiple columns or multiple rows:

<table>
 <thead>
 <tr><th rowspan="2">Name</th><th colspan="2">Values</th></tr>
 <tr><th>X</th><th>Y</th></tr>
 </thead>
 <tbody>
 <tr><td>Chicago</td><td>1.5</td><td>3.2</td></tr>
 </tbody>
</table>

Name

Values

X Y

Chicago 1.5 3.2

There are many attributes that may be used for formatting content (e.g., width , height), but these should
generally not be used. Instead, you should use element- and class-based CSS whenever possible.

If necessary, the style attribute can be used to apply CSS formatting to a single element, but this should be done
sparingly and, instead, the CSS for that element should be set in a separate CSS file. This allows formatting to cascade
(or be shared) between files and elements and prevents you from having to update formatting for each and every
element.

style
Assign CSS formatting to an element within the HTML tag. This is useful for development and testing, but generally, all
CSS formatting should be moved to a separate CSS file and assigned to the element either via the id or class.

At times, it can be helpful to store your own metadata in HTML elements. This is best done by creating your own
custom attributes. To prevent confusion, you should only create custom attributes that begin with data-* . For

76

https://edtechbooks.org/elearning_hacker/css

instance, if you wanted to store a note about whether an element has been spellchecked or not, you could use data-
spellchecked="true" .

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/common_html_attributes.

77

https://edtechbooks.org/elearning_hacker/common_html_attributes
https://edtechbooks.org/license/cc_by

78

HTML Web Development Code Cleaning

In eLearning development, you will often encounter tools that do a terrible job of converting content to HTML and CSS.
This creates all kinds of formatting problems and increases file size for your end users.

For example, here is a bloated HTML snippet from Microsoft Word that occurred just from copying and pasting a single
paragraph of text:

<p class="MsoNormal"><span style="font-size: 18px; font-family: 'Roboto',serif; mso-ascii-font-
family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-
bidi; mso-themecolor: text1; color: #212529;">Example paragraph <o:p></o:p></p>

It renders as follows:

Example paragraph

Now, here is a cleaner version:

<p>Example paragraph</p>

And how it renders:

Example paragraph

Notice that the two versions render the same, but by removing unnecessary elements, we have drastically reduced the
size of the HTML elements (from 260 characters to 8, a reduction of 97%) and also reduced the likelihood of formatting
errors for our end users and other developers. Also notice that since the original HTML uses the style attribute, a
nesting span, and other unnecessary markup, it may not properly assign CSS formatting from the page to the element.
This is not an isolated example, and it is common for imported HTML to be bloated by over 90%.

79

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1964

In addition, imported HTML will typically not make use of accessibility features enabled by your web platform, such as
adaptive scaling of images to fit different screen sizes.

For these and other reasons, it is good practice to clean HTML that you import from other sources, such as Microsoft
Word, into a web authoring platform, such as a Learning Management System or Content Management System.

Styles can conflict with some CSS properties and also introduce extreme bloat because the formatting is declared on
every element instead of just once for the element type or class. Some web authoring platforms have built-in tools to
remove styles for you. For instance, in EdTech Books, you can click on Tools > Code Cleaning > Remove
Styles to remove every style in a document.

Figure 1

Removing Styles in EdTech Books

This function uses a simple jQuery command to remove each style attribute as follows, and it could be used in the
Inspector Console on other web authoring tools that use jQuery by replacing chapter-container with your own
encapsulating element id:

$('#chapter-container').find('*').removeAttr("style");

Alternatively, you can also do this with JavaScript in the Inspector Console as follows by replacing chapter-
container with your own encapsulating element id:

document.getElementById('chapter-container').querySelectorAll('*').forEach(function(element) {
 element.removeAttribute('style');
});

You can also achieve this with some text editors that allow for searching and replacing using regular expressions, such
as Visual Studio. In the editor, paste your HTML, do a find on the following expression, and replace all results with a
blank string:

style=".*?"

80

Many tools nest span elements within other elements, but these are typically not needed and can really mess up
formatting. In EdTech Books, you can click Tools > Code Cleaning > Remove Spans to remove every span in
a document without losing its contents.

Figure 2

Removing Spans in EdTech Books

This function uses a simple jQuery command to replace each span element with its contents, and it could be used in the
Inspector Console on other web authoring tools that use jQuery by replacing chapter-container with your own
encapsulating element id:

$('#chapter-container').find('span').each(function() {
 $(this).replaceWith($(this).contents());
});

This can also be achieved using JavaScript as follows:

var parent = document.getElementById('parent');
var spanElements = parent.getElementsByTagName('span');
for (var i = spanElements.length - 1; i >= 0; i--) {
 var spanElement = spanElements[i];
 while (spanElement.firstChild) {
 parent.insertBefore(spanElement.firstChild, spanElement);
 }
parent.removeChild(spanElement); }

You can also achieve this in a text editor with regular expression support by searching and replacing <span.*?> and
 with blank strings.

81

Some tools inject their own unique elements into HTML that should be removed. These will vary by tool but can be
removed with jQuery as follows, while replacing chapter-container with your own encapsulating id and o\:p
with the name of the tool-specific elements you want to replace:

$('#chapter-container').find('o\\:p').each(function() {
 $(this).replaceWith($(this).contents());
})

This finds all elements of type <o:p> , which is a common Microsoft Word addition, and removes them without losing
any content inside them.

You can also do this with JavaScript as follows while replacing chapter-container with your own encapsulating id
and o:p with the name of the tool-specific element.:

var parent = document.getElementById('chapter-container');
var wrappedElements = parent.getElementsByTagName('o:p');
for (var i = 0; i < wrappedElements.length; i++) {
 var wrappedElement = wrappedElements[i];
 while (wrappedElement.firstChild) {
 parent.insertBefore(wrappedElement.firstChild, wrappedElement);
 }
 parent.removeChild(wrappedElement);
}

You can also achieve this in a text editor by finding and replacing the opening and closing tags with blank strings.

In addition to the above methods, you can also look at the HTML, decide what you want done, and then ask an AI, like
ChatGPT, to write a JavaScript function for you. You can then use the function in the Inspector Console.

For example, you might use the following as a prompt:

Write a JavaScript function that removes all style attributes within an HTML element with the id
"chapter-container".

82

https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/cleaning_html.

83

https://edtechbooks.org/elearning_hacker/cleaning_html

84

HTML Web Development CSS

This page provides some helpful snippets to get you started making common content items. In each example, I provide
a Style Method and CSS Method. If possible, the CSS Method is preferred so that you only need to declare the
formatting once, but if you are using a web authoring system that does not allow you to edit the CSS, you can revert to
the Style Method.

To use the CSS Method, place the first block of markup in the style heading of the document or in your attached CSS
file.

Heading

Content

Content

Instead of using tables to create columns or to organize content horizontally, you can use a combination of <div>
elements with CSS listeners to have columns that adapt to your screen size:

85

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/helpful_html_snippets.

86

https://edtechbooks.org/elearning_hacker/helpful_html_snippets
https://edtechbooks.org/license/cc_by

Web Development CSS

Cascading Stylesheets (CSS) are ways to define formatting styles that can be applied to HTML elements and shared
between HTML pages. This allows you to ensure uniformity across complex HTML projects and to reduce file and
download sizes.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/css.

Bootstrap

Common CSS Properties

87

https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960
https://edtechbooks.org/elearning_hacker/css
https://edtechbooks.org/elearning_hacker/bootstrap
https://edtechbooks.org/elearning_hacker/common_css_properties
https://edtechbooks.org/license/cc_by

88

CSS JavaScript Bootstrap

 Bootstrap is a free CSS library that is very common across the internet. It is nice for many reasons, but one thing that it
does well is allow you to quickly create well-formatted content and useful snippets that can be used in your learning
modules. If Bootstrap is installed by your LMS, then you will have access to many of the formatting options and rich
features provided by Bootstrap below (and more).

Alerts
There are no built-in alert elements for HTML, but sites often need some method for designating alerts. Bootstrap does
this by assigning p, div, or other elements with the alert class followed by a color formatting class, such as alert-
success or alert-danger.

class="alert alert-primary"

class="alert alert-secondary"

class="alert alert-success"

class="alert alert-danger"

class="alert alert-warning"

class="alert alert-info"

89

https://edtechbooks.org/keyword/1960
https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/2041
https://getbootstrap.com/
https://getbootstrap.com/docs/5.3/components/alerts/

Backgrounds
Backgrounds of elements can be set by changing the class of the elements to one of the following values:

.bg-primary

.bg-primary-subtle

.bg-secondary

.bg-secondary-subtle

.bg-success

.bg-success-subtle

.bg-danger

.bg-danger-subtle

.bg-warning

.bg-warning-subtle

.bg-info

.bg-info-subtle

.bg-light

.bg-light-subtle

.bg-dark

class="alert alert-light"

class="alert alert-dark"

90

https://getbootstrap.com/docs/5.3/components/buttons/

.bg-dark-subtle

.bg-body-secondary

.bg-body-tertiary

.bg-body

.bg-black

.bg-white

.bg-transparent

Buttons
This is a normal HTML button:

Click here

And these are examples of Bootstrap buttons:

btn btn-primary btn btn-secondary btn btn-success btn btn-danger btn btn-warning btn btn-info

btn btn-light btn btn-dark btn btn-link

Basic formatting for Bootstrap buttons (e.g., size, spacing) is achieved by adding the class btn to the button HTML
element. Then, you can add a second class to adjust the color, such as btn-primary or btn-secondary.

Font Colors
Font colors of elements can be set by changing the class of the elements to one of the following values (note that this
can also be combined with background classes to give light text a dark background):

.text-primary

.text-primary-emphasis

.text-secondary

.text-secondary-emphasis

.text-success

.text-success-emphasis

.text-danger

.text-danger-emphasis

91

https://getbootstrap.com/docs/5.3/components/buttons/

.text-warning

.text-warning-emphasis

.text-info

.text-info-emphasis

.text-light

.text-light-emphasis

.text-dark

.text-dark-emphasis

.text-body

.text-body-emphasis

.text-body-secondary

.text-body-tertiary

.text-black

.text-white

.text-black-50

.text-white-50

Margins
Margins are the white space around an element. These values can be set either symmetrically (by referencing the x- and
y-axis margins) or asymmetrically (by referencing the top, bottom, start, or end margin) by applying classes to an
element as follows:

Figure 1

Bootstrap Margin Classes

92

https://getbootstrap.com/docs/5.3/utilities/spacing/#margin-and-padding

Symmetrical references are just shorter forms of writing asymmetrical references. So, a class of mx-2 would be
equivalent to a class value of ms-2 me-2. The auto definition attempts to automatically layout the page, such as by
centering the content. You can also apply margins to all four sides of an element with the m-* class.

Here are a few examples:

m-1

m-2

m-3

mx-1 my-4

mt-1 me-2 mb-3 ms-4

Padding
Padding is the white space within an element separating an element's content from its own border. These values can be
set either symmetrically (by referencing the x- and y-axis padding) or asymmetrically (by referencing the top, bottom,
start, or end padding) by applying classes to an element as follows:

Figure 1

Bootstrap Margin Classes

93

https://getbootstrap.com/docs/5.3/utilities/spacing/#margin-and-padding

Symmetrical references are just shorter forms of writing asymmetrical references. So, a class of px-3 would be
equivalent to a class value of ps-2 pe-2. The auto definition attempts to automatically layout the page, such as by
centering the content. You can also apply padding to all four sides of an element with the p-* class.

Here are a few examples:

p-1

p-2

p-3

px-1 py-4

pt-1 pe-2 pb-3 ps-4

Pro Tip on Padding

When laying out text and other elements, it typically looks better for the x padding to be a bit larger than the y
padding. So, if you have a paragraph with a py-1, then you'll likely want a px-2 to go with it.

Progress Bars
Progress bars are normally made in HTML by simply placing one div element inside of another, with the outer element
serving as the empty background and the inner element serving as the progress indicator. By changing the width value

94

of the inner div element's style attribute to a percent of the whole, you can change the visible progress. You can also
change the color of either the inner or outer element by changing its class to a background class.

Shadows
Shadows are useful to convey depth to elements on a page, though they should be used intentionally. The shadow
classes include shadow-sm, shadow, and shadow-lg and have the following effect when added to an element:

.shadow-sm

.shadow

.shadow-lg

Text Alignment
Content can be horizontally aligned using the following classes: text-start, text-center, or text-end.

.text-start

.text-center

.text-end

Text Size
When resizing text, you should first make sure that you are resizing semantically. So, if you want to resize the text
because it is a heading, make it a heading (e.g., H1, H2) rather than just changing the size.

There are cases where you may still want to resize text that is not in a heading. In these cases, you can use the
following font-size classes, which correspond to the heading sizes:

.fs-1

.fs-2

Note: Previous versions of Bootstrap used .text-left and .text-right, but since not all languages go from left-to-right,
shifting to start and end allows formatting to be better applied across all languages.

95

https://getbootstrap.com/docs/5.3/utilities/text/#font-size

.fs-3

.fs-4

.fs-5

.fs-6

Laying out content on a web page horizontally can be problematic, because screen sizes vary and accessibility and
machine tools (like screenreaders) may have difficulty understanding the order of content. In the early days of the
internet, people often relied on tables to layout content into grids, but this leads to a variety of problems. Instead,
current web design tends to use flexible columns and floats to achieve complex horizontal layouts.

Grid Columns
By creating an element in Bootstrap and assigning it the class row, Bootstrap will organize all content in that element
into 12 possible columns. Then, you can assign the class col-1, col-2, ... col-12 to any elements within the row
element to have it layout the element as one of the columns.

Here is an example of a simple 2-column layout:

<div class="row">
 <p class="col-6">Here's the first column.</p>
 <p class="col-6">Here's the second column.</p>
</div>

96

Here's the first column. Here's the second column.

If we wanted three columns, we could divide the 12 column options however we like between them, such as the
following:

<div class="row">
 <p class="col-4">Here's the first column.</p>
 <p class="col-4">Here's the second column.</p>
 <p class="col-4">Here's the third column.</p>
</div>

Here's the first column. Here's the second column. Here's the third column.

Floats
Floats can be used to quickly align an
element to the start or end of its parent
element and have other elements wrap
around it. Floats are most commonly used
with images, such as the image floating to
the right of this text area.

To apply a float to an element, just add the
float-start or float-end class to it.

Note that elements will continue to wrap
around the float until they are told to stop.
You can do this by giving the next element
the clearfix class or by making a new
empty element of any kind, such as a div,
and giving it the class clearfix.

Widths
Bootstrap provides a shortcut for assigning common widths to elements with the w-25, w-50, w-75, and w-100 classes,
which give the element the value width as a percent of the width of the parent element. So, w-75 would be equivalent to
style="width: 75%;". This can be particularly helpful in conjunction with floats by allowing you to define an image as
50% width via w-50 and floating it at the end of a paragraph via float-end.

Flexible Layouts
And since not all screens will be the same size, we need horizontal layouts to react to the width of the screen. Though
we might want an image to float to the right on a large screen, we might want the text wrapping to go away on a small
screen (so that we have more than two words of text per line.

To achieve this, we can include references to the user's current screen size to any of the layout elements above to apply
it to only certain screen sizes, such as sm, md, lg, xl, and xxl. These are called breakpoints. Because modern web
practices have a mobile-first mindset, classes will apply in a manner that assume you are applying formatting at the
smallest possible screen size unless you explicitly apply it only to a larger screen size. So, md will also apply to screen
widths of lg, xl, and xxl, but xxl will not apply to any other screen widths.

97

So, if you apply a class of float-xl-end, then the element will float only on screen widths of xl or larger. You can test
this in your browser by resizing this page and noticing that the floating image to the right no longer floats once the
screen gets smaller. Contrast this with the floating image above that always floats no matter the screen size.

These width modifiers can be applied to the other horizontal layout elements above to achieve very powerful layouts.
For instance, you could apply col-12 col-md-6 to an element to make it six columns wide on md and larger screens,
and 12 columns wide on smaller screens. Or, you could make an image 50% width on larger screens and 100% width on
smaller screens by assigning it the classes w-100 w-lg-50.

Display
You can also decide to completely hide or show content based on the user's screen size by using the d-* (or display)
classes. Some of the more common uses of this are to alternate between d-block (to have an element fill the screen
horizontally) and d-none (to hide the element). For instance, by default a p element is using a block display, so applying
d-block to it won't change anything, but if you give a p element a d-none class, then it will be hidden.

You can combine these classes with the breakpoints above to have elements show or hide themselves depending upon
the size of the screen. So, an alert message with classes d-none d-md-block will only reveal itself once the screen
reaches the md breakpoint size. Or, an image with classes d-lg-none will hide itself once the screen reaches the lg
breakpoint.

You can also have elements only show themselves under certain conditions, like if the page is being printed. For
instance, an image with the class d-print-none won't be visible when you print the page, while a paragraph with the
class d-none d-print-block will only be shown when the page is being printed.

Accordion

This is the first item's accordion body. It is shown by default, until the collapse plugin adds the appropriate
classes that we use to style each element. These classes control the overall appearance, as well as the showing
and hiding via CSS transitions. You can modify any of this with custom CSS or overriding our default variables. It's

Accordion Item #1

98

also worth noting that just about any HTML can go within the .accordion-body, though the transition does limit
overflow.

This is the second item's accordion body. It is hidden by default, until the collapse plugin adds the appropriate
classes that we use to style each element. These classes control the overall appearance, as well as the showing
and hiding via CSS transitions. You can modify any of this with custom CSS or overriding our default variables. It's
also worth noting that just about any HTML can go within the .accordion-body, though the transition does limit
overflow.

This is the third item's accordion body. It is hidden by default, until the collapse plugin adds the appropriate
classes that we use to style each element. These classes control the overall appearance, as well as the showing
and hiding via CSS transitions. You can modify any of this with custom CSS or overriding our default variables. It's
also worth noting that just about any HTML can go within the .accordion-body, though the transition does limit
overflow.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/bootstrap.

Accordion Item #2

Accordion Item #3

99

https://edtechbooks.org/elearning_hacker/bootstrap
https://edtechbooks.org/license/cc_by

100

HTML Web Development CSS

Cascading Style Sheet (CSS) property options have expanded continually over the years so that there are now hundreds
to choose from. For a complete list, see W3Schools. However, like HTML tags, there are only about a dozen that you will
use regularly. In this chapter, we'll just apply these to the style attribute of an HTML element to see their effects.

Set a background color using a common color name:

<p style="background: pink;">An example paragraph.</p>

An example paragraph.

Set a background color using rgba notation:

<p style="background: rgba(200,200,200,1);">An example paragraph.</p>

An example paragraph.

Set a background color using hexadecimal notation:

<p style="background: #e5e5e5;">An example paragraph.</p>

An example paragraph.

Set the font color of text using a common color name:

<p style="color: blue;">An example paragraph.</p>

An example paragraph.

Set the font color of text using rgba notation:

<p style="color: rgba(40, 40, 220, 1);">An example paragraph.</p>

An example paragraph.

101

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1959
https://edtechbooks.org/keyword/1960
https://www.w3schools.com/cssref/index.php

Set the font color of text using hexadecimal notation:

<p style="color: #2222ee;">An example paragraph.</p>

An example paragraph.

Set the font of the element:

<p style="font-family: Courier, 'Times New Roman'; background: pink;">An example paragraph.</p>

An example paragraph.

Please note that the font-family property can include multiple values separated by a comma. This is done so that
if a user's browser does not have the desired font installed, it will revert to using the next identified font. Also notice
that Times New Roman is in a single quote. This is done because that font name has spaces within it, which would
otherwise confuse the value.

Set the size of the element:

<p style="height: 80px; background: pink;">An example paragraph.</p>

An example paragraph.

<p style="height: 80px; width: 50%; background: pink;">An example paragraph.</p>

An example paragraph.

Set the alignment of an element on the page. This is useful for creating columns, inset images, and so forth.

Float an image to the right of a block of text:

<img src="https://edtechbooks.org/content_images/elearning_hacker/rickroll_4k.jpg" style="width:
50%; float: right;" class="img-fluid">
<p>An example paragraph. An example paragraph. An example paragraph. An example paragraph. An
example paragraph. An example paragraph. An example paragraph. An example paragraph.</p>
<p style="clear: both;"></p>

An example paragraph. An example paragraph. An example paragraph. An example paragraph. An example paragraph.
An example paragraph. An example paragraph. An example paragraph.

102

Please note that the float will not stop on its own. Rather, you need to include an element after the floated object that
includes the property-value pair clear: both; to prevent subsequent elements from being affected by the float.
Options include left or right.

Padding represents the amount of space between the edge of an element and the text or other content inside it.

Set the padding of all four edges:

<p style="padding: 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Set the padding of the y-edges and x-edges separately:

<p style="padding: 20px 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Set the padding of each edge separately, moving clockwise:

<p style="padding: 10px 20px 30px 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Margin represents the amount of space between an element and its surrounding or parent element.

103

Set the margin of all four edges:

<p style="margin: 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Set the margin of the y-edges and x-edges separately:

<p style="margin: 20px 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Set the margin of each edge separately, moving clockwise:

<p style="margin: 10px 20px 30px 40px; background: pink;">An example paragraph.</p>

An example paragraph.

Set the horizontal alignment of an element:

<p style="text-align: center;">An example paragraph.</p>

An example paragraph.

Options include left, right, center, and justify.

Set the border size, color, and type of the element:

<p style="border: 1px black solid;">An example paragraph.</p>

An example paragraph.

Do the same with a larger, dashed border:

<p style="border: 4px pink dashed;">An example paragraph.</p>

An example paragraph.

Please note that borders are heavily overused and introduce unnecessary complexity and cognitive load. So, only use
borders when they are necessary.

104

Make all the corners of the element rounded:

<p style="border-radius: 10px; padding: 8px 16px; height: 80px; background: pink;">An example
paragraph.</p>

An example paragraph.

Make each corner rounded in different amounts, moving clockwise:

<p style="border-radius: 10px 20px 30px 0; padding: 8px 16px; height: 80px; background: pink;">An
example paragraph.</p>

An example paragraph.

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/common_css_properties.

105

https://edtechbooks.org/elearning_hacker/common_css_properties
https://edtechbooks.org/license/cc_by

106

JavaScript

JavaScript is a common programming language that is used ubiquitously across the web. You can use it for many
things, from creating dynamic website content to scraping and organizing data.

JavaScript Listeners

JavaScript Basics

JSON

jQuery

REST APIs

xAPI

LilxAPI

LilxAPI in Storyline 3

107

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/elearning_hacker/javascript_listeners
https://edtechbooks.org/elearning_hacker/javascript_basics
https://edtechbooks.org/elearning_hacker/json
https://edtechbooks.org/elearning_hacker/jquery
https://edtechbooks.org/elearning_hacker/rest_apis
https://edtechbooks.org/elearning_hacker/xapi
https://edtechbooks.org/elearning_hacker/lilxapi
https://edtechbooks.org/elearning_hacker/lilxapi_in_storyline_3
https://edtechbooks.org/license/cc_by

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/javascript.

108

https://edtechbooks.org/elearning_hacker/javascript

JavaScript

JavaScript is normally run on your page in one of three ways. First, if the script is written directly in a <script> HTML
element or an attached JavaScript file, then it will run when it is loaded. So, the following script would run when a page
is opened or refreshed:

alert("The page was reloaded.");

The second way is for a function to be called. So, let's say that we include the following script at the top of a page:

function CreateMyOwnPopup(){
 alert("Here's my popup.");
}

This script will register the CreateMyOwnPopup function, but the page won't actually do anything until something calls
the function, such as if we included the following later in the page:

CreateMyOwnPopup();

And the third way that JavaScript is typically run on a webpage is in conjunction with a listener. Listeners are registered
when the page is loaded, and then they run the script inside them when they hear the listener being activated. For
instance, the following script would find a button with the id button1 and run the CreateMyOwnPopup function any time
the button is clicked:

document.getElementById('button1').addEventListener('click', function() {
 CreateMyOwnPopup();
 });

In this case, JavaScript registers a listener on the button1 element to do something every time the click event occurs
(i.e., someone clicks on it). See below for this example in action:

Additionally, jQuery has a shorter way of adding the same shortcut as follows:

$('#button1').on('click', function() {
 CreateMyOwnPopup();
}

109

https://edtechbooks.org/keyword/1961

JavaScript can listen for many different types of events, and available events can vary based on the element you are
listening to, but some common examples include click, change, keyup, keydown, and scroll.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/javascript_listeners.

110

https://edtechbooks.org/elearning_hacker/javascript_listeners
https://edtechbooks.org/license/cc_by

JavaScript

Like any programming language, JavaScript understands mathematical notations and uses operators like + (addition),
- (subtraction), * (multiplication), and / (division) to manipulate numbers.

In your Inpector Console, use JavaScript to do some arithmetic. Who knew that your browser was a fully-fledged
calculator?!

Variables are useful for storing data to be retrieved or manipulated later. To declare a variable, just type var followed
by the name you'd like to assign the variable, then = and the value. For instance, if you wanted to create a variable
called year and assign it the value of 1999 , you could do so as follows:

var year = 1999

Or if you wanted to create a variable called course and assign it the value of IPT660, you could do so as follows:

var course = "IPT660"

Note that if your value is textual, then you need to wrap it in quotes, but numbers don't need quotes.

After you have done this, if you ever type the word year into the console, it will return 1999 , and if you type
course , it will return IPT660 .

The word var is only used when we first declare a variable. Once the variable has been declared, you can then change
it if needed. So, if we wanted to change the value of the course variable to IPT531 , we'd just do the following:

course = "IPT531"

Now, if we type the word course , it will return IPT531 instead of IPT660 (which is now totally forgotten).

111

https://edtechbooks.org/keyword/1961

In addition, JavaScript also can logically compare values with < (less than), <= (less than or equal to), < (greater
than), >= (greater than or equal to), == (equal to), != (not equal to), && (and), and || (or). (Remember that the
equals sign = does not compare values, because it is rather used in JavaScript to assign variables.)

In your Inspector Console, if you type 1<2 , it will return true , while 1>2 will return false . You can combine
these with the mathematical functions to compare complex values, such as 272*331>254*352.

Is this statement true or false 272*331>254*352 ?

True

False

Logical operators are not confined to numbers; they can also be used for comparing more complex pieces of data, such
as text and objects. For instance, "cheese"=="crackers" would return false , while
"cheese"!="crackers" would return true .

You can also combine variables with the mathematical and logical operators. For instance, if you type year + 10 ,
the console will return 2009 .

You can use logical operators in conjunction with logical statements like if , else , and while to tell JavaScript
what to do under different circumstances and for how long. For instance, since we declared the value of the year
variable to be 1999 , we can ask JavaScript to give us a warning if the course was taken longer than 10 years ago as
follows:

var currentYear = 2023;
if(year<currentYear-10) {
 alert("The course is too old.");
} else {
 alert("The course is good!");
}

Functions are actions that you can store and run on data or objects many times. These are declared similar to variables
and can then be referenced by their name and fed variables to run. For instance, let's take our previous statement and
wrap it in a function called CheckYear as follows:

function CheckYear(year) {
 var currentYear = 2023;
 if(year<currentYear-10) {
 alert("The course is too old.");
 } else {
 alert("The course is good!");

112

 }
}

Once you have done this, you can now call CheckYear() and feed it any value you like to see if a year is too old as
follows:

CheckYear(2020)

You may do this with any value:

CheckYear(1830)

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/javascript_basics.

113

https://edtechbooks.org/elearning_hacker/javascript_basics
https://edtechbooks.org/license/cc_by

114

JavaScript JSON

JavaScript Object Notation (JSON) is a lightweight way to transfer JavaScript object data between a variety of apps and
tools as a simple string. It uses a simple notation consisting primarily of braces { } , brackets [] , commas, and
quotes to construct potentially complex data structures.

JavaScript objects are encapsulated in braces { } as name and value pairs separated with commas. For example, a
simple user object might consist of the following:

{
 firstName: "Jane",
 lastName: "Doe",
 email: "janedoe@email.com"
}

JavaScript arrays are encapsulated in brackets [] as values separated with commas. For example, a simple list of
names might consist of the following:

[
 "Jane Doe",
 "John Doe",
 "Teddy Ruxpin"
]

Objects and arrays can be nested inside one another to create nested data structures, such as in this list of student
course schedules:

[
 {

115

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1990

 name: "Jane Doe",
 email: "janedoe@email.com",
 courses: [
 {
 name: "Biology",
 section: "1"
 },
 {
 name: "Chemistry",
 section: "2"
 }
]
 },
 {
 name: "Teddy Ruxpin",
 email: "teddy@email.com",
 courses: [
 {
 name: "Philosophy",
 section: "1"
 },
 {
 name: "Chemistry",
 section: "1"
 }
]
 }
]

Note that this example consists of an array of user objects that each has an array of course objects.

Based on this schedule, would Jane and Teddy share any course sections?

Yes

No

To retrieve a data value from an object, you would reference the object and then the name of the key in the key value
pair you desire separated with a period. For instance, we could assign a list of users to a variable as follows:

var user = {
 firstName: "Jane",
 lastName: "Doe",
 email: "janedoe@email.com"
};

Try this in your Inspector Console by pasting the above code and hitting enter. This sets the user variable in your
console. Then, if we wanted to return the firstName of the user, we could simply type user.firstName , which would

116

return "Jane".

Alternatively, you can also access object values by using brackets and quotation marks, such as
user["firstName"] .

To retrive data from an array, you would reference the array and then the desired item's order number in the array
(starting from zero). So, we could assign a list of names to an array as follows:

var userNames = [
 "Jane Doe",
 "John Doe",
 "Teddy Ruxpin"
]

And then we could reference each element by typing userNames[0] (which would return "Jane Doe"),
userNames[1] (which would return "John Doe"), etc.

In the case of structured data, like our example above, we can reference data anywhere in the structure by following this
pattern. Try pasting the following into your Console:

var studentSchedules = [
 {
 name: "Jane Doe",
 email: "janedoe@email.com",
 courses: [
 {
 name: "Biology",
 section: "1"
 },
 {
 name: "Chemistry",
 section: "2"
 }
]
 },
 {
 name: "Teddy Ruxpin",
 email: "teddy@email.com",
 courses: [
 {
 name: "Philosophy",
 section: "1"
 },
 {
 name: "Chemistry",
 section: "1"
 }
]
 }
];

Then, retrieve Teddy's email address by typing studentSchedules[1].email .

117

How would you retrieve the name of Jane's second course?

studentSchedules[0].courses[1].name

studentSchedules[0].name

studentSchedules[0].courses.name

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/json.

118

https://edtechbooks.org/elearning_hacker/json
https://edtechbooks.org/license/cc_by

JavaScript jQuery

jQuery is a free JavaScript library that may be optionally installed on a webpage to provide additional functionality. For
our purposes, jQuery is especially useful for detecting, changing, or extracting structured content from a webpage.

The simplest way to determine if a webpage has jQuery installed is to run the following command in the Inspector
Console:

$()

The dollar sign is jQuery's shorthand method for accessing jQuery functions. If this does not work, you can also try the
following:

jQuery()

If either of these commands doesn't return an error, then you can run jQuery commands on the page. The $()
operator is just a shorthand version of jQuery() , so if $() is not available but jQuery() is, you can modify any
command to use jQuery() instead of $() . You can also install jQuery on your own page or applications.

The simplest way to include jQuery in your project is via a CDN by appending the following JavaScript to the end of your
document (just before the </body> tag):

<script src="https://code.jquery.com/jquery-3.7.1.min.js"
integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>

By placing it at the end, we allow the content on the rest of the page to be loaded and displayed prior to jQuery being
fetched and downloaded, speeding up the user's access to the content.

jQuery helps us to navigate the DOM more quickly and to find the elements or content we want. It does this by allowing
us to have the DOM return elements that match a particular query. Queries can use element names, attributes, and other
element features to find what we want. For example, if we wanted to return a list of all links (<a>) on a web page, we
could just run the following:

119

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1971
https://jquery.com/
https://jquery.com/
https://edtechbooks.org/elearning_hacker/dom

$("a")

We can then use jQuery to dig into these elements further or to run functions on each element. So, if we wanted to
return just the text of all links on a page, we could run the following:

$("a").text()

Or if we wanted to send the text of each link to the console, we could do the following:

$("a").each(function() { console.log($(this).text()) })

We can also use jQuery to change the contents of a webpage. For instance, if we wanted to make the text of all links on
the page read "LINK HERE", we could run the following:

$("a").each(function() { $(this).text("LINK HERE") })

Attributes
You can select elements by whether or not they have particular attributes or whether their attribute values match your
query. For instance, you can return all images that have an alt attribute defined as follows:

$("img[alt]")

You can also return all images that have a blank alt attribute as follows:

$("img[alt='']")

Shorthand Attribute Selectors
Perhaps the most common attributes you will use to select elements is the id and class attribute. For this reason,
jQuery has a shorthand way to accessing classes similar to CSS, where the class is identified with a period and the id is
identified with a hashtag.

So, if we wanted to select all <p> elements with the class "callout", we could use $("p.callout") , which is
shorthand for $("p[class='callout']") , which is shorthand for the pure JavaScript
document.querySelectorAll('p.callout') .

Or if we wanted to select the <p> element with the ID "paragraph1", we could use $("p#paragraph1") , which is
shorthand for $("p[id='paragraph1']") , which is shorthand for the pure JavaScript
document.querySelectorAll('p#paragraph1) .

Negative Selectors
You can also append :not to a query in order to choose the opposite. For instance, you can choose all images that do
not have an alt attribute defined as follows:

$("img:not([alt])")

Nested Elements
You can find nested elements by including a space between query operators. For instance, if you wanted to find all links
that are inside paragraphs, you could run the following:

$("p a")

Or if you wanted all <h3> elements inside <div> elements that have the callout class, you could run the
following:

120

$("div.callout h3")

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/jquery.

121

https://edtechbooks.org/elearning_hacker/jquery
https://edtechbooks.org/license/cc_by

122

JavaScript API JSON

A REST API is a Representational State Transfer Application Programming Interface. That may sound daunting, but let's
break it down in an eLearning scenario. "Representational State" means that you are taking some piece of content and
creating a snapshot of it in time. "Transfer" means that you are taking that snapshot and moving it to a new location on
the internet. "Application Programming Interface" means that you are using the new location's programming interface to
tell it what to do with the snapshot once it's transferred. So, a REST API simply means that we are taking a snapshot of
some piece of data and transferring it to a new location on the internet in a way that the new location can understand
what to do with it.

Pull means "give me your data so I can do something with it." So, a pull REST request in an eLearning scenario might be
asking a content provider "give me your content so I can put it in my module" or asking a tool "give me my student's
grade in your system."

Push means "take my data and do something with it." So, a push REST request in an eLearning scenario might be asking
a gradebook "take this grade and add it to the student's gradebook" or asking a Learning Record Store "take this user
xAPI data and store it for later analysis."

Since most REST API requests involve multiple sites, there is often a need to ensure that the data being sent is coming
from and going to the intended audience without being tampered with. This is typically done by including an API key or
other security measure. Please note that when using an API key in client-side JavaScript that anyone can see your key in
the inspector.

When using JavaScript for REST API requests, the most common data format is JSON, which can then be parsed into
JavaScript objects and manipulated on a web page, such as by placing it in an HTML element.

123

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1986
https://edtechbooks.org/keyword/1990
https://edtechbooks.org/elearning_hacker/json

Pull Example
You can pull content directly from any EdTech Book publication into your eLearning module by using the ETB API. Here
is an example of a JavaScript REST call that brings in the content of a chapter with ID 155:

Many content providers and other services have APIs that you can leverage, but most will require some form of secure
transfer or login. Some examples include the following:

Library of Congress
RapidAPI Hub
Hugging Face

Push Example
You can push content to EdTech Books, such as xAPI experience data, by using the ETB API. Note that the push API
requires an api_key, which you may find in your user settings.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/rest_apis.

124

https://edtechbooks.org/userguide/reading_api
https://www.loc.gov/apis/json-and-yaml/examples/
https://rapidapi.com/hub
https://huggingface.co/
https://edtechbooks.org/userguide/reading_api
https://edtechbooks.org/elearning_hacker/rest_apis
https://edtechbooks.org/license/cc_by

JSON xAPI

xAPI is a uniform way of storing and retrieving learner experiences in eLearning systems. This specification is
useful for allowing systems to share information for learning analytics or a variety of other purposes. In its
simplest form, an xAPI statement is much like a sentence in any written language.

xAPI is a uniform way of storing and retrieving learner experiences (hence the "x") in eLearning systems. This
specification is useful for allowing systems to share information for learning analytics or a variety of other purposes. In
its simplest form, an xAPI statement is much like a sentence in any written language where we communicate that
someone did something to something within certain contexts, etc.

In many language learning settings, it is common to diagram sentences to identify the different parts of speech. For
instance, "Juan walked home with his dog" might be diagrammed as follows:

125

https://edtechbooks.org/keyword/1990
https://edtechbooks.org/keyword/2111

This diagram allows us to visualize who is doing the action ("Juan"), what the action is ("walked"), and contextual
information about the action, such as where he walked ("to his home") and with whom he walked ("with his dog").

xAPI uses JSON to structure JavaScript objects that do the same thing. They allow us to record and retrieve information
about an experience, such as who did what and in what contexts. In this case, a simplified xAPI-like statement might be
as follows:

{
 actor: "Juan",
 verb: "walked",
 context: [
 "to his home",
 "with his dog"
]
}

By storing this experience in this way, others can easily understand what happened in the experience.

Because experiences are often much more complex than this simple sentence and because not everyone might have
the same definitions of terms, xAPI statements include a few other components, but the basic idea is to identify an
actor (who is doing something?), a verb (what are they doing?), an object (what are they doing it to?), and a context
(what is the context?). A more realistic xAPI statement in an eLearning scenario might be like the following:

{
 "actor": {
 "name": "Alice Johnson",
 "mbox": "mailto:alice.johnson@example.com"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/interacted",
 "display": {
 "en-US": "interacted"
 }
 },
 "object": {
 "id": "http://example.com/buttons/button-1",
 "objectType": "Activity",
 "definition": {
 "name": {
 "en-US": "Button 1"
 },
 "description": {
 "en-US": "A button that the learner clicked"
 }
 }
 },
 "context": {
 "contextActivities": {
 "category": [
 {

126

https://edtechbooks.org/elearning_hacker/json
https://edtechbooks.org/elearning_hacker/javascript

 "id": "http://example.com/activities/learning-module-1"
 }
]
 }
 }
}

In this example, a learner named Alice Johnson (with the email address alice.johnson@example.com) interacted with a
button (called Button 1) within the context of learning module 1.

Here's another example:

{
 "actor": {
 "name": "Sally Glider",
 "mbox": "mailto:sally@example.com"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/completed",
 "display": {
 "en-US": "completed"
 }
 },
 "object": {
 "id": "http://example.com/activities/solo-hang-gliding",
 "definition": {
 "name": {
 "en-US": "Solo Hang Gliding"
 }
 }
 },
 "result": {
 "completion": true,
 "success": true,
 "score": {
 "scaled": .95
 }
 }
}

In this example, a student named Sally Glider completed a "Solo Hang Gliding" course with a grade of 95%.

Notice in these examples that the verbs and objects both have IDs that look like URLs. These are Universal Resource
Identifiers (URIs). A URI doesn’t take you to a web address, like a URL does, but it is a unique identifier for an action. It
references a specific meaning defined by a specific organization. You can look up xAPI URIs in The Experience API
Registry (see Figure 1). If you want to specify a particular activity or context, chances are that a URI for it has already
been defined in the registry. Recognizing and using standard URIs allows your tool or platform to communicate clearly
with other tools and platforms in the education space.

Figure 1

An “Activity Type” Entry in the Experience API

127

mailto:alice.johnson@example.com
http://registry.tincanapi.com/
http://registry.tincanapi.com/

Activity Type: discussion

URI
http://id.tincanapi.com/activitytype/discussion

Description
Represents an ongoing conversation between persons, such as an email thread or a forum topic.

Current Meta Data
{
 "name": {
 "en-US": "discussion"
 },
 "description": {
 "en-US": "Represents an ongoing conversation between persons, such as an email thread
or a forum topic. "
 }
}

Figure 2

An “Verb” Entry in the Experience API

Verb: presented

URI
http://activitystrea.ms/schema/1.0/present

Description
Indicates that the actor has presented the object. For instance, when a person gives a presentation at a
conference.

Current Meta Data
{
 "name": {
 "en-US": "presented"
 },
 "description": {
 "en-US": "Indicates that the actor has presented the object. For instance, when a
person gives a presentation at a conference."
 }
}

128

http://id.tincanapi.com/activitytype/discussion
http://activitystrea.ms/schema/1.0/present

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/xapi.

129

https://edtechbooks.org/elearning_hacker/xapi
https://edtechbooks.org/license/cc_by

130

LilxAPI is a simpler, flat version of an xAPI statement. Each statement is required to have only three properties:
actor, verb, and object. Each property is limited to a single value. Statements may be represented either as a
JSON object with name-value pairs or as an array of values.

LilxAPI (or Lil' xAPI) is a simpler, flat version of an xAPI statement that allows it to be easily stored in a finite data
structure, such as a spreadsheet or single table of a SQL database. In this simplified approach, each statement is
required to have only three properties: actor, verb, and object. Each property is limited to a single value. Statements may
be represented either as a JSON object with name-value pairs or as an array of values (using the numeric array keys
provided in Table 1).

Table 1

Overview of the LilxAPI structure

name description
value
format default example

array
key

actor The identity of the
actor.

string required "janedoe@fake.com, Jane Doe"
"janedoe@fake.com"
"Jane Doe" or "janedoe1234" or "1234"

0

verb The action
performed by the
actor.

human-
readable
term

required "completed", "clicked", "interacted", "viewed", "answered",
etc.

1

object The target of the
statement or what
the actor
interacted with.

url required "https://edtechbooks.org/education_research/research" 2

result The outcome of
the action.

float
boolean
string

null .75
true
"success"

3

context Contextual
information about
the action.

string null "web"
"app"

4

131

https://edtechbooks.org/elearning_hacker/xapi

name description
value
format default example

array
key

language_id The language of
the schema.

ISO 639-1
Format

en "en" or "fr" or "sp" 5

timestamp The time of the
interaction.

ISO 8601
format

current
time

"2023-11-10T12:34:56Z" 6

xapi The fully rendered
xAPI statement.

json null - 7

An Actor Viewed a Page
Object format
{
 "actor": "janedoe@fake.com",
 "verb": "viewed",
 "object": "https://edtechbooks.org/education_research/research"
}

Array format
["janedoe@fake.com", "viewed", "https://edtechbooks.org/education_research/research"]

An Actor Correctly Answered a Question
Object Format
{
 "actor": "janedoe@fake.com",
 "verb": "viewed",
 "object": "https://edtechbooks.org/education_research/research#question1",
 "result": true
}

Array Format
["janedoe@fake.com", "answered", "https://edtechbooks.org/education_research/research#question1",
true]

You can create an ETB API key for your project by logging in and going to the Developer dashboard in the top-right
menu. This requires developer access, which you can request by contacting a site admin.

132

You can build charts and graphs in Google Sheets for dashboards and reports and then automate the download of
LilxAPI statements using the ImportData function and appending the &format=csv value to your endpoint. An example
endpoint for this purpose follows:

https://edtechbooks.org/api.v2.php?action=lilxapi_get&format=csv&api_key=YOURAPIKEY

You can build charts and graphs in Excel for dashboards and reports and then automate the download of LilxAPI
statements. Here is an example automation script that can be included in Excel to pull data directly from ETB:

const apiKey = "YOURAPIKEYHERE";
interface ExcelRow {
statement_id: number;
author_id: number;
actor: string;
verb: string;
object: string;
result: string;
context: string;
language_id: string;
timestamp: string;
xapi: string
}

async function main(workbook: ExcelScript.Workbook) {

133

const data = await fetchData();
console.log(JSON.parse(data.json));
const json: ExcelRow[] = JSON.parse(data.json);
const newWorksheet = workbook.getActiveWorksheet();
newWorksheet.activate();
const headingRange = newWorksheet.getRangeByIndexes(
0,
0,
1,
Object.keys(json[0]).length);
console.log(Object.keys(json[0]));
headingRange.setValues([Object.keys(json[0])]);
const dataRange = newWorksheet.getRangeByIndexes(
1,
0,
json.length,
Object.keys(json[0]).length);

dataRange.setValues(json.map(row => Object.values(row)));
}
async function fetchData(): Promise<string[][]> {
const apiUrl = "https://edtechbooks.org/api.v2.php?action=lilxapi_get&api_key=" + apiKey;
const response = await fetch(apiUrl);
if (!response.ok) {
throw new Error(`Failed to fetch data. Status: ${response.status}`);
}
const jsonData: ExcelRow[] = await response.json();
return jsonData;
}

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/lilxapi.

134

https://edtechbooks.org/elearning_hacker/lilxapi
https://edtechbooks.org/license/cc_by

135

136

xAPI LilxAPI Storyline

You can set up LilxAPI in Storyline 3 by doing the following.

In your first slide, create a trigger that executes JavaScript when the slide is first loaded. We will use this to define the
API Key, the URL, and a custom SendLilxAPIStatement() function as follows:

137

https://edtechbooks.org/keyword/2111
https://edtechbooks.org/keyword/2130
https://edtechbooks.org/keyword/2207

// Define the API Key and URL
window.LilxAPIKey = 'YOURAPIKEYGOESHERE';
window.LilxAPIURL = 'https://edtechbooks.org/api.v2.php';
window.LilxAPIStatements = [];
 console.log("LilxAPI variables have been defined.");
// Define the functions
window.StoreLilxAPIStatement = function(actor, verb, object, result = null, context = null,
language_id = "en") {
 let lilxApiStatement = {
 "actor": actor,
 "verb": verb,
 "object": object,
 "result": result,
 "context": context,
 "language_id": language_id
 };
 LilxAPIStatements.push(lilxApiStatement);
 console.log("The statement was stored locally.");
}
window.SendLilxAPIStatements = function() {
let json = JSON.stringify(LilxAPIStatements);
console.log(LilxAPIStatements);
console.log(json);
 const formData = new FormData();
 formData.append('action', 'lilxapi_store');
 formData.append('api_key', LilxAPIKey);
 formData.append('lilxapi_statement', json);
 console.log(formData);
 //JSON.stringify(data)
 fetch(LilxAPIURL, {
 method: 'POST',
 body: formData
 }).then(response => {
 if (!response.ok) {
 console.log(response);
 document.getElementById('result').textContent = "There was a network error.";
 }
 return response.json();
 })
 .then(data => {
 console.log(data);
 if (data.status == 'success') {
 console.log("Stored as " + data.statement_id);
 LilxAPIStatements = [];
 } else {
 console.log("There was an error.");
 }
 });
}
window.SendLilxAPIStatement = function(actor, verb, object, result = null, context = null,

138

language_id = "en") {
 LilxAPIStatements = [];
 LilxAPIStatements.push(StoreLilxAPIStatement(actor, verb, object, result, context, language_id));
 SendLilxAPIStatements();
}

Be sure to change the LilxAPIKey variable to match your API Key for your project. Also, if you are using a different LRS
than EdTech Books, then you will need to change the LilxAPIURL variable also.

Please note that this JavaScript must be executed before any other custom JavaScript anywhere in the Storyline app.
You can check your console when the published app first loads and verify that it was loaded by checking for the
statement "LilxAPI variables have been defined."

Single Triggers

Create any triggers you would like in your Storyline app, and have them execute a custom JavaScript function like the
following:

SendLilxAPIStatement("Royce","clicked","something");

When the trigger fires, you should be able to tell in the console that the LilxAPI statement was sent, and it should appear
in your LRS.

Note that the actor, verb, and object variables are required for any statement, but you can also add a result, context,
and language_id variable if desired. Here is an example:

139

SendLilxAPIStatement("Royce","completed","quiz1",".8","slide3","es");

In addition, you can also reference Storyline variables to send to LilxAPI by calling the GetPlayer().GetVar() function
in your code. For instance, the following will send a variable named StudentName that was defined in Storyline:

SendLilxAPIStatement(GetPlayer().GetVar("StudentName"),"completed","quiz1",".8","slide3","es");

Multiple Triggers
Since each trigger using SendLilxAPIStatement opens a new web page, sending multiple statements at once can be
very resource-intensive and can cause latency problems. To prevent this, you can instead store all of your statements
locally and send them as a single storage call when you are ready. To do this, first store each statement by using the
StoreLilxAPIStatement function as follows:

StoreLilxAPIStatement("Royce","clicked","something");
StoreLilxAPIStatement("Royce","clicked","something else");

This will construct and temporarily store the LilxAPI statements within Storyline. Then, when you are ready, send all of
statements with the SendLilxAPIStatement function as follows:

SendLilxAPIStatements();

This will send all of the stored statements to the server and will also clear the local storage.

You can use this in a variety of ways, such as storing all statements for a slide and then sending those to the server
when the user leaves the slide or storing all statements for the entire session and then sending them all at once when
the session is completed.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/lilxapi_in_storyline_3.

140

https://edtechbooks.org/elearning_hacker/lilxapi_in_storyline_3
https://edtechbooks.org/license/cc_by

Canvas

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/canvas.

Canvas Icons and Buttons

141

https://edtechbooks.org/keyword/2066
https://edtechbooks.org/elearning_hacker/canvas
https://edtechbooks.org/elearning_hacker/canvas_icons
https://edtechbooks.org/license/cc_by

142

Canvas

Canvas seems to use a modified version of Bootstrap and other libraries that you can tap into when creating content.
Some of the most helpful ways this can assist your course designs is to give you access to icons and buttons.

Canvas has a set of built-in icons that you can find documented in their iconography. These icons are set to content in a
course by setting classes on content. The simplest way to include an icon in your content is to use the i attribute
followed by the icon type class and the icon name class.

Icon Type Classes
There are two icon type classes: icon-Solid and icon-Line.

Icon Name Classes
There are many icon names that you can find on the iconography page.

For example, to include a solid-style alerts icon, simply paste the following line to your content:

<i class="icon-Solid icon-alerts"></i>

Or to include a line-style audio icon, use the following:

<i class="icon-Line icon-audio"></i>

The Canvas editor may not allow you to create button HTML elements, but you can still create a HTML elements and
make them look like buttons by applying button classes.

Button

143

https://edtechbooks.org/keyword/2066
https://edtechbooks.org/elearning_hacker/bootstrap
https://instructure.design/#iconography
https://instructure.design/#iconography

Button

Button

Button

etc...

Note that colors may differ depending upon your institution's styles.

To change button sizes, you can also add the following classes: Button--large, Button--small, and Button--mini.

To use buttons and icons together, you can simply apply icon classes to the button a element as in these examples:

144

Hey, this is a red button with
an audio icon!

Hey, this is a primary button with an
analytics icon!

Hey, this is a big 'ol success
button with a check icon!

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/canvas_icons.

145

https://edtechbooks.org/elearning_hacker/canvas_icons
https://edtechbooks.org/license/cc_by

146

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/web_scraping.

Legalities and Ethics

Extracting HTML Elements from a Web Page using JavaScript

Extracting Structured Content with an API and JavaScript

147

https://edtechbooks.org/elearning_hacker/web_scraping
https://edtechbooks.org/elearning_hacker/legalities_and_ethics
https://edtechbooks.org/elearning_hacker/extracting_information_from_a_web_page
https://edtechbooks.org/elearning_hacker/extracting_structured_content_with_an_api_and_javascript
https://edtechbooks.org/license/cc_by

148

Ethics

Prior to downloading, parsing, or using the content of a website in any way, you should always consider the legality and
ethics of what you are doing. From a legal perspective, there are at least three things to consider:

1. anti-hacking and cyber crime laws;
2. copyright laws;
3. and terms of use.

Anti-hacking and cybercrime laws vary from country to country and state to state. Most of these laws regulate
unauthorized access to information systems or the improper use of such systems. Merely parsing content from a site
would not typically constitute a crime, but if you copied, stored, shared, or used data in ways that the owner did not
permit, then these laws might come into play. If you have questions about this, please consult a legal expert in
cybercrime law.

If you are making copies of content (e.g., extracting data from a site and storing it on your computer), then copyright
laws come into play. Each country has its own copyright laws, but in the U.S., you will generally either need permission
from the content owner or ensure that your use constitutes Fair Use under the law. If you have questions about this,
please consult a legal expert in copyright law.

Finally, the Terms of Use is a statement typically found on a site where the content owner describes what constitutes
appropriate use of their site. Note that owners can claim anything they want in a Terms of Use statement (even things
that they are not legally allowed to claim) and that the user is typically legally bound to the terms if they have been given
adequate notice and accept them. Even without this, however, the Terms of Use statement allows you to understand
how the owner sees and may seek to enforce their rights, and you should generally follow the requirements outlined in
the Terms of Use statement. If you have questions about this, please consult a legal expert.

In addition to legal considerations, you should also consider the ethics of what you are doing and ensure that your
behavior does not harm people or organizations.

In addition to the above, most sites also have a robots.txt file at their root level to communicate to automated tools
which areas of the site should and should not be scraped, indexed, etc. For instance, if you go to
https://edtechbooks.org/robots.txt in your web browser, you will find a list of areas of this website that may and may
not be indexed. You can find such documents on just about any site by typing /robots.txt after the main domain name.

149

https://edtechbooks.org/keyword/43
https://edtechbooks.org/design/copyright
https://edtechbooks.org/robots.txt

Such documents are helpful to guide you in determining which areas of a site the developer wants you to access via
automated methods and which areas they deem to be off-limits.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/legalities_and_ethics.

150

https://edtechbooks.org/elearning_hacker/legalities_and_ethics
https://edtechbooks.org/license/cc_by

HTML JavaScript Web Scraping jQuery

In your Inspector Console, you can run JavaScript on any web page to extract information from it, but this requires
looking for patterns and telling JavaScript what information you want. Prior to doing this, you should ensure that your
activities are legal and ethical.

As I provide code examples, I will primarily use jQuery. However, not all web pages have jQuery installed, and so the
provided jQuery commands may not work on every web page. For this reason, I've also provided pure JavaScript for
many commands and any jQuery commands can be converted to pure JavaScript if needed.

On the web page, find a piece of information that you would like to extract, right-click it, and view it in the Inspector.
Notice the following about the information:

1. What type of element is it in (e.g., <p> , , <div>)?
2. What is the structure of its parent and children elements?
3. Does it or its immediate parent have a class attribute assigned?

Most of the time, this is all the information you need to identify other elements like the one you are inspecting. For
instance, right-click and inspect the following email address:

admin@edtechbooks.org

Notice the following:

1. It is a link.
2. Its immediate parent is a <p> element.
3. It does not have a class, but its parent has the class email-address .

Now, in the Inspector Console, run the following jQuery command:

151

https://edtechbooks.org/keyword/1958
https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1970
https://edtechbooks.org/keyword/1971
https://edtechbooks.org/elearning_hacker/legalities_and_ethics
https://edtechbooks.org/elearning_hacker/legalities_and_ethics
mailto:admin@edtechbooks.org

// jQuery
$('.email-address').each(function() {
 console.log($(this).text());
});

// JavaScript
document.querySelectorAll('.email-address').forEach(function(e) {
 console.log(e.innerText);
});

Notice that this gives you the email address in the console, but it also returned two other email addresses it found on
the page that follow the same pattern (in this case, they all are in <p> elements that have the email-address
class).

Let's try this with something else. Let's return all list items on the page by running the following:

// jQuery
$('#chapter-container li').each(function() {
 console.log($(this).text());
});

// JavaScript
document.querySelector('#chapter-container').querySelectorAll('li').forEach(function(e) {
 console.log(e.innerText);
});

This command gets the page's element with the id chapter-container and returns all list item elements ()
within it, exporting the text of each element to the Inspector Console.

Try this with headings as follows:

// jQuery
$('h2').each(function() {
 console.log($(this).text());
});

// JavaScript
document.querySelectorAll('h2').forEach(function(e) {
 console.log(e.innerText);
});

This returns all <h2> elements on the page.

How about all links on the page?

// jQuery
$('#chapter-container a').each(function() {
 console.log($(this).attr('href'));
});

// JavaScript
var links = document.querySelector('#chapter-container').querySelectorAll('a');
links.forEach(function(link) {
 console.log(link.getAttribute('href'));
});

152

Notice with this one instead of using .text() we used .attr('href') to return the value of the href
attribute instead of the displayed text.

Now, let's try one more thing and collapse all of our results together into a single comma-separated list. To do this with
headings, we can run the following command:

// jQuery
var headings = new Array();
$('h2').each(function() {
 headings.push($(this).text());
});
console.log(headings.join(','));

// JavaScript
var headings = document.querySelectorAll('h2');
var headingTexts = Array.from(headings).map(function(heading) {
 return heading.textContent.trim();
});
console.log(headingTexts.join(', '));

In this example, we first created an array to capture the results, then added each result to it, and then output the results
to the console as a string where all elements were joined together with a comma.

Activity: Extract All Emails as a Comma-Separated List

Using the previous examples as a guide, output all email addresses on the page into a comma-separated list in
the Inspector Console.

ERIC Search Results
For this example, let's say that you are doing a literature review on the topic of "social media," and you want to get all
results from an ERIC search results page on the topic. First, access the search results normally by going
to https://eric.ed.gov/?q=social+media

Figure 1

ERIC Results for "Social Media"

153

https://eric.ed.gov/?q=social+media

Then, in the Inspector, you can run a jQuery command to get all of the article names as follows:

$('.r_t').each(function() {
 console.log($(this).text());
});

Or, if you want the direct links for all articles, try the following:

$('.r_f a').each(function() {
 console.log($(this).attr('href'));
});

Or, if you only want the direct links to articles that have a full-text download, try the following:

$('.r_f a').each(function() {
 if($(this).attr('href').includes('fulltext')) console.log($(this).attr('href'));
});

This process works because (a) each article title on the site is inside an element that has a class called "r_t," (b) each
direct link is within an element that has a class called "r_f," and (c) each full-text direct link goes to a file that has the
phrase "fulltext" in the URL.

Though this is all neat, the results aren't super helpful just yet, because you probably want to take them to a spreadsheet
or somewhere else where you can manipulate them. Again, JavaScript can help us by structuring the data we want into
an array and then displaying it in a table in the Inspector like this:

var results = [];
$('.r_t').each(function(i)
{results.push({'title':$(this).text(),'authors':$('.r_a').eq(i).text(),'abstract':$('.r_d').eq(i).te

154

xt(),'href':$('.r_f a').eq(i).attr('href'),})});
console.table(results);

Figure 2

Tabular Results of an ERIC Search

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/extracting_information_from_a_web_page.

155

https://edtechbooks.org/elearning_hacker/extracting_information_from_a_web_page
https://edtechbooks.org/license/cc_by

156

JavaScript Web Scraping API

Application Programming Interfaces (APIs) are tools provided by developers to give other developers access to content
or software features in more direct ways than going through a web interface or HTML. As Figure 1 illustrates, when it
comes to scraping content, APIs have two advantages over parsing web pages. First, APIs can return structured data
that is already parsed, allowing you to avoid finding patterns in the rendered HTML, and second, APIs can sometimes
return data that is not available in the HTML.

Prior to using APIs, you should ensure that your activities are legal and ethical.

Figure 1

Accessing Information via a Web Page vs. an API

To access API information via the web, you can often use your web browser or JavaScript to open what is called an
endpoint, which is simply a URL that returns structured information. For instance, EdTech Books has an open API that
allows you to access content and other information via the following endpoint: https://edtechbooks.org/api.v2.php.

157

https://edtechbooks.org/keyword/1961
https://edtechbooks.org/keyword/1970
https://edtechbooks.org/keyword/1986
https://edtechbooks.org/elearning_hacker/legalities_and_ethics
https://edtechbooks.org/api.v2.php

If you attempt to access this endpoint in your web browser, you will receive an error. This happens because the endpoint
expects you to provide some information to help it know what data to return to you. In this case, try telling it that you
want to search for books about technology by using this link: https://edtechbooks.org/api.v2.php?
action=search&term=technology&entity_type=Book . In this link, we told the API to do the action "search," to look for the
term "technology," and to return only "Book" entities. If you go to this URL, it will return any books on the site with the
term "technology" in the title. Notice that the results are formatted in JavaScript Object Notation (JSON), which may be
difficult for a human to read, but it is great for a computer.

To see the value of this approach, let's try accessing the same endpoint in the Inspector Console with JavaScript by
running the following command:

fetch('https://edtechbooks.org/api.v2.php?action=search&term=technology&entity_type=Book')
 .then(response => response.json())
 .then(data => {
 for(var i in data.books) {
 console.log(data.books[i].name);
 }
 });

Fiddle with this a little to get results with different terms, like "research" or "chemistry," or check out the EdTech Books
API documentation for more options.

Each API endpoint is different, meaning that it accepts different parameters and returns different types of results. So,
they are great if you want to extract a lot of data from a single site, such as a repository, but they are less useful if you
only want a little information from many sites.

Additionally, access to APIs is managed by the software developers, who determine what content can be accessed and
by whom. Some sites allow open access to their APIs, some require a developer login or key, and others don't allow
anyone outside of the organization to access them.

Some useful APIs that I have used in my work include the following:

Twitter
YouTube
Scopus
Google Custom Search
EdTech Books

For most of these, you can have some level of free access, but you must create an account to request an API key to
begin. You would then pass this key to the endpoint in your calls so that the API knows to give you access.

For instance, if you wanted to get a list of articles from the Scopus API for the journal Educational Technology Research
and Development (ISSN 1556-6501), you could use the following endpoint after signing up and getting your own API key
and instance token:

https://api.elsevier.com/content/search/scopus?query=issn(1556-
6501)&apiKey=YOURAPIKEY&insttoken=YOURINSTTOKEN&count=25

Note that this returns an XML formatted document rather than JSON, but if you fetch this URL in your Inspector, you will
get JSON, which you can then parse for titles or other information as follows:

fetch('https://api.elsevier.com/content/search/scopus?query=issn(1556-
6501)&apiKey=YOURAPIKEY&insttoken=YOURINSTTOKEN&count=25')
 .then(response => response.json())

158

https://edtechbooks.org/api.v2.php?action=search&term=technology&entity_type=Book
https://edtechbooks.org/api.v2.php?action=search&term=technology&entity_type=Book
https://edtechbooks.org/elearning_hacker/json
https://edtechbooks.org/userguide/reading_api
https://edtechbooks.org/userguide/reading_api
https://developer.twitter.com/en/docs/twitter-api
https://developers.google.com/youtube/v3
https://dev.elsevier.com/
https://developers.google.com/custom-search/v1/overview
https://edtechbooks.org/userguide/reading_api

 .then(data => {
 for(var i in data['search-results'].entry) {
 console.log(data['search-results'].entry[i]['dc:title']);
 }
 });

This will return results like the following:

Figure 2

Example Results from a Scopus API Search

If you must use a password or secret key to access an API in any way, then you should be aware that simply using
JavaScript to pass these values to the API server (as in the Elsevier example above) will give others using your code
unauthorized access. So, if you are sharing your code with others, be sure to remove keys or other authentication data
to maintain security.

If you are developing an application that you would like to share with others that uses your credentials to access an API,
then you will need to have a way to securely have your application communicate with the API server without revealing
sensitive data (like keys) to your user. The typical way to do this is to have your own server that takes your user
behaviors in your application and routes them to the API server on their behalf, overlaying or removing sensitive data as
needed, as in Figure 3.

Figure 3

Example of an Application that Uses an API

159

In this example, the API key would be stored on your server and sent to the API server with requests, but your end user
on your webpage or application will never be able to see the API key or how your server communicates with the API
server. This book will not guide you in setting up a server environment for hosting secure applications in this way, but I
merely point this out here so that you will realize that any code you create or use in this book will need to be adapted for
such uses and should not be shared with others in a way that includes compromising information (like security keys).

This content is provided to you freely by EdTech Books.

Access it online or download it at
https://edtechbooks.org/elearning_hacker/extracting_structured_content_with_an_api_and_javascript.

160

https://edtechbooks.org/elearning_hacker/extracting_structured_content_with_an_api_and_javascript
https://edtechbooks.org/license/cc_by

Find something...

Attribute (HTML)
Information about an HTML element that is included in the start tag as a key-value pair.

Content Management System (CMS)
A web-based application that organizes and provides content to users for viewing, editing, etc., typically consisting of a
front-end that uses HTML/CSS/JavaScript and a backend that stores data in a database.

Document Object Model (DOM)
The logical tree of a web page that consists of organized HTML elements that may be listed or nested within one
another.

Element (HTML)
A block of HTML that begins with a start tag, ends with an end tag, and encapsulates either text content or additional
HTML elements. Denoted by angle brackets.

Float
A numeric value that includes decimal values, in contrast to integers (e.g., 3.14, 1.0, 0.8888).

Function
A reusable block of code that performs a specific task.

161

https://edtechbooks.org/elearning_hacker?tab=search&term=Attribute+%28HTML%29
https://edtechbooks.org/elearning_hacker?tab=search&term=Content+Management+System+%28CMS%29
https://edtechbooks.org/elearning_hacker?tab=search&term=Document+Object+Model+%28DOM%29
https://edtechbooks.org/elearning_hacker?tab=search&term=Element+%28HTML%29
https://edtechbooks.org/elearning_hacker?tab=search&term=Float
https://edtechbooks.org/elearning_hacker?tab=search&term=Function

Integer
A numeric value that does not include decimal values, in contrast to floats (e.g., 0, 1, 27, 43).

Integrated Development Environment (IDE)
A software application that provides tools for software development.

Learning Management System (LMS)
A CMS with features specifically designed for learning management applications.

String
A series of text, such as a word, phrase, or sentence. A string can contain textual characters, special characters, and/or
numbers.

This content is provided to you freely by EdTech Books.

Access it online or download it at https://edtechbooks.org/elearning_hacker/glossary.

162

https://edtechbooks.org/elearning_hacker?tab=search&term=Integer
https://edtechbooks.org/elearning_hacker?tab=search&term=Integrated+Development+Environment+%28IDE%29
https://edtechbooks.org/elearning_hacker?tab=search&term=Learning+Management+System+%28LMS%29
https://edtechbooks.org/elearning_hacker?tab=search&term=String
https://edtechbooks.org/elearning_hacker/glossary
https://edtechbooks.org/license/cc_by

