30 minutes
CoverForewordUnit I. Atoms1. Introduction2. Matter3. Measurement4. The Atom5. Periodic Table6. Moles & Mass7. Light8. Blackbody Radiation, Photoelectric Effect9. Atomic Spectra, Bohr Model10. Orbitals & Quantum Numbers11. Electron Configurations12. Periodic TrendsUnit II. Molecules13. Bonding14. Nomenclature15. Lewis Structures Part 116. Lewis Structures Part 217. Molecular Shape18. Polarity19. Organic Molecules20. Isomers21. Valence Bond Theory22. Molecular Orbital TheoryUnit III. Interactions23. Pressure & Gas Laws24. Combined & Ideal Gas Laws25. Dalton's Law, Graham's Law, Henry's Law26. Kinetic Molecular Theory, Real Gases27. Intermolecular Forces28. Properties of Water29. Applications of IMF30. Phase DiagramsUnit IV. Reactions31. Stoichiometry32. Limiting Reactants, % Yield33. % Composition, Empirical Formulas34. Energy, Heat, and Work35. Calorimetry Part 136. Calorimetry Part 237. Enthalpy Part 138. Enthalpy Part 239. Entropy40. Gibb's Free Energy41. Climate and Human ImpactsKeywords
General College Chemistry
2

Matter

Matter is anything that occupies space and has mass. The basic building block of matter is the atom, the smallest unit of an element that can enter into combinations with atoms of the same or other elements. In many substances, atoms are combined into molecules. On earth, matter commonly exists in three states: solids, of fixed shape and volume; liquids, of variable shape but fixed volume; and gases, of variable shape and volume. Under high-temperature conditions, matter also can exist as a plasma. Most matter is a mixture: It is composed of two or more types of matter that can be present in varying amounts and can be separated by physical means. Heterogeneous mixtures vary in composition from point to point; homogeneous mixtures have the same composition from point to point. Pure substances consist of only one type of matter. A pure substance can be an element, which consists of only one type of atom and cannot be broken down by a chemical change, or a compound, which consists of two or more types of atoms. All substances have distinct physical and chemical properties, and may undergo physical or chemical changes. Physical properties, such as hardness and boiling point, and physical changes, such as melting or freezing, do not involve a change in the composition of matter. Chemical properties, such flammability and acidity, and chemical changes, such as rusting, involve production of matter that differs from that present beforehand. Measurable properties fall into one of two categories. Extensive properties depend on the amount of matter present, for example, the mass of gold. Intensive properties do not depend on the amount of matter present, for example, the density of gold. Heat is an example of an extensive property, and temperature is an example of an intensive property. A molecular formula uses chemical symbols and subscripts to indicate the exact numbers of different atoms in a molecule or compound. An empirical formula gives the simplest, whole-number ratio of atoms in a compound. A structural formula indicates the bonding arrangement of the atoms in the molecule. Ball-and-stick and space-filling models show the geometric arrangement of atoms in a molecule. Isomers are compounds with the same molecular formula but different arrangements of atoms.
Keywords: Atom, Isomers

2.1 Phases and Classifications of Matter

Learning Objectives

By the end of this section, you will be able to:

  • Describe the basic properties of each physical state of matter: solid, liquid, and gas
  • Distinguish between mass and weight
  • Apply the law of conservation of matter
  • Classify matter as an element, compound, homogeneous mixture, or heterogeneous mixture with regard to its physical state and composition
  • Define and give examples of atoms and molecules

Matter is defined as anything that occupies space and has mass, and it is all around us. Solids and liquids are more obviously matter: We can see that they take up space, and their weight tells us that they have mass. Gases are also matter; if gases did not take up space, a balloon would not inflate (increase its volume) when filled with gas.

Solids, liquids, and gases are the three states of matter commonly found on earth (Figure 2.1). A solid is rigid and possesses a definite shape. A liquid flows and takes the shape of its container, except that it forms a flat or slightly curved upper surface when acted upon by gravity. (In zero gravity, liquids assume a spherical shape.) Both liquid and solid samples have volumes that are very nearly independent of pressure. A gas takes both the shape and volume of its container.

Figure 2.1

The three most common states or phases of matter are solid, liquid, and gas.

A beaker labeled solid contains a cube of red matter and says has fixed shape and volume. A beaker labeled liquid contains a brownish-red colored liquid. This beaker says takes shape of container, forms horizontal surfaces, has fixed volume. The beaker labeled gas is filled with a light brown gas. This beaker says expands to fill container.

A fourth state of matter, plasma, occurs naturally in the interiors of stars. A plasma is a gaseous state of matter that contains appreciable numbers of electrically charged particles (Figure 2.2). The presence of these charged particles imparts unique properties to plasmas that justify their classification as a state of matter distinct from gases. In addition to stars, plasmas are found in some other high-temperature environments (both natural and man-made), such as lightning strikes, certain television screens, and specialized analytical instruments used to detect trace amounts of metals.

Figure 2.2

A plasma torch can be used to cut metal. (credit: “Hypertherm”/Wikimedia Commons)

A cutting torch is being used to cut a piece of metal. Bright, white colored plasma can be seen near the tip of the torch, where it is contacting the metal.

Some samples of matter appear to have properties of solids, liquids, and/or gases at the same time. This can occur when the sample is composed of many small pieces. For example, we can pour sand as if it were a liquid because it is composed of many small grains of solid sand. Matter can also have properties of more than one state when it is a mixture, such as with clouds. Clouds appear to behave somewhat like gases, but they are actually mixtures of air (gas) and tiny particles of water (liquid or solid).

The mass of an object is a measure of the amount of matter in it. One way to measure an object’s mass is to measure the force it takes to accelerate the object. It takes much more force to accelerate a car than a bicycle because the car has much more mass. A more common way to determine the mass of an object is to use a balance to compare its mass with a standard mass.

Although weight is related to mass, it is not the same thing. Weight refers to the force that gravity exerts on an object. This force is directly proportional to the mass of the object. The weight of an object changes as the force of gravity changes, but its mass does not. An astronaut’s mass does not change just because she goes to the moon. But her weight on the moon is only one-sixth her earth-bound weight because the moon’s gravity is only one-sixth that of the earth’s. She may feel “weightless” during her trip when she experiences negligible external forces (gravitational or any other), although she is, of course, never “massless.”

The law of conservation of matter summarizes many scientific observations about matter: It states that there is no detectable change in the total quantity of matter present when matter converts from one type to another (a chemical change) or changes among solid, liquid, or gaseous states (a physical change). Brewing beer and the operation of batteries provide examples of the conservation of matter (Figure 2.3). During the brewing of beer, the ingredients (water, yeast, grains, malt, hops, and sugar) are converted into beer (water, alcohol, carbonation, and flavoring substances) with no actual loss of substance. This is most clearly seen during the bottling process, when glucose turns into ethanol and carbon dioxide, and the total mass of the substances does not change. This can also be seen in a lead-acid car battery: The original substances (lead, lead oxide, and sulfuric acid), which are capable of producing electricity, are changed into other substances (lead sulfate and water) that do not produce electricity, with no change in the actual amount of matter.

Figure 2.3

(a) The mass of beer precursor materials is the same as the mass of beer produced: Sugar has become alcohol and carbon dioxide. (b) The mass of the lead, lead oxide, and sulfuric acid consumed by the production of electricity is exactly equal to the mass of lead sulfate and water that is formed.

Diagram A shows a beer bottle containing pre-beer and sugar. An arrow points from this bottle to a second bottle. This second bottle contains the same volume of liquid, however, the sugar has been converted into ethanol and carbonation as beer was made. Diagram B shows a car battery that contains sheets of P B and P B O subscript 2 along with H subscript 2 S O subscript 4. After the battery is used, it contains an equal mass of P B S O subscript 4 and H subscript 2 O.

Although this conservation law holds true for all conversions of matter, convincing examples are few and far between because, outside of the controlled conditions in a laboratory, we seldom collect all of the material that is produced during a particular conversion. For example, when you eat, digest, and assimilate food, all of the matter in the original food is preserved. But because some of the matter is incorporated into your body, and much is excreted as various types of waste, it is challenging to verify by measurement.

Classifying Matter

Matter can be classified into several categories. Two broad categories are mixtures and pure substances. A pure substance has a constant composition. All specimens of a pure substance have exactly the same makeup and properties. Any sample of sucrose (table sugar) consists of 42.1% carbon, 6.5% hydrogen, and 51.4% oxygen by mass. Any sample of sucrose also has the same physical properties, such as melting point, color, and sweetness, regardless of the source from which it is isolated.

Pure substances may be divided into two classes: elements and compounds. Pure substances that cannot be broken down into simpler substances by chemical changes are called elements. Iron, silver, gold, aluminum, sulfur, oxygen, and copper are familiar examples of the more than 100 known elements, of which about 90 occur naturally on the earth, and two dozen or so have been created in laboratories.

Pure substances that are comprised of two or more elements are called compounds. Compounds may be broken down by chemical changes to yield either elements or other compounds, or both. Mercury(II) oxide, an orange, crystalline solid, can be broken down by heat into the elements mercury and oxygen (Figure 2.4). When heated in the absence of air, the compound sucrose is broken down into the element carbon and the compound water. (The initial stage of this process, when the sugar is turning brown, is known as caramelization—this is what imparts the characteristic sweet and nutty flavor to caramel apples, caramelized onions, and caramel). Silver(I) chloride is a white solid that can be broken down into its elements, silver and chlorine, by absorption of light. This property is the basis for the use of this compound in photographic films and photochromic eyeglasses (those with lenses that darken when exposed to light).

Figure 2.4

(a) The compound mercury(II) oxide, (b) when heated, (c) decomposes into silvery droplets of liquid mercury and invisible oxygen gas. (credit: modification of work by Paul Flowers)

This figure shows a series of three photos labeled a, b, and c. Photo a shows the bottom of a test tube that is filled with an orange-red substance. A slight amount of a silver substance is also visible. Photo b shows the substance in the test tube being heated over a flame. Photo c shows a test tube that is not longer being heated. The orange-red substance is almost completely gone, and small, silver droplets of a substance are left.

The properties of combined elements are different from those in the free, or uncombined, state. For example, white crystalline sugar (sucrose) is a compound resulting from the chemical combination of the element carbon, which is a black solid in one of its uncombined forms, and the two elements hydrogen and oxygen, which are colorless gases when uncombined. Free sodium, an element that is a soft, shiny, metallic solid, and free chlorine, an element that is a yellow-green gas, combine to form sodium chloride (table salt), a compound that is a white, crystalline solid.

A mixture is composed of two or more types of matter that can be present in varying amounts and can be separated by physical changes, such as evaporation (you will learn more about this later). A mixture with a composition that varies from point to point is called a heterogeneous mixture. Italian dressing is an example of a heterogeneous mixture (Figure 2.5). Its composition can vary because it may be prepared from varying amounts of oil, vinegar, and herbs. It is not the same from point to point throughout the mixture—one drop may be mostly vinegar, whereas a different drop may be mostly oil or herbs because the oil and vinegar separate and the herbs settle. Other examples of heterogeneous mixtures are chocolate chip cookies (we can see the separate bits of chocolate, nuts, and cookie dough) and granite (we can see the quartz, mica, feldspar, and more).

A homogeneous mixture, also called a solution, exhibits a uniform composition and appears visually the same throughout. An example of a solution is a sports drink, consisting of water, sugar, coloring, flavoring, and electrolytes mixed together uniformly (Figure 2.5). Each drop of a sports drink tastes the same because each drop contains the same amounts of water, sugar, and other components. Note that the composition of a sports drink can vary—it could be made with somewhat more or less sugar, flavoring, or other components, and still be a sports drink. Other examples of homogeneous mixtures include air, maple syrup, gasoline, and a solution of salt in water.

Figure 2.5

(a) Oil and vinegar salad dressing is a heterogeneous mixture because its composition is not uniform throughout. (b) A commercial sports drink is a homogeneous mixture because its composition is uniform throughout. (credit a “left”: modification of work by John Mayer; credit a “right”: modification of work by Umberto Salvagnin; credit b “left: modification of work by Jeff Bedford)

Diagram A shows a glass containing a red liquid with a layer of yellow oil floating on the surface of the red liquid. A zoom in box is magnifying a portion of the red liquid that contains some of the yellow oil. The zoomed in image shows that oil is forming round droplets within the red liquid. Diagram B shows a photo of Gatorade G 2. A zoom in box is magnifying a portion of the Gatorade, which is uniformly red.

Although there are just over 100 elements, tens of millions of chemical compounds result from different combinations of these elements. Each compound has a specific composition and possesses definite chemical and physical properties that distinguish it from all other compounds. And, of course, there are innumerable ways to combine elements and compounds to form different mixtures. A summary of how to distinguish between the various major classifications of matter is shown in (Figure 2.6).

Figure 2.6

Depending on its properties, a given substance can be classified as a homogeneous mixture, a heterogeneous mixture, a compound, or an element.

This flow chart begins with matter at the top and the question: does the matter have constant properties and composition? If no, then it is a mixture. This leads to the next question: is it uniform throughout? If no, it is heterogeneous. If yes, it is homogenous. If the matter does have constant properties and composition, it is a pure substance. This leads to the next question: can it be simplified chemically? If no, it is an element. If yes, then it is a compound.

Eleven elements make up about 99% of the earth’s crust and atmosphere (Table 2.1). Oxygen constitutes nearly one-half and silicon about one-quarter of the total quantity of these elements. A majority of elements on earth are found in chemical combinations with other elements; about one-quarter of the elements are also found in the free state.

Table 2.1

Elemental Composition of Earth

Element Symbol Percent Mass Element Symbol Percent Mass
oxygen O 49.20 chlorine Cl 0.19
silicon Si 25.67 phosphorus P 0.11
aluminum Al 7.50 manganese Mn 0.09
iron Fe 4.71 carbon C 0.08
calcium Ca 3.39 sulfur S 0.06
sodium Na 2.63 barium Ba 0.04
potassium K 2.40 nitrogen N 0.03
magnesium Mg 1.93 fluorine F 0.03
hydrogen H 0.87 strontium Sr 0.02
titanium Ti 0.58 all others - 0.47

Atoms and Molecules

An atom is the smallest particle of an element that has the properties of that element and can enter into a chemical combination. Consider the element gold, for example. Imagine cutting a gold nugget in half, then cutting one of the halves in half, and repeating this process until a piece of gold remained that was so small that it could not be cut in half (regardless of how tiny your knife may be). This minimally sized piece of gold is an atom (from the Greek atomos, meaning “indivisible”) (Figure 2.7). This atom would no longer be gold if it were divided any further.

Figure 2.7

(a) This photograph shows a gold nugget. (b) A scanning-tunneling microscope (STM) can generate views of the surfaces of solids, such as this image of a gold crystal. Each sphere represents one gold atom. (credit a: modification of work by United States Geological Survey; credit b: modification of work by “Erwinrossen”/Wikimedia Commons)

Figure A shows a gold nugget as it would appear to the naked eye. The gold nugget is very irregular, with many sharp edges. It appears gold in color. The microscope image of a gold crystal shows many similarly sized gold stripes that are separated by dark areas. Looking closely, one can see that the gold stripes are made of many, tiny, circular atoms.

The first suggestion that matter is composed of atoms is attributed to the Greek philosophers Leucippus and Democritus, who developed their ideas in the 5th century BCE. However, it was not until the early nineteenth century that John Dalton (1766–1844), a British schoolteacher with a keen interest in science, supported this hypothesis with quantitative measurements. Since that time, repeated experiments have confirmed many aspects of this hypothesis, and it has become one of the central theories of chemistry. Other aspects of Dalton’s atomic theory are still used but with minor revisions (details of Dalton’s theory are provided in the chapter on atoms and molecules).

An atom is so small that its size is difficult to imagine. One of the smallest things we can see with our unaided eye is a single thread of a spider web: These strands are about 1/10,000 of a centimeter (0.0001 cm) in diameter. Although the cross-section of one strand is almost impossible to see without a microscope, it is huge on an atomic scale. A single carbon atom in the web has a diameter of about 0.000000015 centimeter, and it would take about 7000 carbon atoms to span the diameter of the strand. To put this in perspective, if a carbon atom were the size of a dime, the cross-section of one strand would be larger than a football field, which would require about 150 million carbon atom “dimes” to cover it. (Figure 2.8) shows increasingly close microscopic and atomic-level views of ordinary cotton.

Figure 2.8

These images provide an increasingly closer view: (a) a cotton boll, (b) a single cotton fiber viewed under an optical microscope (magnified 40 times), (c) an image of a cotton fiber obtained with an electron microscope (much higher magnification than with the optical microscope); and (d and e) atomic-level models of the fiber (spheres of different colors represent atoms of different elements). (credit c: modification of work by “Featheredtar”/Wikimedia Commons)

Figure A shows a puffy white cotton boll growing on a brown twig. Figure B shows a magnified cotton strand. The strand appears transparent but contains dark areas within its interior. Figure C shows the surface of several crisscrossing and overlapping cotton fibers. Its surface is rough along the edges but smooth near the center of each strand. Figure D shows three strands of molecules connected into three vertical chains. Each strand contains about five molecules. Figure E shows that the cotton molecule contains about a dozen atoms. The black carbon atoms form rings that are connected by red oxygen atoms. Many of the carbon atoms are also bonded to hydrogen atoms, shown as white balls, or other oxygen atoms.

An atom is so light that its mass is also difficult to imagine. A billion lead atoms (1,000,000,000 atoms) weigh about 3 ×× 10−13 grams, a mass that is far too light to be weighed on even the world’s most sensitive balances. It would require over 300,000,000,000,000 lead atoms (300 trillion, or 3 ×× 1014) to be weighed, and they would weigh only 0.0000001 gram.

It is rare to find collections of individual atoms. Only a few elements, such as the gases helium, neon, and argon, consist of a collection of individual atoms that move about independently of one another. Other elements, such as the gases hydrogen, nitrogen, oxygen, and chlorine, are composed of units that consist of pairs of atoms (Figure 2.9). One form of the element phosphorus consists of units composed of four phosphorus atoms. The element sulfur exists in various forms, one of which consists of units composed of eight sulfur atoms. These units are called molecules. A molecule consists of two or more atoms joined by strong forces called chemical bonds. The atoms in a molecule move around as a unit, much like the cans of soda in a six-pack or a bunch of keys joined together on a single key ring. A molecule may consist of two or more identical atoms, as in the molecules found in the elements hydrogen, oxygen, and sulfur, or it may consist of two or more different atoms, as in the molecules found in water. Each water molecule is a unit that contains two hydrogen atoms and one oxygen atom. Each glucose molecule is a unit that contains 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. Like atoms, molecules are incredibly small and light. If an ordinary glass of water were enlarged to the size of the earth, the water molecules inside it would be about the size of golf balls.

Figure 2.9

The elements hydrogen, oxygen, phosphorus, and sulfur form molecules consisting of two or more atoms of the same element. The compounds water, carbon dioxide, and glucose consist of combinations of atoms of different elements.

The hydrogen molecule, H subscript 2, is shown as two small, white balls bonded together. The oxygen molecule O subscript 2, is shown as two red balls bonded together. The phosphorous molecule, P subscript 4, is shown as four orange balls bonded tightly together. The sulfur molecule, S subscript 8, is shown as 8 yellow balls linked together. Water molecules, H subscript 2 O, consist of one red oxygen atom bonded to two smaller white hydrogen atoms. The hydrogen atoms are at an angle on the oxygen molecule. Carbon dioxide, C O subscript 2, consists of one carbon atom and two oxygen atoms. One oxygen atom is bonded to the carbon’s right side and the other oxygen is bonded to the carbon’s left side. Glucose, C subscript 6 H subscript 12 O subscript 6, contains a chain of carbon atoms that have attached oxygen or hydrogen atoms.

Chemistry in Everyday Life Part 1

Decomposition of Water / Production of Hydrogen

Water consists of the elements hydrogen and oxygen combined in a 2 to 1 ratio. Water can be broken down into hydrogen and oxygen gases by the addition of energy. One way to do this is with a battery or power supply, as shown in (Figure 2.10).

Figure 2.10

The decomposition of water is shown at the macroscopic, microscopic, and symbolic levels. The battery provides an electric current (microscopic) that decomposes water. At the macroscopic level, the liquid separates into the gases hydrogen (on the left) and oxygen (on the right). Symbolically, this change is presented by showing how liquid H2O separates into H2 and O2 gases.

A rectangular battery is immersed in a beaker filled with liquid. Each of the battery terminals are covered by an overturned test tube. The test tubes each contain a bubbling liquid. Zoom in areas indicate that the liquid in the beaker is water, 2 H subscript 2 O liquid. The bubbles in the test tube over the negative terminal are hydrogen gas, 2 H subscript 2 gas. The bubbles in the test tube over the positive terminal are oxygen gas, O subscript 2 gas.

The breakdown of water involves a rearrangement of the atoms in water molecules into different molecules, each composed of two hydrogen atoms and two oxygen atoms, respectively. Two water molecules form one oxygen molecule and two hydrogen molecules. The representation for what occurs, 2H2O(l)2H2(g)+O2(g),2H2O(l)2H2(g)+O2(g), will be explored in more depth in later chapters.

The two gases produced have distinctly different properties. Oxygen is not flammable but is required for combustion of a fuel, and hydrogen is highly flammable and a potent energy source. How might this knowledge be applied in our world? One application involves research into more fuel-efficient transportation. Fuel-cell vehicles (FCV) run on hydrogen instead of gasoline (Figure 2.11). They are more efficient than vehicles with internal combustion engines, are nonpolluting, and reduce greenhouse gas emissions, making us less dependent on fossil fuels. FCVs are not yet economically viable, however, and current hydrogen production depends on natural gas. If we can develop a process to economically decompose water, or produce hydrogen in another environmentally sound way, FCVs may be the way of the future.

Figure 2.11

A fuel cell generates electrical energy from hydrogen and oxygen via an electrochemical process and produces only water as the waste product.

The fuel cell consists of a proton exchange membrane sandwiched between an anode and a cathode. Hydrogen gas enters the battery near the anode. Oxygen gas enters the battery near the cathode. The entering hydrogen gas is broken up into single white spheres that each have a positive charge. These are protons. The protons repel negatively-charged electrons within the anode. These electrons travel through a circuit, providing electricity to anything attached to the battery. The protons continue through the proton exchange membrane and through the cathode to reach the oxygen gas molecules at the opposite end of the battery. There, the oxygen atoms split up into single red spheres. Each oxygen atom takes on two of the incoming protons to form a water molecule.

Chemistry in Everyday Life Part 2

Chemistry of Cell Phones

Imagine how different your life would be without cell phones (Figure 2.12) and other smart devices. Cell phones are made from numerous chemical substances, which are extracted, refined, purified, and assembled using an extensive and in-depth understanding of chemical principles. About 30% of the elements that are found in nature are found within a typical smart phone. The case/body/frame consists of a combination of sturdy, durable polymers composed primarily of carbon, hydrogen, oxygen, and nitrogen [acrylonitrile butadiene styrene (ABS) and polycarbonate thermoplastics], and light, strong, structural metals, such as aluminum, magnesium, and iron. The display screen is made from a specially toughened glass (silica glass strengthened by the addition of aluminum, sodium, and potassium) and coated with a material to make it conductive (such as indium tin oxide). The circuit board uses a semiconductor material (usually silicon); commonly used metals like copper, tin, silver, and gold; and more unfamiliar elements such as yttrium, praseodymium, and gadolinium. The battery relies upon lithium ions and a variety of other materials, including iron, cobalt, copper, polyethylene oxide, and polyacrylonitrile.

Figure 2.12

Almost one-third of naturally occurring elements are used to make a cell phone. (credit: modification of work by John Taylor)

A cell phone is labeled to show what its components are made of. The case components are made of polymers such as A B S and or metals such as aluminum, iron, and magnesium. The processor components are made of silicon, common metals such as copper, tin and gold, and uncommon elements such as yttrium and gadolinium. The screen components are made of silicon oxide, also known as glass. The glass is strengthened by the addition of aluminum, sodium, and potassium. The battery components contain lithium combined with other metals such as cobalt, iron, and copper.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

2.2 Physical and Chemical Properties

Learning Objectives

By the end of this section, you will be able to:

  • Identify properties of and changes in matter as physical or chemical
  • Identify properties of matter as extensive or intensive

The characteristics that distinguish one substance from another are called properties. A physical property is a characteristic of matter that is not associated with a change in its chemical composition. Familiar examples of physical properties include density, color, hardness, melting and boiling points, and electrical conductivity. Some physical properties, such as density and color, may be observed without changing the physical state of the matter. Other physical properties, such as the melting temperature of iron or the freezing temperature of water, can only be observed as matter undergoes a physical change. A physical change is a change in the state or properties of matter without any accompanying change in the chemical identities of the substances contained in the matter. Physical changes are observed when wax melts, when sugar dissolves in coffee, and when steam condenses into liquid water (Figure 2.13). Other examples of physical changes include magnetizing and demagnetizing metals (as is done with common antitheft security tags) and grinding solids into powders (which can sometimes yield noticeable changes in color). In each of these examples, there is a change in the physical state, form, or properties of the substance, but no change in its chemical composition.

Figure 2.13

(a) Wax undergoes a physical change when solid wax is heated and forms liquid wax. (b) Steam condensing inside a cooking pot is a physical change, as water vapor is changed into liquid water. (credit a: modification of work by “95jb14”/Wikimedia Commons; credit b: modification of work by “mjneuby”/Flickr)

Figure A is a photograph of butter melting in a pot on a stove. Figure B is a photograph of something being heated on a stove in a pot. Water droplets are forming on the underside of a glass cover that has been placed over the pot.

The change of one type of matter into another type (or the inability to change) is a chemical property. Examples of chemical properties include flammability, toxicity, acidity, and many other types of reactivity. Iron, for example, combines with oxygen in the presence of water to form rust; chromium does not oxidize (Figure 2.14). Nitroglycerin is very dangerous because it explodes easily; neon poses almost no hazard because it is very unreactive.

Figure 2.14

(a) One of the chemical properties of iron is that it rusts; (b) one of the chemical properties of chromium is that it does not. (credit a: modification of work by Tony Hisgett; credit b: modification of work by “Atoma”/Wikimedia Commons)

Figure A is a photo of metal machinery that is now mostly covered with reddish orange rust. Figure B shows the silver colored chrome parts of a motorcycle. One of the parts is so shiny that you can see a reflection of the surrounding street and buildings.

A chemical change always produces one or more types of matter that differ from the matter present before the change. The formation of rust is a chemical change because rust is a different kind of matter than the iron, oxygen, and water present before the rust formed. The explosion of nitroglycerin is a chemical change because the gases produced are very different kinds of matter from the original substance. Other examples of chemical changes include reactions that are performed in a lab (such as copper reacting with nitric acid), all forms of combustion (burning), and food being cooked, digested, or rotting (Figure 2.15).

Figure 2.15

(a) Copper and nitric acid undergo a chemical change to form copper nitrate and brown, gaseous nitrogen dioxide. (b) During the combustion of a match, cellulose in the match and oxygen from the air undergo a chemical change to form carbon dioxide and water vapor. (c) Cooking red meat causes a number of chemical changes, including the oxidation of iron in myoglobin that results in the familiar red-to-brown color change. (d) A banana turning brown is a chemical change as new, darker (and less tasty) substances form. (credit b: modification of work by Jeff Turner; credit c: modification of work by Gloria Cabada-Leman; credit d: modification of work by Roberto Verzo)

Figure A is a photo of the flask containing a blue liquid. Several strands of brownish copper are immersed into the blue liquid. There is a brownish gas rising from the liquid and filling the upper part of the flask. Figure B shows a burning match. Figure C shows red meat being cooked in a pan. Figure D shows a small bunch of yellow bananas that have many black spots.

Properties of matter fall into one of two categories. If the property depends on the amount of matter present, it is an extensive property. The mass and volume of a substance are examples of extensive properties; for instance, a gallon of milk has a larger mass than a cup of milk. The value of an extensive property is directly proportional to the amount of matter in question. If the property of a sample of matter does not depend on the amount of matter present, it is an intensive property. Temperature is an example of an intensive property. If the gallon and cup of milk are each at 20 °C (room temperature), when they are combined, the temperature remains at 20 °C. As another example, consider the distinct but related properties of heat and temperature. A drop of hot cooking oil spattered on your arm causes brief, minor discomfort, whereas a pot of hot oil yields severe burns. Both the drop and the pot of oil are at the same temperature (an intensive property), but the pot clearly contains much more heat (extensive property).

Chemistry in Everyday Life Part 3

Hazard Diamond

You may have seen the symbol shown in Figure 2.16 on containers of chemicals in a laboratory or workplace. Sometimes called a “fire diamond” or “hazard diamond,” this chemical hazard diamond provides valuable information that briefly summarizes the various dangers of which to be aware when working with a particular substance.

Figure 2.16

The National Fire Protection Agency (NFPA) hazard diamond summarizes the major hazards of a chemical substance.

The diamond is subdivided into four smaller diamonds. The upper diamond is colored red and is associated with fire hazards. The numbers in the fire hazard diamond range from 0 to 4. As the numbers increase, the chemical’s flash point decreases. 0 indicates a substance that will not burn, 1 indicates a substance with a flashpoint above 200 degrees Fahrenheit, 2 indicates a substance with a flashpoint above 100 degrees Fahrenheit and not exceeding 200 degrees Fahrenheit, 3 indicates a substance with a flashpoint below 100 degrees Fahrenheit, and 4 indicates a substance with a flashpoint below 73 degrees Fahrenheit. The right-hand diamond is yellow and is associated with reactivity. The reactivity numbers range from 0 to 4. 0 indicates a stable chemical, 1 indicates a chemical that is unstable if heated, 2 indicates the possibility of a violent chemical change, 3 indicates that shock and heat may detonate the chemical and 4 indicates that the chemical may detonate. The lower diamond is white and is associated with specific hazards. These contain abbreviations that describe specific hazardous characteristic of the chemical. O X indicates an oxidizer, A C I D indicates an acid, A L K indicates an alkali, C O R indicates corrosive, a W with a line through it indicates use no water, and a symbol of a dot surrounded by three triangles indicates radioactive. The leftmost diamond is blue and is associated with health hazards. The numbers in the health hazard diamond range from 0 to 4. 0 indicates a normal material, 1 indicates slightly hazardous, 2 indicates hazardous, 3 indicates extreme danger, and 4 indicates deadly.

The National Fire Protection Agency (NFPA) 704 Hazard Identification System was developed by NFPA to provide safety information about certain substances. The system details flammability, reactivity, health, and other hazards. Within the overall diamond symbol, the top (red) diamond specifies the level of fire hazard (temperature range for flash point). The blue (left) diamond indicates the level of health hazard. The yellow (right) diamond describes reactivity hazards, such as how readily the substance will undergo detonation or a violent chemical change. The white (bottom) diamond points out special hazards, such as if it is an oxidizer (which allows the substance to burn in the absence of air/oxygen), undergoes an unusual or dangerous reaction with water, is corrosive, acidic, alkaline, a biological hazard, radioactive, and so on. Each hazard is rated on a scale from 0 to 4, with 0 being no hazard and 4 being extremely hazardous.

While many elements differ dramatically in their chemical and physical properties, some elements have similar properties. For example, many elements conduct heat and electricity well, whereas others are poor conductors. These properties can be used to sort the elements into three classes: metals (elements that conduct well), nonmetals (elements that conduct poorly), and metalloids (elements that have intermediate conductivities).

The periodic table is a table of elements that places elements with similar properties close together (Figure 2.17). You will learn more about the periodic table as you continue your study of chemistry.

Figure 2.17

The periodic table shows how elements may be grouped according to certain similar properties. Note the background color denotes whether an element is a metal, metalloid, or nonmetal, whereas the element symbol color indicates whether it is a solid, liquid, or gas.

On this depiction of the periodic table, the metals are indicated with a yellow color and dominate the left two thirds of the periodic table. The nonmetals are colored peach and are largely confined to the upper right area of the table, with the exception of hydrogen, H, which is located in the extreme upper left of the table. The metalloids are colored purple and form a diagonal border between the metal and nonmetal areas of the table. Group 13 contains both metals and metalloids. Group 17 contains both nonmetals and metalloids. Groups 14 through 16 contain at least one representative of a metal, a metalloid, and a nonmetal. A key shows that, at room temperature, metals are solids, metalloids are liquids, and nonmetals are gases.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

2.3 Chemical Formulas

Learning Objectives

By the end of this section, you will be able to:

  • Symbolize the composition of molecules using molecular formulas and empirical formulas
  • Represent the bonding arrangement of atoms within molecules using structural formulas

Molecular and Empirical Formulas

A molecular formula is a representation of a molecule that uses chemical symbols to indicate the types of atoms followed by subscripts to show the number of atoms of each type in the molecule. (A subscript is used only when more than one atom of a given type is present.) Molecular formulas are also used as abbreviations for the names of compounds.

The structural formula for a compound gives the same information as its molecular formula (the types and numbers of atoms in the molecule) but also shows how the atoms are connected in the molecule. The structural formula for methane contains symbols for one C atom and four H atoms, indicating the number of atoms in the molecule (Figure 2.18). The lines represent bonds that hold the atoms together. (A chemical bond is an attraction between atoms or ions that holds them together in a molecule or a crystal.) We will discuss chemical bonds and see how to predict the arrangement of atoms in a molecule later. For now, simply know that the lines are an indication of how the atoms are connected in a molecule. A ball-and-stick model shows the geometric arrangement of the atoms with atomic sizes not to scale, and a space-filling model shows the relative sizes of the atoms.

Figure 2.18

A methane molecule can be represented as (a) a molecular formula, (b) a structural formula, (c) a ball-and-stick model, and (d) a space-filling model. Carbon and hydrogen atoms are represented by black and white spheres, respectively.

Figure A shows C H subscript 4. Figure B shows a carbon atom that is bonded to four hydrogen atoms at right angles: one above, one to the left, one to the right, and one below. Figure C shows a 3-D, ball-and-stick model of the carbon atom bonded to four hydrogen atoms. Figure D shows a space-filling model of a carbon atom with hydrogen atoms partially embedded into the surface of the carbon atom.

Although many elements consist of discrete, individual atoms, some exist as molecules made up of two or more atoms of the element chemically bonded together. For example, most samples of the elements hydrogen, oxygen, and nitrogen are composed of molecules that contain two atoms each (called diatomic molecules) and thus have the molecular formulas H2, O2, and N2, respectively. Other elements commonly found as diatomic molecules are fluorine (F2), chlorine (Cl2), bromine (Br2), and iodine (I2). The most common form of the element sulfur is composed of molecules that consist of eight atoms of sulfur; its molecular formula is S8 (Figure 2.19).

Figure 2.19

A molecule of sulfur is composed of eight sulfur atoms and is therefore written as S8. It can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. Sulfur atoms are represented by yellow spheres.

Figure A shows eight sulfur atoms, symbolized with the letter S, that are bonded to each other to form an octagon. Figure B shows a 3-D, ball-and-stick model of the arrangement of the sulfur atoms. The shape is clearly not octagonal as it is represented in the structural formula. Figure C is a space-filling model that shows each sulfur atom is partially embedded into the sulfur atom it bonds with.

It is important to note that a subscript following a symbol and a number in front of a symbol do not represent the same thing; for example, H2 and 2H represent distinctly different species. H2 is a molecular formula; it represents a diatomic molecule of hydrogen, consisting of two atoms of the element that are chemically bonded together. The expression 2H, on the other hand, indicates two separate hydrogen atoms that are not combined as a unit. The expression 2H2 represents two molecules of diatomic hydrogen (Figure 2.20).

Figure 2.20

The symbols H, 2H, H2, and 2H2 represent very different entities.

This figure shows four diagrams. The diagram for H shows a single, white sphere and is labeled one H atom. The diagram for 2 H shows two white spheres that are not bonded together. It is labeled 2 H atoms. The diagram for H subscript 2 shows two white spheres bonded together. It is labeled one H subscript 2 molecule. The diagram for 2 H subscript 2 shows two sets of bonded, white spheres. It is labeled 2 H subscript 2 molecules.

Compounds are formed when two or more elements chemically combine, resulting in the formation of bonds. For example, hydrogen and oxygen can react to form water, and sodium and chlorine can react to form table salt. We sometimes describe the composition of these compounds with an empirical formula, which indicates the types of atoms present and the simplest whole-number ratio of the number of atoms (or ions) in the compound. For example, titanium dioxide (used as pigment in white paint and in the thick, white, blocking type of sunscreen) has an empirical formula of TiO2. This identifies the elements titanium (Ti) and oxygen (O) as the constituents of titanium dioxide, and indicates the presence of twice as many atoms of the element oxygen as atoms of the element titanium (Figure 2.21).

Figure 2.21

(a) The white compound titanium dioxide provides effective protection from the sun. (b) A crystal of titanium dioxide, TiO2, contains titanium and oxygen in a ratio of 1 to 2. The titanium atoms are gray and the oxygen atoms are red. (credit a: modification of work by “osseous”/Flickr)

Figure A shows a photo of a person applying suntan lotion to his or her lower leg. Figure B shows a 3-D ball-and-stick model of the molecule titanium dioxide, which involves a complicated interlocking of many titanium and oxygen atoms. The titanium atoms in the molecule are shown as silver spheres and the oxygen atoms are shown as red spheres. There are twice as many oxygen atoms as titanium atoms in the molecule.

As discussed previously, we can describe a compound with a molecular formula, in which the subscripts indicate the actual numbers of atoms of each element in a molecule of the compound. In many cases, the molecular formula of a substance is derived from experimental determination of both its empirical formula and its molecular mass (the sum of atomic masses for all atoms composing the molecule). For example, it can be determined experimentally that benzene contains two elements, carbon (C) and hydrogen (H), and that for every carbon atom in benzene, there is one hydrogen atom. Thus, the empirical formula is CH. An experimental determination of the molecular mass reveals that a molecule of benzene contains six carbon atoms and six hydrogen atoms, so the molecular formula for benzene is C6H6 (Figure 2.22).

Figure 2.22

Benzene, C6H6, is produced during oil refining and has many industrial uses. A benzene molecule can be represented as (a) a structural formula, (b) a ball-and-stick model, and (c) a space-filling model. (d) Benzene is a clear liquid. (credit d: modification of work by Sahar Atwa)

Figure A shows that benzene is composed of six carbons shaped like a hexagon. Every other bond between the carbon atoms is a double bond. Each carbon also has a single bonded hydrogen atom. Figure B shows a 3-D, ball-and-stick drawing of benzene. The six carbon atoms are black spheres while the six hydrogen atoms are smaller, white spheres. Figure C is a space-filling model of benzene which shows that most of the interior space is occupied by the carbon atoms. The hydrogen atoms are embedded in the outside surface of the carbon atoms. Figure d shows a small vial filled with benzene which appears to be clear.

If we know a compound’s formula, we can easily determine the empirical formula. (This is somewhat of an academic exercise; the reverse chronology is generally followed in actual practice.) For example, the molecular formula for acetic acid, the component that gives vinegar its sharp taste, is C2H4O2. This formula indicates that a molecule of acetic acid (Figure 2.23) contains two carbon atoms, four hydrogen atoms, and two oxygen atoms. The ratio of atoms is 2:4:2. Dividing by the lowest common denominator (2) gives the simplest, whole-number ratio of atoms, 1:2:1, so the empirical formula is CH2O. Note that a molecular formula is always a whole-number multiple of an empirical formula.

Figure 2.23

(a) Vinegar contains acetic acid, C2H4O2, which has an empirical formula of CH2O. It can be represented as (b) a structural formula and (c) as a ball-and-stick model. (credit a: modification of work by “HomeSpot HQ”/Flickr)

Figure A shows a jug of distilled, white vinegar. Figure B shows a structural formula for acetic acid which contains two carbon atoms connected by a single bond. The left carbon atom forms single bonds with three hydrogen atoms. The right carbon atom forms a double bond with an oxygen atom. The right carbon atom also forms a single bond with an oxygen atom. This oxygen forms a single bond with a hydrogen atom. Figure C shows a 3-D ball-and-stick model of acetic acid.

Example 2.1

Empirical and Molecular Formulas

Molecules of glucose (blood sugar) contain 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. What are the molecular and empirical formulas of glucose?

Solution

The molecular formula is C6H12O6 because one molecule actually contains 6 C, 12 H, and 6 O atoms. The simplest whole-number ratio of C to H to O atoms in glucose is 1:2:1, so the empirical formula is CH2O.

Check Your Learning

A molecule of metaldehyde (a pesticide used for snails and slugs) contains 8 carbon atoms, 16 hydrogen atoms, and 4 oxygen atoms. What are the molecular and empirical formulas of metaldehyde?

Molecular formula, C8H16O4; empirical formula, C2H4O

Portrait of a Chemist

Lee Cronin

What is it that chemists do? According to Lee Cronin (Figure 2.24), chemists make very complicated molecules by “chopping up” small molecules and “reverse engineering” them. He wonders if we could “make a really cool universal chemistry set” by what he calls “app-ing” chemistry. Could we “app” chemistry?

In a 2012 TED talk, Lee describes one fascinating possibility: combining a collection of chemical “inks” with a 3D printer capable of fabricating a reaction apparatus (tiny test tubes, beakers, and the like) to fashion a “universal toolkit of chemistry.” This toolkit could be used to create custom-tailored drugs to fight a new superbug or to “print” medicine personally configured to your genetic makeup, environment, and health situation. Says Cronin, “What Apple did for music, I’d like to do for the discovery and distribution of prescription drugs.”1 View his full talk at the TED website.

Figure 2.24

Chemist Lee Cronin has been named one of the UK’s 10 most inspirational scientists. The youngest chair at the University of Glasgow, Lee runs a large research group, collaborates with many scientists worldwide, has published over 250 papers in top scientific journals, and has given more than 150 invited talks. His research focuses on complex chemical systems and their potential to transform technology, but also branches into nanoscience, solar fuels, synthetic biology, and even artificial life and evolution. (credit: image courtesy of Lee Cronin)

This is a photo of chemist Lee Cronin.

It is important to be aware that it may be possible for the same atoms to be arranged in different ways: Compounds with the same molecular formula may have different atom-to-atom bonding and therefore different structures. For example, could there be another compound with the same formula as acetic acid, C2H4O2? And if so, what would be the structure of its molecules?

If you predict that another compound with the formula C2H4O2 could exist, then you demonstrated good chemical insight and are correct. Two C atoms, four H atoms, and two O atoms can also be arranged to form a methyl formate, which is used in manufacturing, as an insecticide, and for quick-drying finishes. Methyl formate molecules have one of the oxygen atoms between the two carbon atoms, differing from the arrangement in acetic acid molecules. Acetic acid and methyl formate are examples of isomers—compounds with the same chemical formula but different molecular structures (Figure 2.25). Note that this small difference in the arrangement of the atoms has a major effect on their respective chemical properties. You would certainly not want to use a solution of methyl formate as a substitute for a solution of acetic acid (vinegar) when you make salad dressing.

Figure 2.25

Molecules of (a) acetic acid and methyl formate (b) are structural isomers; they have the same formula (C2H4O2) but different structures (and therefore different chemical properties).

Figure A shows a structural diagram of acetic acid, C subscript 2 H subscript 4 O subscript 2. Acetic acid contains two carbon atoms connected by a single bond. The left carbon atom forms single bonds with three hydrogen atoms. The carbon on the right forms a double bond with an oxygen atom. The right carbon atom also forms a single bond to an oxygen atom which forms a single bond with a hydrogen atom. Figure B shows a structural diagram of methyl formate, C subscript 2 H subscript 4 O subscript 2. This molecule contains a carbon atom which forms single bonds with three hydrogen atoms, and a single bond with an oxygen atom. The oxygen atom forms a single bond with another carbon atom which forms a double bond with another oxygen atom and a single bond with a hydrogen atom.

Many types of isomers exist (Figure 2.26). Acetic acid and methyl formate are structural isomers, compounds in which the molecules differ in how the atoms are connected to each other. There are also various types of spatial isomers, in which the relative orientations of the atoms in space can be different. For example, the compound carvone (found in caraway seeds, spearmint, and mandarin orange peels) consists of two isomers that are mirror images of each other. S-(+)-carvone smells like caraway, and R-(−)-carvone smells like spearmint.

Figure 2.26

Molecules of carvone are spatial isomers; they only differ in the relative orientations of the atoms in space. (credit bottom left: modification of work by “Miansari66”/Wikimedia Commons; credit bottom right: modification of work by Forest & Kim Starr)

The top left portion of this 2 row, 4 column figure shows a structural diagram of positive carvone, C subscript 10 H subscript 14 O. This molecule has a carbon atom which forms a double bond with a C H subscript 2 group and a C H subscript 3 group. The carbon atom also forms a single bond with another carbon atom which is part of a ring. This carbon atom, being part of the ring, forms single bonds with a hydrogen atom, a C H subscript 2 group, and a C H subscript 2 group. The first C H subscript two group forms a single bond with C H which forms a double bond with a carbon atom. This carbon atom forms a single bond with a C H subscript 3 group. The carbon atom forming part of the ring forms a single bond with a carbon atom which forms a double bond with an oxygen atom and a single bond with a C H subscript 2 group to complete the ring. Below the structural diagram of carvone is a photo of caraway seeds. Column 2 contains identical ball and stick representations of the structural diagram in the top left position. The top right portions of these images each contains the letter “S” and there is an arrow pointing downward from the top image to the bottom image. Columns 3 and 4 are representations of negative carvone. The top row in column three depicts a mirrored image of the ball and stick structure to its left, reflected across the y axis. There is a downward pointing arrow to the image below, which is the same structure rotated counter clockwise 180 degrees. Both images in column 3 have an “R” in the top right corner. The image in the first row of column 4 is the same as the lewis structure in the first row of column 1, reflected across the y axis. Below this negative carvone structural diagram is a photo of spearmint leaves.

Link to Supplemental Exercises

Supplemental exercises are available if you would like more practice with these concepts.

Footnotes

  1. Lee Cronin, “Print Your Own Medicine,” Talk presented at TED Global 2012, Edinburgh, Scotland, June 2012.

Files

Suggested Citation

General College Chemistry. https://edtechbooks.org/general_college_chemistry

Previous Version(s)

Flowers, P., Neth, E. J., Robinson, W. R., Theopold, K., & Langley, R. (2019). Chemistry in Context. In Chemistry: Atoms First 2e. OpenStax. https://openstax.org/details/books/chemistry-atoms-first-2e
CC BY

CC BY: This work is released under a CC BY license, which means that you are free to do with it as you please as long as you properly attribute it.

End-of-Chapter Survey

: How would you rate the overall quality of this chapter?
  1. Very Low Quality
  2. Low Quality
  3. Moderate Quality
  4. High Quality
  5. Very High Quality
Comments will be automatically submitted when you navigate away from the page.
Like this? Endorse it!