
Going Beyond Formalisms

A Grounded and Embodied Learning Approach to the Design of
Pedagogical Statistics Simulations

Sebahat Gok & Robert L. Goldstone

DOI:10.59668/423.8196

Data Literacy Grounded and Embodied Learning Statistical Simulations

Computer-based interactive simulations that model the processes of sampling from a population are
increasingly being used in data literacy education. However, these simulations are often summarized by graphs
designed from the point of view of experts which makes them difficult for novices to grasp. In our ongoing
design-based research project, we build and test alternative sampling simulations to the standard ones. Based
on a grounded and embodied learning perspective, the core to our design position is that difficult and abstract
sampling concepts and processes should: be grounded in familiar objects that are intuitive to interpret,
incorporate concrete animations that spontaneously activate learners’ gestures, and be accompanied by verbal
instruction for a deeply integrated learning. Here, we report the results from the initial two phases of our project.
In the first iteration, through an online experiment (N=126), we show that superficial perceptual elements in a
standard simulation can lead to misinterpretation of concepts. In the second iteration, we pilot test a new
grounded simulation with think-aloud interviews (N=9). We reflect on the complementary affordances of visual
models, verbal instruction, and learners’ gestures in fostering integrated and deep understanding of concepts.

Introduction
Data literacy, defined as “competence in making sense of data, including management, modeling, interpretation, and
presentation of data in critical manner” (Gehrke et al., 2021, p. 201), has gained attention in K-12 (Common Core State
Standards, 2022) and undergraduate education (de Veaux et al., 2017) with the increasing reliance on data for critical
decision-making processes in today’s society. At both levels, curricular programs aim to equip students with the skills of
making informed decisions and solving personal and societal problems based on data. To this end, students are
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expected to make inferences from observed samples which require flexible reasoning of statistical concepts such as
population, sampling, variation, and randomness (Adhikari et al., 2021; Gehrke et al. 2021). However, statistical
concepts can be notoriously difficult to grasp (Hokor, 2022; Schwartz et al., 1998; Tversky & Kahneman, 1972). To make
statistical inference accessible to students, educators have developed interactive computer simulations (e.g.,
Donoghue et al., 2021; Sutherland & Ridgway, 2017). The simulations combine the affordances of multiple forms of
media by integrating interactive dynamic graphs, verbal tags, and explanations. Immersed in their rich representations,
students engage in practices of modeling real-world phenomena through inquiry-based investigations (Pfannkuch et al.,
2018).

While the simulations are enthusiastically welcomed by the education community, the empirical evidence from the
existing simulations are highly variable in terms of whether simulations bring considerable learning gains for statistical
concepts. Some studies incorporating simulations in classrooms found dismal results. With simulations, students still
lacked a causal understanding of probabilistic processes, and simulations sometimes even caused additional
misconceptions because they led to incorrect interpretations of graphs (Ben-zvi et al., 2012; Lehrer & Schauble, 2017;
Maxara & Biehler, 2010). A few studies, however, reported positive learning gains associated with simulations (Jacob &
Doerr, 2014; van Dikje-Drogers et al., 2021). The variations in the results suggest there is more to understand about how
simulations are most effective in supporting novices’ learning of data concepts and processes. In this ongoing design-
based research project, the researchers aim to help meet this need by building, comparing, and testing alternative types
of sampling simulations. This article reports the results from initial iterations with a focus on design decisions
regarding the visual, dynamic, and verbal features of the simulations from a grounded and embodied learning
perspective.  

Before introducing this work, however, it is important to understand the traditional solution to which we are seeking an
alternative. Many  current simulations use, what we call, generic representations of data. In the next section, we
describe these types of representations, discuss their limitations, and then, introduce how we re-envision the data
representations that form the foundations for the current work.

Generic Visual Representations of Data
Simulations that model sampling processes, the focus in this study, typically adopt generic visual representations such
as histograms and pie charts (See figure 1). We call such graphs generic as they are conventional representations
depicting concepts and relations in ways that strip away the real visual attributes of the data they represent.  Relying on
generic graphs for teaching new concepts often has limitations. While such graphs can be effective data representation
tools for experts, they are not always suitable to the developmental needs of novice students (Nathan, 2021). Students
often have poor understanding of generic graphs. In histograms, students often confuse what the horizontal and
vertical dimensions mean. For example, they think flatness of histograms indicate low variability, or that the X-axis
indicates chronological order even when there is no time-related variable in the data (Kaplan et al., 2014). Such
misconceptions have been shown to be resistant to training.

Figure 1

Examples of Standard Simulations
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Note. A representative sample of popular and modern pedagogical statistical simulations used in K-12 and
undergraduate education (On top left; from the Bootstrap program by Brown University team, on top right; from the
Introduction to Data Science curriculum team by UCLA College of Statistics, on bottom left; from Rossman and Chance,
on bottom right, from the team of Locks). Note that each depicts data in a highly similar fashion. The same type of
histograms are used whether one aims to depict the distribution of people, cities, recycle bins, or abstract process of
sampling. We will call the simulations which employ such generic histograms standard simulations in the rest of the
paper.

The standard simulations are ungrounded in the sense that they are not connected to things students already know
from their primary, personal, and real-world experiences. For novices, these types of representations often require
numerous mental inferences (Rau, 2017) and learners’ failure to learn with them might indicate a lack of understanding
of the representations rather than the ideas behind them. (Nathan, 2021). For graphs to be effective, students should be
able to understand how they depict information (Rau, 2017), and the representations should be grounded in learners’
familiar experiences (Nathan, 2021). To this end, the current study goes beyond generic graphs and re-envisions how
data representations from simulations can be made more accessible to novices through the lens of the grounded and
embodied learning framework with the overarching goal of reducing the entry barriers to data literacy.

Grounded and Embodied Learning Framework
Earlier theories of cognition postulated meaning occurs from the manipulation and combination of mental symbols
(Anderson, 1996; Newell & Simon, 1956). According to these symbolic cognition accounts, reasoning is guided by
abstract rules dissociated from modal systems and bodies. This approach assumes people can effectively be trained
with abstract versions of rules, and they will later be able to transfer what they have learned by applying the acquired
symbolic rules to distant domains (Smith et al., 1992). Symbolic cognition theories have had a large influence on
education. In statistics education, the focus has traditionally been on mastery of abstract rules and mathematical
formalisms with little attention paid to learners’ perceptions, bodily actions, and interactions with their environment
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(e.g., Lovett et al., 2008; Nisbett et al., 1987). The abstract rules, however, are often hard to grasp, easy to misapply and
forget, because they are often disconnected from students’ life experiences (Nathan, 2021).

In later years, symbolic accounts of cognition have been challenged by different strands in cognitive science such as
grounded cognition, embodied cognition, dynamic cognition, and situated cognition, to name a few (for a review, see
Barsalou, 2008). Even though the strands differ from each other about their view on the nature of the mind, they all have
commonly argued for closer relationships between abstract thoughts, sensorimotor systems, and situated activity.
Recently, Nathan (2021) has combined these modern strands of cognition under the umbrella term of “grounded and
embodied learning (GEL) framework” to offer a new lens for the design of educational environments. The GEL
framework  premises meaning arises from the relationship of a person’s actions and the affordances of the particular
situation the individual is in. The affordances of a situation depend on the individual’s goals, personal learning history,
and the cultural norms they acquired. One’s primary experiences, perceptions, gestures, and body are central to how one
makes sense of the world (Nathan, 2021). Based on this thesis, the GEL framework suggests educational experiences
should be designed in a way that connects abstract ideas and representations to students’ lived experiences, including
perceptions and body-based interactions, for meaningful learning to occur (Nathan, 2021).

We are not the first to investigate what opportunities a grounded and embodied learning approach can offer for the
design of multimedia learning experiences. Abrahamson (2012) designed physical random device generators that tap
into students’ pre-analytic perceptual judgments to teach compound events. Loy (2021) designed static lined-up graphs
for students to engage in hypothesis testing based on the perceptual differences between graphs before conducting
mathematical analysis. Zhang et al. (2022) designed instructional statistics videos in which students observed hand
movements of an instructor drawing normal distribution graphs, and were instructed to mimic the positions of central
tendencies in the graphs with their hand movements (Zhang et al., 2021). These studies either reported statistically
significant learning gains from their design approach (Zhang et al., 2021, 2022) or qualitatively meaningful learning
experiences (Abrahamson, 2012; Loy, 2021). Building upon this body of literature, we design sampling simulations
enriched with icons that draw on people’s ability to easily track frequency information from such representations (Brase,
2008), and animations that represent mathematical computations dynamically and spatially. While interpreting the
graphs, the students mimic these spatial movements with their gestures (hand and finger movements) which can
indicate deeper engagement than just “seeing the graph” (Gerofsky, 2011, p. 245). In the next section, we detail our
approach to multimedia learning for the design of computer simulations at the current project.

‘Re-thinking’ Multimedia Learning from the Lens of Grounded and
Embodied Learning Framework 
Multimedia theory traditionally distinguishes between learning from pictures and words, noting that these two
modalities offer complementary advantages and disadvantages (Mayer, 2009). Pictures excel at representing analog,
continuous, and rich information, particularly about spatial relations (Hegarty, 2011), whereas words excel at conveying
discrete, symbolic interpretations (Dingemanse et al., 2015). In many domains, both modalities are needed for effective
learning. nstructional strategies that promote their integration. for example through concurrent presentation of both, are
often particularly effective (Mayer & Anderson, 1992).

Moving beyond this classic distinction between words and pictures, researchers have further investigated pictorial
representations to understand the unique affordances of graphical displays that are static, animated, and interactive.
Relative to static images, animations offer advantages when learning involves understanding how variables change
over time and space (Ploetzner et al., 2020), but they can come at the cost of discouraging students from constructing
their own mental model of a situation (Mayer et al., 2005). Relative to “canned” animations, simulations offer learners
“live,” dynamically computed sequences of images that often incorporate interactivity (National Research Council,
2011). This interactivity can promote learning directly by having learners come to understand how parameters they
control influence how the simulation unfolds, and indirectly by increasing learners’ motivation to learn and engage
(Magana et al., 2022).
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Our interest in simulations for teaching concepts related to statistical inference stems from their promise in helping
learners to create their own internal mental models (Boyle et al., 2014). In our observations of students learning
mathematical principles using computer simulations, students often actively interpret the interactions of the elements
while interacting with the simulations (Goldstone & Wilensky, 2008). These interpretations are firmly “grounded in the
particular simulation with which they are interacting” (p. 480). However, as the interpretations are highly selective,
perspectival, and idealized (Goldstone & Sakomoto, 2003; Goldstone & Son, 2005), they can apply to two situations
which look apparently dissimilar. Students’ understandings are thus grounded in a specific concrete context, yet also
transferable to new contexts. This route to transfer of learning through interpretation of concrete simulations is often
more effective than approaches that stress formalisms. Formalisms such as logical expressions or algebraic notation
do unify disparate situations under a common formalism, but seeing the applicability of a formalism to a situation is
notoriously difficult for students (Nathan, 2012). Instead, when simulations are paired with lesson plans that guide
learners to notice useful patterns, learners come to perceive these patterns, and the perceptual routines that the
learners acquire along the way naturally carry over to new situations (Goldstone et al., 2017). Far transfer based on
noticing a shared formalism is rare (Day & Goldstone, 2012). By contrast, people who train their perceptual systems to
find a pattern often automatically use their trained perceptual system in new contexts (Kellman & Massey, 2013).

The Authors’ Positionality
Researchers’ beliefs about the nature of social reality, knowledge, and how we interact with the world impact their
research process (Holmes, 2020). Whether researchers are aware of it or not, these ontological and epistemological
beliefs have influences on how they conduct their research and how they interpret their results. Therefore, an explicit
acknowledgment of the author position is important for readers to make a better-informed judgment about the research
process.

The research and design team of this project consists of the two authors of this article. The first author is a graduate
student of instructional design and cognitive science with 10 years of teaching and design experience in different fields
spanning science, educational technology, and foreign language education. The second author is a professor of
cognitive science whose expertise lies in the bidirectional relationships of human perception and cognition. While his
earlier research focused on basic processes involved in human cognition, in later years, his worked broadened to apply
cognitive theories to the design of educational technologies in mathematics and science classrooms. Based on this
body of work, he has developed computer-based mathematics tutors which are used in K-12 educational institutions
nationwide.

The researchers believe the study of human cognition can provide insights for the design of educational technologies,
and, reciprocally, the results from educational work can further enrichen our understanding of human cognition. Our
situatedness in the field of cognitive science and related expertise has directly influenced the theoretical framework we
adopted, and our institutional affiliation has influenced the choice of participants through the opportunities available to
us.  Furthermore, the first author’s training in instructional design has influenced the iterative design choices of the
project based on a design-based research framework.

The first author designed the instructional activities that accompanied the simulations while the second author
designed the simulations based on his expertise in perceptual and conceptual learning. In the light of reading of the
related work in the field, the first author identified the research questions, conducted experiments, interviews, and the
data analysis, and both authors met weekly to discuss the project, their interpretations of the results, and what steps to
take next. Concurrently, we also received feedback from our informal meetings with colleagues who were statistics
educators, cognitive scientists, and instructional designers, which might have influenced our design choices in addition
to analysis of the empirical results.

The Current Study
The overarching research question is whether difficult concepts in statistical reasoning related to sampling can be
successfully learned by incorporating a grounded and embodied learning perspective to computer-based simulations.
Through a design-based research methodology (Barab & Squire, 2004), we employed iterative design cycles of the
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simulation as a multimedia artifact by combining it with instructional texts. We present findings from two design
iterations and several design decisions employed to elicit a well-grounded understanding of sampling for inference
making in statistics.

The Design Iterations
In the first iteration, we aimed to test what standard simulations commonly used for data literacy and statistics
education offer (See figure 1). To this end, we emulated the common visual features of these simulations. We tested
our standard simulation against a more traditional teaching method that does not employ simulations through a
controlled experiment. In the second iteration, we went beyond the standard features of statistical simulations and
investigated the promises of an innovative grounded simulation through think-aloud interviews with students. Before
presenting our iterations, we first overview the subject domain we focused on in the current study.

The Subject Domain: Distribution of Sample Means
Learning objectives focused on the topic of distribution of sample means. For statistical inference, students need to be
able to flexibly reason about distributions of sample means and how sample size affects their properties. We overview
the key sampling processes, the rules of sampling processes with their rationale, and common student misconceptions
below in Table 1.

Table 1

The Summary of the Subject Domain

Sampling Processes Rules and rationales Misconceptions

An example of a normally distributed population graph with
mean = 50.

In real life, we often cannot collect information from the
whole population, therefore, we draw samples from it. Two
different samples with size 4 and 20 are drawn below to
point out the importance of sample size in estimating
population mean.

Rule: As sample size increases, it is more likely
that the sample mean gets closer to the
population mean. Rationale: For a larger
sample, it is less likely that all values are low or
high. As a result, low and high values cancel
each other out.

Students often know that larger
samples generally allow for a better
estimate of the population mean.
However, they (wrongly) believe that it
is the sample size’s proportion to
population, not its absolute size, that
affects this estimation
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Sampling Processes Rules and rationales Misconceptions

A random sample of a specific size is taken from the
population and its mean value is calculated and then
recorded. Another random sample with the same size is
then taken and its value is recorded. This process is
repeated many times. In other words, means of many
random samples of a specific size are collected from the
population. This collection of sample means is called the
distribution of means. See below two different distributions
of means with sample size 4 and 20.

As sample size gets larger, the standard
deviation of the distribution of means gets
smaller. Rationale: Remember that the
distribution of means is a collection of means
of random samples of a particular size. With a
larger sample size, more of the sample means
will be closer to the actual mean, which will
decrease the standard deviation of the
distributions of means.

This rule is notoriously difficult for
students to grasp. Students often
confuse sampling distributions of
means with an individual sample.
Students often believe standard
deviation increases or stays stable
with larger samples.

Note. A review of sampling processes that are depicted in sampling simulations (in the left column), the rules with their
rationales that explain these processes (in the middle column), and what students often wrongly believe about these
processes (in the right column).

The First Iteration: Comparing a Standard Simulation to a Non-
simulation Method
In the first iteration, we aimed to gauge whether a standard simulation that emulates popular simulations would provide
different learning experiences than a more traditional teaching method that is based on direct instruction through static
text and images.

Participant
141 undergraduate students from the researchers’ university participated in a one-hour online study to receive
participation credits in an introductory Psychology course. Based on self-reports, their ages were between 18 and24,
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68% were female, and 65% were white. We expected the experiment to be relevant for students’ learning goals as they
were required to take at least one statistics course to complete their undergraduate degree.

The Design of Conditions
For the non-simulation condition, we designed a traditional mode of instruction through a computer program. The
students first received direct instruction via verbal and pictorial information, and then, attempted to solve graph
problems followed by feedback. For the standard simulation condition, we mimicked the features of popular
pedagogical simulations overviewed in the first section (see Figure 1). That is, we placed an individual sample
distribution on the top of the screen, and the distribution of sample means on the bottom, both expressed as generic
histograms.

Students’ simultaneous engagement with visual representations and verbal explanations can lead to deeper learning
through the integration of their intuitive understanding from visuals and more formal and explicit ways of understanding
from language (Aleven & Koedigner, 2002). To this end, we combined interactive dynamic visualizations and verbal
explanation prompts together to provide the opportunity for students to integrate visual and verbal information together
(See Figure 2).

Figure 2

The Standard Simulation from the First Iteration

Note. A screenshot from our standard simulation with self-explanation prompts. The simulation group first attempted to
solve graph interpretation problems and then explored the correct solution with interactive simulations, augmented by
guided self-explanation prompts.

Hypothesis
The previous work advocating use of simulations for teaching sampling distributions argued simulations foster a
deeper conceptual understanding of sampling concept (Chance et al., 2004; Cobb & Moore, 1997). Based on this body
of work, we hypothesized that the standard simulation condition would have significantly better performance in the
posttest than the non-simulation condition.

Research Design and Procedures
In an online computer-based experiment, the participants were randomly assigned to one of two groups: Simulation vs.
non-simulation group. The intervention consisted of a pretest, learning, and post-test phases. Pretest and post-test
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items included 12 identical multiple-choice questions classified as graph, story problems, and rule questions.
Additionally, the post-test included two open-ended rule-explanation questions (See Table 2).

Table 2

Example Items

Example Graph Item (5 questions in total):

The population distribution for an exam score is displayed above. Below, you see two distributions of the sample means for random samples drawn
from the population. One comes from a distribution with sample size of 2. The other comes from a distribution with sample size of 15. Which
distribution comes from a situation where the sample size is 15? A. B.*

Example Story Problem Item (5 questions in total): American males must register at a local post office when they turn 18. In addition to other
information, the height of each male is obtained. The national mean (average) height for 18-year old males is 69 inches (5 ft. 9 in.). Every day for one
year, about 5 men registered at a small post office and about 50 men registered at a large post office. At the end of each day, a clerk at each post
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office computed and recorded the mean height of the men who registered there that day.One day, you will visit one of the offices. You want to find
the office where the mean height of the men is closer to that of the population's. Which office should you go to increase your chances?A. You should
go to the small office.B. You should go to the large office.*C. Both have equal chancesD. There is no basis for predicting which post office would
have more chances.

Example Rule Question (2 questions in total):Consider any possible population of values and all of the samples of a specific size (n) that can be
taken from that population. Below are four statements about the distribution of the sample means. Which one is CORRECT?A. As the sample size
increases, the distribution of sample means will have a smaller and smaller standard deviation.*B. As the sample size increases, the distribution of
sample means will have a larger and larger standard deviation.C. No matter what the sample size is, the distribution of sample means will have the
same standard deviation.D. As the sample size increases, the distribution of sample means will have a similar standard deviation to that of the
population.

Explanation questions (2 questions) The sample mean tends to get closer to the population mean as sample size increases. Explain why this is
correct.____________________________________________________________________________As the sample size increases, the distribution of sample
means will have a smaller and smaller standard deviation. Explain why this is correct._____________________________________________________

Note. ‘*’ identifies the correct answer.

Scoring of verbal data
We conducted a pilot study prior to the actual study. The two authors applied inductive coding to the responses of the
rule explanation questions to create the coding scheme. The authors discussed the codes and ensured coding
agreement. The data from the actual study was analyzed based on this coding scheme. The response to each question
constituted the unit size, which corresponded to one category. Both authors independently coded 20% of data. The
interrater agreement for assigning each response to categories was 85% for the first item, and 84% for the second item.
After the two authors discussed the differing categorization and achieved a mutual agreement, the first author
completed the coding of all data. The authors were blind to which conditions the data were obtained from during the
complete coding process. 

Results
We measured learning gains for each question type separately. For each problem type (except verbal explanation
questions), we ran two statistical analyses. First, ANCOVA on the post-test scores with prior knowledge as a covariate
and the condition (simulation vs. non-simulation) as independent variable. Second, we collapsed the conditions and ran
a paired t-test to measure overall learning gain from pre- to post-test. (See Table 3).

 At graph questions, there was not a significant effect of condition, F(1, 138) = 1.01, p = 0.31. However, there was an
overall learning gain from pre (M = 1.53, SD = 1.12) to posttest (M = 2.46, SD = 1.43), t(140) = 7.14, p < 0.01.

At story problems, there was not a significant difference between the conditions, F(1, 138) = 1.89, p = 0.17. Further,
there was not any significant difference between pre (M = 2.60, SD = 1.15) and posttest performance (M = 2.45, SD =
1.27), t(140) = 1.59, p = 0.11.

At rule problems, there was not a significant difference between the conditions, F(1, 138) = 0.19, p = 0.65. However,
there was a significant learning gain from pre- (M = .96, SD = 0.69) to post-test (M = 1.20, SD = 0.77), t(140) = 3.61, p <
0.01.

Table 3

Iteration 1: Pre and Posttest Scores

  Graph Questions Story Problems Rule Questions

  Sim Non-sim Sim Non-sim Sim Non-sim

Pretest 32.8% 28.2% 52% 52.2% 50% 46%

Posttest 52% 46.4% 47.2% 50.8% 59.5% 60.5%
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Note. Average percentage of correct answers in pre and post test for simulation (Sim) and non-simulation (Non-sim)
group.

For verbal responses, we ran a Pearson’s chi-square test on the coded responses. For the first item (See Table 2),
“Explain why the sample mean tends to get closer to the population mean as sample size increases”, there was a
significant association between the response categories and the condition ( χ2(7) = 16.08, p = 0.02).

Table 4

Percentage Responses to the First Item: “Explain why the sample mean tends to get closer to the population mean as
sample size increases.”

Response category Non-Sim group Sim group

Larger sample is a better representation of the population* 55% 37%

Bigger sample size results in less likelihood and/or impact of outliers 10% 18%

As sample size increases, the standard deviation increases 0% 12%

Nonsense explanation 15% 17%

Note. ‘*’ identifies the correct explanation.

For the second item, “Explain why the standard deviation of the distribution of sample means will get smaller as sample
size increases”, there was not a significant association between response categories and the condition ( χ2(5) = 6.53, p
= 0.25; see Table 5).

Table 5

Percentage Responses to the Second Item: “Explain why the standard deviation of the distribution of sample means will
get smaller as sample sizes increases.”

Response category Non-Sim group Sim group

Nonsense explanation 60% 52%

More sample means are closer to the population mean as sample size increases.* 15% 21%

More data are closer to the average as sample size increases 8% 11%

A larger sample size leads to less likelihood and/or impact of outliers in data 11% 4%

Note. ‘*’ identifies the correct explanation.

Discussion
In the first iteration, we ran an experiment to compare a simulation-based vs. non-simulation learning method for a
sampling distribution task. In the non-simulation group, participants first received direct instruction with verbal
information and pictures and then, solved graph problems with feedback. The simulation group first attempted solving
graph problems with feedback and then, explored the solution through interactive simulations accompanied by self-
explanation prompts. We measured learning with four types of test items: graph problems, story problems, rule
statement items, and open-ended explanation items.

Both groups increased performance at similar levels from pre- to post-test for graph problems. However, neither
improved their learning at story problems. These results suggest both groups gained mostly a superficial understanding
of the concepts by attending to the physical features of the graphs (e.g., “the distribution of sample means will look
narrower when the sample size is larger”). 

The groups improved their learning of rules to a similar level from pre- to post-test. However, neither were able to
explain the rationale of the rule. For the first open-ended explanation item (“Explain why sample mean tends to get
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closer to the population mean as sample size increases”), an answer that would indicate understanding of the sampling
process could be “it is less likely that all numbers will be low or high for a large sample. As a result, it is more likely that
low and high numbers will average each other out in larger samples”. Rather, students mostly gave a superficial
response that would be expected without any exposure to instruction, such as “larger samples are a better
representation of the population”. 55% of the students in the non-simulation group and 37% of the students in the
simulation group gave this kind of explanation for the item.

Unfortunately, the simulation group (37%) used this superficial, but nevertheless correct, explanation less than the non-
simulation group (55%) and instead, more often displayed misconceptions in their explanation. Some of them (12 %)
believed that the standard deviation would increase with larger samples (note that this answer never appeared in the
non-simulation condition). This is a surprising kind of explanation about why larger samples tend to give a better
estimation of the population mean. Thus, the simulation-based learning method has overridden some students’ intuition
and caused an unusual type of misconception.

Prior work with simulations sheds light on this interesting result. Adams et al. (2008) found in their physics simulations
that when students see items that look superficially similar (or different) to each other (such as shape and color), they
believe this superficial similarity (or difference) also meant a deeper conceptual similarity (or difference). In the domain
of sampling simulations, van Dijke-Droogers et al. (2021) observed that simply differentiating the color and shape of the
sampling distribution graph from individual sample graphs decreased students’ conceptual confusions. In the light of
this evidence, we believe students’ confusion in the current study resulted from interacting simultaneously with the
individual sample distribution (on top) and the distribution of sample means (on bottom) graphs which look similar to
each other (See figure 2). Students learned the rule that the standard deviation of the distribution of sample means
changes while engaging with the graph at the bottom, but wrongly associated this rule with the single sample graph at
the top. Given that the graphs looked like each other, students wrongly believed this visual similarity also meant
conceptual similarity. The confusing perceptual aspects of the graphs might also explain why combining them with self-
explanations did not lead to better learning unlike in the previous work (Aleven & Koedinger, 2002).

We caution that the results from this iteration might not apply to all standard simulations used in statistics education.
This iteration had important limitations that constrain generalizability. First, the experiment lasted for an hour which
might be shorter than the time allocated to this topic in real classrooms. Furthermore, in real classroom settings,
students might have the additional opportunity to revisit the topic of sampling distributions several times through
practice. Therefore, the mediocre overall results might be attributable to the limited exposure of students to the
material. Second, the study took place as an online experiment. Students might have made less effort in the study than
they would typically make if they engaged with the simulation in the classroom in the company of their peers and
teacher. Nevertheless, the fact that there were still differences between the two design conditions in terms of learning
outcomes even at a short experimental manipulation suggest that it is worthwhile paying attention to the specific
design choices in simulations.

The Second Iteration: Developing a Grounded Sampling
Simulation
The findings from the first iteration suggested that the standard simulation was not particularly helpful in fostering
conceptual understanding, and overall, resulted in similarly mediocre results compared to a more traditional form of
teaching. Moreover, the simulation even created an additional misconception. Our interpretation is that representing
different types of distributions by similar, generic histograms causes conceptual confusion. The advantage of the
standard kinds of histograms (shown in figures 1 and 2) is that the same graphical format can be used to represent a
huge variety of different types and structures of data. The disadvantage is that important differences between these
structures are obscured.

For the second iteration, we aimed to engage students’ natural perceptual learning capabilities more effectively through
a grounded cognition perspective. Inspired by the notion that complex cognition is grounded in well-learned perceptual
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and bodily processes, we employed concrete and familiar visual design elements to foster better sense making of
abstract sampling processes.

However, we did not solely rely on visuals for effective teaching of abstract and difficult concepts. As in the first
iteration, we aimed to combine the affordances of verbal and visual information for more integrated and deeper learning
of concepts. To this end, we designed a paper task sheet to guide students’ interactions with the
simulation.                                                                                                 

The Design of the Grounded Simulation and Task Sheet
Based on the grounded and embodied learning framework (Goldstone et al., 2010; Nathan, 2021), in our second
iteration, we aimed for abstract concepts and processes to be represented with familiar objects and concrete
animations in the simulation (See the simulation at  https://pcl.sitehost.iu.edu/robsexperiments/tests&examples/
tokenSampling/iteration2.html). This core design principle came into play with three main design choices. First, we
replaced the standard bars and bins of the histograms with icons sitting on top of each other to ease the
representational competence required for grasping histograms. Each icon represents a single instance of the
population or a single mean taken from a sample. Second, in order to avoid the confusion that happened in the first
iteration, we graphically differentiated the representation of the distribution of sample means from actual observations
by using different icons for each. Third, we dynamically animated the statistical processes such as calculating the
means from the sample so that students could construct a spatial representation corresponding to the process of
“cancellation of low and high scores” while trying to understand the distribution of means (See table 6).

 

Table 6

Visual Design Elements in the Grounded Simulation

Design principles Instantiation of the principle
What feature of the standard
histogram is replaced?

1. Use icon-based histograms to
ease the representational
competence required for
understanding histograms

representing each individual data point by an icon of a gear bars that summarize a collection of
data

representing the value of each data point by the number of spikes on a
gear

position on the X-axis

grounding frequency naturally in terms of counts of icons sitting on top
of each other in a column

frequency or density on the Y-axis

individual colors to reinforce that each icon is representing a unique
individual in the population

uni-colored graph

2. Visually distinguish between
graphs that depict different
processes

representing the collection of means with a white color, which is
different from the colors of the actual gears, and with the letter “M”
inside the gear to emphasize what is collected here is “means of
different sets of sampled gears”, not the gears themselves.

Identical visualizations of the
histograms of the distribution of a
sample and the collection of means
of samples

3. Dynamically and spatially animate
statistical processes

randomly sampled observations fall down from the population to the
sample graph

NA

when a sample falls down, their original place in the population flashes,
which graphically depicts the concept of sampling with replacement.

NA

  Animating the process of computing the means from the sample
observations by having the sampled gears converge to their mean, so
that students can construct a spatial representation corresponding to
the process that “low and high numbers average each other out”.

NA

The accompanying task sheet included two phases of activities. In the first phase, the activities guided students during
their interaction with the simulation with prediction and test questions, drawing tasks, and oral reasoning tasks. In the
second phase, the students stopped interacting with the simulation and read information from the paper which
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explained the rules with text and histograms. After they finished reading, they answered post-test questions which
required answering graph questions and story problems and giving rationales for the rules, as in the first iteration (See
Table 7). The students discussed their responses aloud with the interviewer. The interviewer did not give feedback on
students’ answers; however, she explained any unclarities with the instruction and probed students for further
explanation.

Table 7

Paper Task Sheet

During the interaction with the simulation

Activity Example item

Predicting and
testing (with
drawing and
written
explanations)

Think about if we were to take 2 gears randomly from the population, find their average (mean) number of teeth, and record the
average. If we repeatedly did this and collected a list of 2-gear averages, how would this collection look like? What would be the
range of averages we would see? Draw the diagram below in the blank space above 3a.Predict: Do the same task we did above,
but this time think about taking 10 gears at a time instead of 2. Draw the diagram below in the blank space above 3b. Means of
sample gears (n=2) Means of sample gears (n=10) Compare your two diagrams above. What happens as the sample size
increases? Write your thoughts briefly ______________________________________________________Test: Now, go to the simulation and
collect sample means with sizes 2 and 10. Do you observe any changes as the sample size increases?
_______________________________________________Conclusion: After seeing the simulation, do you change your thoughts?
__________________________

Further
reasoning
questions

Wisdom of the crowdIn 1906, British scientist Sir Francis Galton asked 787 villagers to guess the weight of an ox. None of them
got the right answer, but when Galton averaged their guesses, he arrived at a near perfect estimate. Often the average of many
people’s guesses is closer to the actual number than most individuals’ guesses. Why? Unusual population distributionsWhat
happens to the collection of sample means when we sample from a population with two distinct clumps? Population sizeWhat
would happen if we reduce/increase population size? Does sampling 10 from a population of 50 still come as close to the mean as
sampling from a population of 100?

After the interaction with the simulation

Information
sheet

Below are two sampling distributions of means with two different sample sizes obtained from the same population. The
population has a mean = 80 and standard deviation (sd) = 20.

Notice that as n gets larger, the standard deviation of the distribution of sample means gets smaller, with the sample means
tending to approximate the population mean more closely with larger sample size.

Rule
explanation

Identical open-ended items with the first study to gauge students’ reasoning about the rules

Graph
questions

Similar items with the first study that involve identifying the sampling distribution of means histograms with smaller vs larger
sample size.
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During the interaction with the simulation

Story problems Maternity task A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the
smaller hospital about 15 babies are born each day. As you know, about 50% of all babies are boys. The exact percentage of baby
boys, however, varies from day to day. Sometimes it may be higher than 50%; sometimes lower. Which hospital do you think is
more likely to find on one day that more than 60% percent of the babies born were boys? a) Large hospital b) Small hospital* c)
They are the sameMedical survey A medical survey is being held to study some factors pertaining to coronary diseases. Two
teams are collecting data. One checks three men a day, and the other checks one man a day. These men are chosen randomly
from the population. Each man’s height is measured during the checkup. The average height of adult males is 5 ft 10 in., and there
are as many men whose height is above average as there are men whose height is below average. The team checking three men a
day ranks them with respect to their height, and counts the days on which the average height of men is more than 5 ft 11 m. The
other team merely counts the days on which the man they checked was taller than 5 ft 11 in. Which team do you think counted
more such days?Team checking one man*

Note. ‘*’ identifies the correct answer.

Participants
Nine undergraduate students from the researchers’ university participated in a one-hour face-to-face study at the
exchange of course credits for an introductory psychology course. The participants were different individuals from the
ones in the first iteration. Based on self-reports, their ages were between 18 and 24; six were female and three were
male; and their majors were psychology (N=3), business school (N=2), human development (N=1), interior design (N=1),
biology (N=1), and finance (N=1). Six students had been introduced to basic statistics topics in high school or college
while three of them reported no prior statistics background.

Research Design
The study took place as a think-aloud interview study with individual students at a research laboratory. The first author
and each individual student sat next to each other across a desktop computer. The student interacted with the
simulation displayed on the computer while reading the directions from the paper task sheet on the table. The
interviewer repeatedly told the student to think aloud during this process, asked further follow-up questions, gauged
students’ understanding of the tasks, and responded to any clarification questions from the student.   

Data Analysis 
We transcribed the interview recordings and subjected them to content analysis by applying inductive coding to raw
data. The authors met frequently and revised the codebook until they ensured coding agreement before reporting.           

Findings
The first impressions of the graph. Students were mostly able to interpret the new simulation without much difficulty.
Seven students correctly identified the change in the horizontal dimension by pointing out the increasing number of
spikes on the gears from left to right. On the other hand, two students suggested gears were jumping higher or there
was a little wave from left to right. For those two students with no previous statistics background, the random and
irrelevant features of the graph overshadowed conceptually important patterns.

Learning with predict and test strategy
The predicting and testing pedagogy was largely successful. Except for one or two students for each predict-and-test
question, the students were able to reach the correct conclusion about how sample size affects the distribution of
samples and sample means after interacting with the graphs. For the remaining few cases, students still misinterpreted
the pattern even after testing it on the graph, and sometimes it took a few tests with different graphs for them to
identify the important patterns. For example, in one case, a student had predicted that mean would increase with larger
sample size. When he tested his prediction on the screen, even though he saw that the mean tended to be closer to the
population mean with a larger sample size, he missed this pattern. Instead, he suggested that the mean stays the same
whatever the sample size is. This student, however, was able to reach the correct conclusion after experimenting with a
second graph. Another was distracted by the unrelated and random patterns such as the colors of the dots, the speed
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of how gears fall, and the shape they make when falling. This student finally reached the correct conclusion after the
interviewer directed her attention to the relevant feature which was the sample mean line.

Figure 3

An Example Student Drawing

Note. A student’s drawings when predicting how the graph is going to look (on the left) and their updated graph after
testing it with the simulation  (on the right). The student seems to have diminished their confusion between the number
of the gears and the number of the means of gears from predicting to testing phase.

Grasping the process that “low and high numbers average out for larger samples”
One of the important learning objectives was for students to grasp the process that larger samples tend to estimate the
population mean better because it is more likely that low and high numbers average out as sample size increases. To
this aim, we animated this process as shown in Table 6. The results suggest that students mostly showed a quick
understanding of this process. For example, for the wisdom of crowd question (See table 7), six students successfully
suggested that lower and higher numbers average out to the correct weight of the ox. More interestingly, when asked if
the question was related to what they saw in the simulation, the responses suggested that students were not aware of
the connection. This is consistent with previous results suggesting that learners can benefit from an earlier situation
when presented with a subsequent analog even when they show no explicit awareness of the connection between the
two (Day & Goldstone, 2011).

Separate affordances of simulation vs. task sheet
After the students had finished several inquiry-based activities with the simulation, they read a paper task sheet which
mimicked a textbook. This task sheet explicitly stated the rules the students had discovered when interacting with the
simulation. Next, the students solved graph problems that asked them to identify histograms in relation to sample size.
When solving these problems, they referred to the rule they read on the paper instead of their own discoveries with the
simulation such as “That graph belongs to the smaller sample size because of the rule on the paper”. When they were
trying to reason about a rule, though, the students referred to the visual aspects of the simulation, for example, “Oh, the
standard deviation is smaller for the graph with the larger sample because the means should closely sit on top of each
other”.

Post-test performance
The aggregate percentage of correct answers were 72% for the graph questions and 78% for the story problems (we did
not ask rule selection questions in this iteration). Furthermore, as in the first iteration, we analyzed the verbal data from
the rule explanation questions (See table 8 and 9). Students mostly showed a good understanding of the relationship
between the sample size and the standard deviation of the distribution of sample means. 

Table 8

Percentage Responses to the First Item: “Explain why sample mean tends to get closer to the population mean as
sample size increases.”

Response category number (%)
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Small and large numbers average each other out.** 2 (22.22%)

More points allow a more accurate average.* 2 (22.22%)

There is less variability 2 (22.22%)

There is a larger pool of numbers. 1 (11.11%)

Sample becomes more proportional to the entire population. 1 (11.11%)

More sample means are closer to the population mean as sample size increases 1 (11.11 %)

“**” The ideal explanation “*” Correct, but superficial explanation

Table 9

Percentage Responses to the Second Item: “Explain why the standard deviation of the distribution of sample means will
get smaller as sample sizes increases.”

Response category number (%)

More sample means are closer to the population mean as sample size increases.* 7 (77.77%)

There is a larger range. 1 (11.11%)

Insufficient explanation 1 (11.11%)

Note. ‘*’ identifies the correct explanation.

Discussion 
In the second iteration, we investigated students’ learning of sampling concepts through our new grounded simulation.
Augmented by a task sheet, students first predicted how the sample size would affect the features of the distributions
and then, experimented with the simulation to test their prediction. After this inquiry-based activity, the students read
information on the sheet which explicitly stated the rules that they had discovered while interacting with the simulation.
As in the first iteration, the students’ learning was measured in a post-test through graph questions, story problems, and
rule explanation items. The results suggest students overall made few conceptual confusions, and they were able to
explain causal mechanisms of sampling processes even without any statistics background. A large percentage of
students provided correct answers to graph problems, showed good reasoning at story problems, and wrote quality
explanations of rules.

An important caution is that this iteration was designed as an initial study to test our new simulation with a small
sample size (n=9). While the results show initial promise of designing a simulation based on grounded and embodied
learning considerations, strong generalized conclusions should not be drawn considering the nature of the study and
lack of control conditions. Our next research goal is to compare a standard and grounded simulation through a rigorous
controlled experiment with a larger sample size to allow direct comparison between different approaches to
simulations. Still, the initial results reveal important insights about students’ interactions with the simulation, the role of
verbal information that accompanies the simulation, and the choice of instructional activities in which the simulation is
situated.

The simulation and the task sheet had separate affordances that contributed to overall learning. What was the
contribution of the visual elements of the simulation? Our results suggest perceptual features do not contribute to
learning, only at superficial levels. Perceptual learning can be powerful and deep when the perceptual features are
carefully designed in a way that reveals the important concepts. More specifically, students’ observations of the falling
gears collapsing into a mean facilitated their understanding of the sampling process. Students transferred what they
had observed from these animations to their discussions of the story problems as their verbal explanations suggested.
More interestingly, students were apparently unaware of the structural connections between the simulation and
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subsequent stories, which supports prior findings by Day and Goldstone (2011, 2012) which suggested that perceptual
learning is a powerful, automatic, and implicit mechanism for transfer.

Furthermore, the first author observed during interviews that students often used gestures that mimic the animations
while they were discussing their reasoning. For example, they brought two outstretched hands or fingers together while
talking about the process of obtaining a mean from a sample. Prior research suggests that gestures ease the
understanding of abstract and difficult mathematical concepts and processes (Nathan et al., 2021), and students’
embodiment of the graphs suggest deeper engagement than merely watching them (Gerofsky, 2011). Similarly, we
suspect animations, and the students’ spontaneous gestures mimicking these animations, might have had facilitative
effects on their understanding of the difficult concept of sampling distribution.     

What about the role of verbal information in the task sheet? The results suggest that providing students with verbally
explicit rules, which mimicked a typical textbook, had important influences on their learning. When discussing the rules,
students often referred to the rules stated on the task sheet even though they had themselves discovered these rules
while experimenting with the simulation. It is possible that perceptual learning through simulations was rather implicit,
and the task sheet served as an explicit verbal memory aid. The verbal form of information serves as a tool for
discourse. However, verbal information can be rather rote and inert when students do not understand their use (Aleven
& Koedigner, 2002). In this case, the abstract verbal rules were first grounded in concrete visual animations. In other
words, perceptual learning might have served as a grounding for meaningful learning of explicit verbal information.

We are further improving the design of our simulation for a third iteration by implementing design principles from
embodied learning (Alibali & Nathan, 2018) and concreteness fading (Fyfe et al., 2014). We mentioned students
spontaneously used gestures that mimicked the animations they saw on the screen. A follow-up question is whether
asking students to gesture helps them to understand the sampling concepts better? To answer this question, we are
currently designing a task in which students are instructed to mimic the animations with their hands when they are
watching a video of the simulation.

While our icon-based approach to sampling simulations suggests promising results, an important caveat is such
concrete representations can place limits on students’ transfer of their learning in some cases (Goldstone & Sakamoto,
2003). For example, students learning sampling processes through our iconic graphs might not apply their knowledge
when they encounter a generic histogram in a textbook. Therefore, a more promising approach might be to start with
concrete representations to make statistics more accessible to novices, and then gradually fade them into more
idealized ones so that students can effectively use the generic histograms that statisticians typically use. To this end, in
a third iteration, we have combined the grounded and standard graphs into a single simulation. Over the course of
training, the richer, more contextualized depiction is replaced with simpler rectangles (see the simulation at
https://pcl.sitehost.iu.edu/robsexperiments/tests&examples/tokenSampling/iteration3.html).

Overall, we conclude that a deliberate design approach informed by theory and empirical testing is important for
providing incremental improvements to pedagogical simulations. We also believe that instructional activities that
situate the simulation are at least as important as its design elements. In the final section, we reflect on design aspects
of the statistics simulations and the accompanying instructional activities based on the results from our two iterations.

General Discussion
With the accessibility of modern technologies, computer-based interactive simulations are becoming increasingly
common in data literacy education with the purpose of making statistics concepts accessible to novice students. We
argued these simulations often do not deliver on their promises because they are designed from an expert perspective;
that is,  they do not ground the data representations in students’ primary experiences, their perceptions, or bodily
actions. As an alternative, we proposed a novel statistics simulation designed based on aGEL framework. In the current
work, we specifically focused on icon-based graph representations. Our data suggests that our icon-based, dynamically
animated graph shows initial promise in making difficult sampling concepts more accessible to students. Similarly, prior
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research has shown iconic representations to dramatically improve people’s learning of base-rate concepts (Brase,
2014). From an ecological perspective, iconic representations tap into people’s ability to effortlessly track frequency
information as it approximates the presentations of frequencies of objects people see in their everyday environment
(Brase & Hill, 2015).

The initial results from the current work suggest several dimensions to test with simulations for future work. We view
simulations to be complements to textbooks and lectures rather than their replacements. Prior work suggests active
inquiry helps students learn more effectively from the subsequent instruction (Schwartz & Martin, 2004). Linguistic
materials and verbal instructions turn intuitive and implicit kinds of learning gained from the simulations into explicit
and verbalizable tools for powerful and effective discourse. Accordingly, we designed simulation activities to precede
the verbal information sheet, which served as a more standard form of instruction. Future research and design studies
should further explore how to combine different forms of media as complements to simulation.

An important result from the think-aloud interviews was students often did not see what was happening in the
simulations objectively, rather they saw it as a combination of their prior beliefs and what was happening on the screen.
Providing several experimentation opportunities with simulations helped students gradually update their prior beliefs in
the direction of actual results. An important implication for future research and design is to aim to better understand
the relationship between students' prior beliefs and the role of repeated practice in inquiry activities with simulation.

In the current work, we focused on the combination of icon-based graphs, spatial representations of mathematical
processes, and gestures as one possible way of instantiating grounded and embodied learning for sampling
simulations. However, the GEL framework is not only constrained to individual student’s perception and body-based
activities. The GEL framework views social and cultural experiences to be critical components of grounding scientific
conceptualizations. Accordingly, future work should consider different instantiations of sampling simulations based on
students’ personal and social experiences for a complementary perspective on grounding.

Conclusion
Overall, the three iterations of the statistical sampling simulation have underscored the pedagogical benefits of
providing grounded models for learners.  It may be tempting to prioritize equations and summary rules when teaching
statistical concepts because these formalisms are designed to be broadly applicable to an unlimited number of
scenarios. However, the problem with these generic formalisms is that future scenarios do not clearly present
themselves to the learner as being governed by the formalisms.  Instead, what is needed is for learners to develop new
ways of seeing future scenarios as instances of what they have previously learned. Perceptually grounded simulations
provide the kind of experiences learners need to develop these new ways of seeing and interpreting. Accordingly, we
encourage instructional designers and teachers to resist the tendency to put perception and deep understanding in
opposition. Superficial appearances can indeed be misleading, but not all perceptions are superficial. Perceptual and
interactive models offer promise in promoting grounded understanding and transfer that go beyond those achievable
with formalisms because they change how learners naturally see their world.
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